説明

汚染物質の分離方法及びそのための設備

【課題】高圧状態の下、高濃度で炭酸ガスを溶解させる炭酸ガス溶解水製造装置の開発に伴い、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を使用することで、汚染物質から重金属を高効率で分離回収する方法を提案する。
【解決手段】圧力容器5内に重金属によって汚染された物質を投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器5内に供給し、前記重金属汚染物質と撹拌混合する第1ステップと、前記重金属汚染物質の脱水処理を行い、処理水を重金属処理タンク6に供給するとともに、前記圧力容器5内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記重金属処理タンク6に供給する第2ステップと、前記重金属処理タンク6において、重金属用凝集剤を添加した後、脱水処理によって重金属を分離回収する第3ステップからなる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高濃度かつ高圧状態に維持された炭酸ガス溶解水を用いて、六価クロム、ヒ素、カドニウム、ホウ素などの重金属を効率的に分離回収したり、揮発性有機ハロゲン化物を分離除去するための方法及びそのための設備に関する。
【背景技術】
【0002】
石炭火力発電所から排出される石炭灰や廃棄物を焼却した際の焼却灰中には、六価クロムやヒ素、ホウ素など人体に影響を及ぼす重金属が含有されていることがあり、これが石炭灰の有効利用の促進や処分方法の効率化に当たって大きな問題となっている。
【0003】
また、近年は各種製造工場敷地および隣接地等では、有害重金属類が溶出して地下水に滲出し、大きな環境問題となっている。
【0004】
重金属で汚染された土壌を浄化する方法は、未だ十分に確立されていない状況にあるが、近年新たな浄化技術として、炭酸水や酸性溶液を用いた方法が提案されている。
【0005】
例えば、下記特許文献1では、重金属を含有する土、石炭灰等の粉粒体に対し、炭酸水による洗浄処理を行い、粉粒体中から重金属イオンを除去するようにした粉粒体の無害化方法が提案されている(先行技術1)。
【0006】
また、下記特許文献2では、石炭灰等のホウ素含有物質に酸性溶液を添加して処理対象物とするとともに該処理対象物中の前記ホウ素含有物質と前記酸性溶液とを互いに接触させることで前記ホウ素含有物質に含まれているホウ素を前記酸性溶液に溶出させ、次いで、前記処理対象物を前記ホウ素が溶出した処理液と前記ホウ素が分離除去された処理固形物とに固液分離し、前記処理液をさらに固液分離してその固形分を脱水処理して廃棄物処理する一方、前記処理固形物を水ですすぎ洗浄して該処理固形物内に残留する前記酸性溶液及び前記ホウ素を除去し、次いで、すすぎ洗浄後に残った固形分を脱水処理するホウ素の分離除去方法が提案されている(先行技術2)。
【0007】
一方、土壌汚染には重金属以外に、工場などで油類除去等の工業的な洗浄に使用されてきたトリクロロエチレン等の揮発性の有機ハロゲン化物による汚染も問題となっている。この汚染土壌の浄化に対し炭酸水を使用して浄化を図る方法が提案されている。具体的には下記特許文献3において、有機ハロゲン化物により汚染された土壌中に、間隔を隔てて炭酸供給用井戸及び揚水用井戸を掘削により形成し、該炭酸供給用井戸内に炭酸水又は炭酸ガスを注入することにより該土壌中の有機ハロゲン化物を遊離させる工程、一方該揚水用井戸から揚水することにより該遊離有機ハロゲン化物を除去する工程を含む汚染土壌の浄化方法であって、炭酸水を注入する場合、炭酸水として異なった濃度のものを用いて交互に注入し、炭酸ガスを注入する場合は、炭酸ガスを異なった炭酸ガス供給速度で交互に注入する浄化方法が提案されている(先行技術3)。
【特許文献1】特開2001−47007号公報
【特許文献2】特開2003−320342号公報
【特許文献3】特許第3215102号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、上記各先行技術1〜3には下記のような問題があった。
(1)土や石炭灰等の粉粒体は負に帯電しており、特に焼却灰や石炭灰は高pHを示すことからこの傾向が強くなる。そのため、重金属イオンが粉粒体と強く結びついて除去が困難であることに鑑み、上記引用文献1では、低pHの炭酸水を添加することにより、重金属イオンの吸着力を低下させ分離し易い環境を作るというものであるが、高濃度で炭酸ガスを溶解する技術が確立していない状況下では、炭酸水によって大幅なpHの低下は見込めず効率が悪いなどの問題があった。
(2)上記引用文献2では、塩酸等の酸性溶液によって重金属イオンの吸着力を低下させるというものであるが、安全面や環境面に問題が残る。
(3)上記引用文献3は、炭酸水が一般に鉱物で形成されている土壌の砂や土の表面を僅かに浸食する作用(所謂、リンス効果)を示し、これにより揮発性の有機ハロゲン化物の遊離が促進されるというものであるが、高濃度で炭酸ガスを溶解する技術が確立していない状況下では、炭酸水による遊離促進効果が低く効率化が難しいなどの問題があった。
【0009】
そこで本発明の主たる課題は、高圧状態の下、高濃度で炭酸ガスを溶解させる炭酸ガス溶解水製造装置の開発に伴い、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を使用し、汚染物質から重金属を高効率で分離回収したり、揮発性有機ハロゲン化物を高効率で分離除去する方法及びそのための設備を提案することにある。
【課題を解決するための手段】
【0010】
前記課題を解決するために請求項1に係る本発明として、圧力容器内に重金属によって汚染された物質を投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器内に供給し、前記重金属汚染物質と撹拌混合する第1ステップと、
前記重金属汚染物質の脱水処理を行い、処理水を重金属処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記重金属処理タンクに供給する第2ステップと、
前記重金属処理タンクにおいて、重金属用凝集剤を添加した後、脱水処理によって重金属を分離回収する第3ステップからなることを特徴とする汚染物の分離方法が提供される。
【0011】
上記請求項1記載の発明では、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を重金属汚染物質が投入された圧力容器内に供給し、前記重金属汚染物質と撹拌混合する。高圧状態(少なくとも炭酸ガスが液体状態である5.8MPa程度以上)で炭酸ガスを水又は塩水に高濃度(飽和溶解度に近い濃度)で溶解した炭酸ガス溶解水は、図10に示される既往の文献(金属の腐食・防食Q&A 石油産業編 社団法人腐食防食協会編 丸善出版社 p10より)から、少なくともpH2〜3程度になることが予測され、この炭酸ガス溶解水を用いることにより、重金属汚染物質の浄化環境として、重金属イオンの吸着力が低下し分離し易い環境が作られるようになるため、高い効率で重金属を分離回収することが可能となる。
【0012】
ところで、本方法では、六価クロム、ヒ素、カドニウム、ホウ素などの重金属を分離回収するに当たり、pHが低いほど重金属の回収効率が向上できるとの知見に基づいている。図11は既往の文献(大林組技術研究所報 No.68 石炭灰の酸洗浄によるほう素除去技術の開発(その2))によりホウ素の抽出率とpHとの関係を示したものであるが、pHが低いほどホウ素の抽出率が向上している。図12は既往の文献(環境省 廃棄物処理等科学研究費補助金 次世代廃棄物処理基盤整備事情報告書概要情報検索結果)によりヒ素及びセレンの抽出率とpHとの関係を示したものであるが、同じくpHが低いほどヒ素及びセレンの抽出率が高くなっている。さらに、図13は既往の文献(第35回地盤工学研究発表会(岐阜)p.199〜200)により六価クロムの回収量に与える炭酸ガス有無の影響を示したものであるが、明らかに炭酸ガスを供給した場合の方が、六価クロムの回収率が向上していることが分かる。
【0013】
重金属汚染物質と炭酸ガス溶解水とを混合した後、重金属汚染物質の脱水処理を行い、処理水を重金属処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記重金属処理タンクに供給し、前記重金属処理タンクにおいて重金属用凝集剤を添加した後、脱水処理によって重金属を効率的に分離回収することが可能となる。また、高圧状態に維持された炭酸ガス溶解水が大気圧開放されることにより、大気圧相当下での炭酸ガス溶解量となるため、pHを中性とすることができ最終処理水の中和処理も不要となる。
【0014】
請求項2に係る本発明として、圧力容器内に揮発性有機ハロゲン化物によって汚染された物質を投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器内に供給し、前記揮発性有機ハロゲン化物汚染物質と撹拌混合する第1ステップと、
前記揮発性有機ハロゲン化物の脱水処理を行い、処理水を揮発性有機ハロゲン化物処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記揮発性有機ハロゲン化物処理タンクに供給する第2ステップと、
前記揮発性有機ハロゲン化物処理タンクにおいて、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する第3ステップからなることを特徴とする汚染物の分離方法が提供される。
【0015】
上記請求項2記載の発明は、揮発性有機ハロゲン化物汚染物質を対象として本発明を適用したものである。図14は既往の文献(特許3215102号公報)により汚染土壌中のトリクロロエチレン検出量と炭酸濃度との関係を示したものであるが、炭酸濃度が高いほどトリクロロエチレンの検出量が高くなっていることが分かる。従って、本発明に従って、高圧状態(少なくとも炭酸ガスが液体状態である5.8MPa程度以上)で炭酸ガスを水又は塩水に高濃度(飽和溶解度に近い濃度)で溶解した炭酸ガス溶解水を用いることにより、揮発性有機ハロゲン化物を高効率で分離除去することが可能となる。
【0016】
処理手順は、揮発性有機ハロゲン化物汚染物質と、高濃度かつ高圧状態に維持された炭酸ガス溶解水とを圧力容器内で混合した後、揮発性有機ハロゲン化物汚染物質の脱水処理を行い、処理水を処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記処理タンクに供給し、前記処理タンクにおいて、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する。
【0017】
請求項3に係る本発明として、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽とから構成され、前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された炭酸ガス溶解水製造装置と、
重金属汚染物質が投入されるとともに、攪拌機が備えられ、前記炭酸ガス溶解水製造装置によって製造された炭酸ガスが圧力状態を維持したまま供給される1又は複数の圧力容器と、
前記圧力容器から取り出した重金属汚染物質の脱水処理を行う第1脱水処理装置と、
前記脱水処理装置の処理水が供給されるとともに、前記圧力容器から抜き出され、大気圧開放された炭酸ガス溶解水が供給され、重金属用凝集剤が添加される重金属処理タンクと、
前記重金属処理タンクの被処理物を脱水処理し、重金属を分離回収する第2脱水処理装置とからなることを特徴とする請求項1記載の汚染物の分離方法のための設備が提供される。
【0018】
請求項4に係る本発明として、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽とから構成され、前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された炭酸ガス溶解水製造装置と、
揮発性有機ハロゲン化物汚染物質が投入されるとともに、攪拌機が備えられ、前記炭酸ガス溶解水製造装置によって製造された炭酸ガスが圧力状態を維持したまま供給される1又は複数の圧力容器と、
前記圧力容器から取り出した揮発性有機ハロゲン化物汚染物質の脱水処理を行う脱水処理装置と、
前記脱水処理装置の処理水が供給されるとともに、前記圧力容器から抜き出され、大気圧開放された炭酸ガス溶解水が供給され、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する揮発性有機ハロゲン化物処理タンクとからなることを特徴とする請求項2記載の汚染物の分離方法のための設備が提供される。
【0019】
請求項5に係る本発明として、前記炭酸ガス溶解水製造装置に代えて、
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプとを設け、前記溶媒を所定の高流速で流した主流管路の内部に前記炭酸ガスの供給管路を配設するか、前記主流管路を外嵌する前記炭酸ガスの供給管路を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面に細孔を形成し、前記主流管路を流れる溶媒のせん断力によって前記炭酸ガスを細泡化しながら混入させる高圧用炭酸ガス細泡化装置を設置し、前記高圧用炭酸ガス細泡化装置の後段に設置された、密閉された容器の下部に、前記細泡化された炭酸ガスが混入された溶媒の注入口が形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された1又は複数の溶解槽とから構成された炭酸ガス溶解水製造装置を用いる請求項3、4いずれかに記載の汚染物の分離方法のための設備が提供される。
【発明の効果】
【0020】
以上詳説のとおり本発明によれば、高圧状態の下、高濃度で炭酸ガスを溶解させる炭酸ガス溶解水製造装置の開発に伴い、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を使用することで、汚染物質から重金属を高効率で分離回収したり、揮発性有機ハロゲン化物を高効率で分離除去することが可能となる。
【発明を実施するための最良の形態】
【0021】
以下、本発明の実施の形態について図面を参照しながら詳述する。
〔第1形態例〕
図1は本発明の第1形態例に係る汚染物の分離方法のシステム概略図である。 第1形態例では、高濃度かつ高圧状態に維持された炭酸ガス溶解水を用いて、六価クロム、ヒ素、カドニウム、ホウ素などの重金属を効率的に分離回収するものである。
【0022】
具体的には、同図1に示されるように、圧力容器5内に重金属によって汚染された物質Mを投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器5内に供給し、前記重金属汚染物質Mと撹拌混合する第1ステップと、
前記重金属汚染物質Mの脱水処理を行い、処理水を重金属処理タンク6に供給するとともに、前記圧力容器5内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記重金属処理タンク6に供給する第2ステップと、
前記重金属処理タンク6において、重金属用凝集剤を添加した後、脱水処理によって重金属を分離回収する第3ステップからなるものである。
【0023】
本第1形態例で対象となる重金属汚染物質Mは、主として石炭火力発電所から排出される石炭灰、産業廃棄物を焼却した後に残る焼却灰、重金属の溶出によって汚染された土壌などである。
【0024】
前記圧力容器5は、高圧状態、具体的には少なくとも炭酸ガスが液体状態である5.8MPa程度以上に維持された炭酸ガス溶解水の圧力に十分に耐え得る容器とし、重金属汚染物質Mとの撹拌混合を行うための攪拌機7を備える。設置数は処理容量に応じて任意とする。
【0025】
後述する炭酸ガス溶解水製造装置1によって、高圧状態で高濃度に炭酸ガスが溶解された炭酸ガス溶解水は、圧力状態を維持したまま前記圧力容器5に供給され、前記攪拌機7によって重金属汚染物質Mと撹拌混合される。
【0026】
炭酸ガス溶解水と混合された重金属汚染物質Mは、自然沈降させた後、圧力容器5から取り出され、脱水処理に掛けられる。脱水処理装置8としては、フィルタプレス、ベルトプレス、ロールプレスなどの加圧脱水装置、ベルトフィルタ、オリバーフィルタなどの真空脱水装置、スクリューデカンタなどの遠心脱水装置などを公知の脱水装置を使用することができる。脱水処理後のケーキは、石炭灰、焼却灰、土壌粒子から重金属が剥離されているため、重金属の含有量は基準値以下となっている。
【0027】
脱水処理水は、その後重金属処理タンク6に供給されるとともに、前記圧力容器5から炭酸ガス溶解水が抜き出され、大気開放によって圧力を大気圧状態とした後、前記重金属処理タンク6に供給される。なお、大気開放された炭酸ガスは、図示されるように、炭酸ガス溶解水製造装置1にリターンさせて再利用するのが望ましい。
【0028】
前記重金属処理タンク6では、重金属凝集剤が添加され、重金属がフロックを形成し沈降分離される。前記重金属凝集剤としては、水溶性高分子と多価金属イオンからなる凝集剤、γ−ポリグルタミン酸架橋体及びベントナイトを含有する重金属用凝集剤など公知のものを使用することができる。沈降分離した重金属フロックは脱水処理によって分離回収され、処理水は炭酸ガスが既に大気放散されているため、中和処理を行うことなくそのまま放流処理することが可能である。
【0029】
〔第2形態例〕
次いで、図2に示される第2形態例に係る汚染物質の分離方法は、高濃度かつ高圧状態に維持された炭酸ガス溶解水を用いて、トリクロロエチレンなどの揮発性有機ハロゲン化物を効率的に分離除去するものである。
【0030】
具体的には、同図2に示されるように、圧力容器5内に揮発性有機ハロゲン化物によって汚染された物質Nを投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器5内に供給し、前記揮発性有機ハロゲン化物汚染物質と撹拌混合する第1ステップと、
前記揮発性有機ハロゲン化物の脱水処理を行い、処理水を揮発性有機ハロゲン化物処理タンクに供給するとともに、前記圧力容器5内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記揮発性有機ハロゲン化物処理タンク9に供給する第2ステップと、
前記揮発性有機ハロゲン化物処理タンク9において、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する第3ステップからなるものである。
【0031】
本第2形態例で対象となる揮発性有機ハロゲン化物汚染物質Nは、主として工場などから排出されたトリクロロエチレン等の揮発性の有機ハロゲン化物によって汚染された土壌が対象となる。
【0032】
前記第1形態例と対比すると、処理タンク9における処理のみが異なり、その他同じであるため、説明は省略し処理タンク9での処理について述べる。
【0033】
処理タンク9に供給された脱水処理水及び炭酸ガス溶解水は、曝気又は吸着処理によって揮発性の有機ハロゲン化物が分離除去される。前記曝気処理は、有機ハロゲン化物の揮発を促進させるものであるが時間が掛かるため、好ましくは活性炭を用いて強制的に吸着処理するのが望ましい。
【0034】
〔炭酸ガス溶解水製造装置について〕
本方法で用いられる炭酸ガス溶解水製造装置1について図3〜図9に基づいて詳述する。
【0035】
《第1形態に係る炭酸ガス溶解水製造装置1》
本発明に係る炭酸ガス溶解水製造装置1は、飽和濃度レベル付近の高い濃度で溶媒(海水又は水)に溶解させた状態で、前記圧力容器5に供給するためのものである。具体的には、炭酸ガスの溶解量は、所定圧力下での飽和溶解度の80%好ましくは90%以上を目標とする。
【0036】
また、系内の圧力は、炭酸ガスが液体又は超臨界状態を維持した状態で溶解が行われるようにするとともに、炭酸ガス溶解水を圧力容器5へ圧入するための注入圧力と配管系の圧力損失とを考慮して、6MPa以上の高圧状態を維持するようにする。
【0037】
炭酸ガス溶解水製造装置1は、図3に示されるように、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置2と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプ3と、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする複数の溶解槽4、4…とから主に構成される。前記溶解槽4は、炭酸ガスの溶解を促進するため複数設置したが、必要に応じて1基としてもよい。
【0038】
前記溶解槽4は、図4に示されるように、密閉された容器10の下部に、前記炭酸ガス圧縮装置2から送られた炭酸ガスが注入される炭酸ガス注入口11と、前記溶媒圧送ポンプ3から送られた溶媒が注入される溶媒注入口12とが形成されるとともに、前記容器10の上部に前記炭酸ガス溶解水が吐出される吐出口13が形成され、前記容器10内の下方及び上方に夫々、前記容器10内を上下方向に仕切る多孔板14、14がそれぞれ配設され、前記多孔板14、14間に粒状の充填材16が充填されて構成されている。
【0039】
前記充填材16は、溶媒と炭酸ガスとの撹拌を促し、炭酸ガスの溶解を効率化するためのものであり、例えば、砂、砕石、ラシヒリング、サドルの内のいずれか又は組み合わせとすることができる。前記ラシヒリングとは、セラミック、プラスチック、メタル、カーボンなどからなる円筒形状をした、充填塔で使用される充填物で、一般に広く用いられているものを使用することができる。前記サドルとは、セラミックなどからなる馬鞍形状をした、充填塔で使用される充填物で、一般に前記ラシヒリングより圧力損失が小さくなるように形成されている。
【0040】
また、前記充填材16は、充填材の種類ごとに、炭酸ガス及び溶媒の流量及び前記溶解槽の形状に基づいて定められる炭酸ガス溶解量と前記溶解槽における圧力損失とから決定する最適な平均粒径とすることが好ましい。具体的には、充填材の種類ごとに、充填材の平均粒径に対する次の2つの関係を実験的に得た上で、溶解槽において許容される圧力損失(溶解槽の注入口と吐出口の間の圧力差)に対して、最も溶解量が多くなる平均粒径のものを最適な平均粒径として選定する。
(1)所定の炭酸ガス及び溶媒の流量及び溶解槽の形状において、充填材の平均粒径に対する炭酸ガス溶解量の関係。
(2)充填材の平均粒径に対する溶解槽の圧力損失の関係。
【0041】
一般に、前記充填材の平均粒径に対する特性は、(1)炭酸ガス及び溶媒の流量と溶解槽の形状とが与えられれば、充填材の平均粒径を細かくするほど、炭酸ガスの溶解量は増加する。(2)一方、充填材の平均粒径を細かくするほど、溶解槽内の炭酸ガス及び溶媒の流れによる圧力損失が大きくなり、一定の流量を確保するために使用するエネルギーが増加する、という傾向がある。したがって、上記炭酸ガス及び溶媒の流量と溶解槽の形状とを総合的に勘案した上で、充填材の平均粒径を選定する。なお、所要の炭酸ガス溶解量が決定できない場合には、溶解槽の大型化などの対策を採ることも考慮する。
【0042】
上記の最適な平均粒径の充填材16を用いることにより、炭酸ガスの溶解効率に優れるようになる。
【0043】
前記容器10は、図4に示されるように、密閉された縦長の管型とすることが好ましい。これにより、溶解槽4における炭酸ガスと溶媒の滞留時間を確保することが可能になる。滞留時間は、流量にもよるが、流量を10ml/分〜20ml/分とした場合、20〜40分程度とするのがよい。また、系内の前記設定圧力に対して耐圧性を有する構造とすることができるとともに、短時間で連続的かつ安定的な炭酸ガス溶解水の生成が可能となる。
【0044】
ここで、溶解槽4内の流れについて図4に基づいて説明すると、前記炭酸ガス注入口11及び溶媒注入口12から容器10内に圧送された炭酸ガス及び溶媒は、下方ホッパー部17で混合されるとともに、下方側多孔板14から均等に充填材16の充填領域に浸入する。前記充填材16の充填領域においては、充填材16間での流動と相まって溶媒と炭酸ガスとが充分に撹拌されて溶媒に炭酸ガスが溶解されるとともに、上方に流動していく。この作用により、上方側多孔板14に到達したときには、溶媒に炭酸ガスがほぼ溶解された炭酸ガス溶解水が生成され、溶媒の飽和溶解レベルにまで達するようになる。その後、上方側多孔板14から上方ホッパー部18に浸入した炭酸ガス溶解水は、吐出口13から吐出される。
【0045】
前記溶解槽4においては、前記充填材16の充填領域内に、流路を仕切るように多数の開孔が形成された整流板19を1又は複数設けるようにするのが望ましい。前記整流板19を設けることにより、充填材16による炭酸ガスと溶媒との流れが均一に整えられ、両者の接触機会の増大により、前記溶解槽4における炭酸ガスの溶解が向上するようになる。前記溶解槽4における滞留時間と炭酸ガス溶解量とは、飽和濃度レベルまでは概ね比例的関係にあるため、所定の操業条件の下で、目標溶解量に応じた滞留時間となるように装置規模を設定するのが望ましい。
【0046】
溶解槽1基当たりの溶媒及び炭酸ガスの各流量は、溶解槽4の容積と炭酸ガス及び溶媒の溶解槽4内の滞留時間によって定めた全体流量に対して、注入する炭酸ガス及び溶媒の重量比(炭酸ガス重量/溶媒重量)から求めることができる。この際、炭酸ガス及び溶媒の重量比は、所望の炭酸ガスの溶解量に基づいて定められる。この炭酸ガス及び溶媒の重量比と炭酸ガスの溶解量との関係については、予め行われる通水試験によって求めておく。
【0047】
後段の実施例で詳述するように、溶解槽4での溶解濃度は、注入される炭酸ガス及び溶媒の重量比(炭酸ガス重量/溶媒重量)に影響する。具体的には、注入される前記重量比が大きくなると、溶解槽4での溶解濃度が大きくなる傾向にあるため、炭酸ガスの溶解を促進させる目的で、炭酸ガス及び溶媒の注入重量比は、前記炭酸ガス溶解濃度の目標値より大きく設定することが好ましい。
【0048】
《第2形態に係る炭酸ガス溶解水製造装置1A》
次いで、図5に示される第2形態例に係る炭酸ガス溶解水製造装置1Aは、上記第1形態例と対比すると、前記溶解槽4Aの前段に高圧用炭酸ガス細泡化装置7(以下、単に細泡化装置という。)を設置したものである。
【0049】
図6に示される細泡化装置7Aは、海水及び/又は水を溶媒として、これらの溶媒を所定の高流速で流した主流管路30に対して、これを外嵌する炭酸ガス供給管路31を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面、図示例の場合は主流管路30の管路壁面に細孔30a、30a…を形成し、前記主流管路30を流れる溶媒のせん断力によって、液体又は超臨界状態まで圧縮した炭酸ガスを細泡化しながら混入させるものである。
【0050】
前記細孔30aは、複数配置する場合は、図示されるように、主流管路30の管路壁面に、周方向に均等配置としかつ軸方向に間隔を空けて多段配置で複数設けるのが望ましい。
【0051】
前記溶媒の流速、前記細孔30aの孔径は、後述の実施例2−3に従って、下式(1)によって求められるウェーバー数(We)が10以上となるように設定するのが望ましい。但し、細孔からの炭酸ガスの流速は、8×10−2m/s以上であることを条件とする。
【0052】
【数1】

なお、前記細泡化された炭酸ガスの径は、概ね0.05〜0.2mm程度で十分であり、特にマイクロレベル(10〜数十μm)までは細泡化する必要はない。
【0053】
また、図7及び図8に示される細泡化装置7B、7Cは、溶媒を所定の高流速で流した主流管路30の内部に、炭酸ガス供給管路31を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面、図示例の場合は炭酸ガス供給管路31の管路壁面に細孔31a、31a…を形成し、前記主流管路30を流れる溶媒のせん断力によって液体又は超臨界状態まで圧縮した炭酸ガスを細泡化しながら混入させるものである。
【0054】
炭酸ガス溶解水製造装置1Aは、図5に示されるように、炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置2と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプ3と、前記液体又は超臨界状態まで圧縮された炭酸ガスを細泡化して溶媒中に混入させる細泡化装置7,7…と、該細泡化装置7、7…によって細泡化された炭酸ガスが混入された溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする複数の溶解槽4A、4A…とから主に構成される。
【0055】
前記細泡化装置7は、図9に示されるように、各溶解槽4の下部に設置され、溶媒を所定の高流速で流した主流管路30の内部に、炭酸ガス供給管路31を配設し、前記溶媒と炭酸ガスとを仕切る炭酸ガス供給管路31の管路壁面に細孔31a、31a…を形成し、前記主流管路30を流れる溶媒のせん断力によって液体又は超臨界状態まで圧縮した炭酸ガスを細泡化しながら混入させる細泡化装置7が用いられている。
【0056】
前記溶解槽4Aは、同図9に示されるように、密閉された容器10の下部に、前記細泡化装置7によって細泡化された炭酸ガスが混入された溶媒が注入される注入口9とが形成されるとともに、前記容器10の上部に前記炭酸ガス溶解水が吐出される吐出口13が形成され、前記容器10内の下方及び上方に夫々、前記容器10内を上下方向に仕切る多孔板14、14がそれぞれ配設され、前記多孔板14、14間に粒状の充填材16が充填されて構成されている。また、前記注入口9にはメッシュ板15が設置されている。
【0057】
ここで、溶解槽4内の流れについて説明すると、前記注入口9から容器10内に圧送された炭酸ガス及び溶媒は、メッシュ板15から均等に充填材16の充填領域に浸入する。前記充填材16の充填領域においては、充填材16間での流動と相まって溶媒と炭酸ガスとが充分に撹拌されて溶媒に炭酸ガスが溶解されるとともに、上方に流動していく。この作用により、上方側多孔板14に到達したときには、溶媒に炭酸ガスがほぼ溶解された炭酸ガス溶解水が生成され、溶媒の飽和溶解レベルにまで達するようになる。その後、上方側多孔板14から上方ホッパー部18に浸入した炭酸ガス溶解水は、吐出口13から吐出される。
【0058】
前記溶解槽4においては、前記充填材16の充填領域内に、流路を仕切るように多数の開孔が形成された整流板19を1又は複数設けるようにするのが望ましい。前記整流板19を設けることにより、充填材16による炭酸ガスと溶媒との流れが均一に整えられ、両者の接触機会の増大により、前記溶解槽4における炭酸ガスの溶解が向上するようになる。前記溶解槽4における滞留時間と炭酸ガス溶解量とは、飽和濃度レベルまでは概ね比例的関係にあるため、所定の操業条件の下で、目標溶解量に応じた滞留時間となるように装置規模を設定するのが望ましい。
【0059】
〔他の形態例〕
(1)上記第1形態例及び第2形態例では、重金属汚染物質及び揮発性有機ハロゲン化物汚染物質を対象としたが、本発明法は図15に示されるように、アルカリ性廃液の中和処理のために、炭酸ガス溶解水製造装置で製造された炭酸ガス溶解水を用いることも可能である。
【実施例1】
【0060】
本炭酸ガス溶解水製造装置1による炭酸ガスの溶解状態を実証するため、図16に示される実験装置を用いて炭酸ガスの溶解実験を行った。なお、細泡化装置7は後述の実施例2の細泡化装置有りのケースにおいて設置した。
【0061】
実験装置は、炭酸ガスボンベ30の炭酸ガスを炭酸ガス圧縮装置2によって加圧して溶解槽4に注入するとともに、塩水タンク31の塩水を溶媒圧送ポンプ3によって加圧して溶解槽4に注入し、溶解槽4で炭酸ガスの溶解処理を行い、この炭酸ガス溶解水を分離槽で未溶解炭酸ガスを分離した後の炭酸ガス溶解水をサンプリングする。ここで、溶解槽4の容積は850mlとし、充填材16は、平均粒径が0.18mm(粒度1)、0.63mm(粒度2)、1.32mm(粒度3)の砂状のものを使用した。実験では、温度、圧力、塩水流量、充填材16の粒度及び炭酸ガスと塩水の重量比(炭酸ガス重量/塩水重量)をそれぞれ変化させたとき、サンプリングした炭酸ガス溶解水の炭酸ガス溶解量を測定した。
【0062】
図17、図18は、各温度における塩水流量及び充填材16の粒度をそれぞれ変化させたときの溶解槽4に注入する炭酸ガス及び塩水の重量比(炭酸ガス重量/塩水重量)と炭酸ガス溶解量との関係を示すグラフである。この結果、温度29℃、33℃のいずれの試験温度においても、炭酸ガスと塩水の重量比を増大させるほど、また充填材16の粒度を小さくするほど炭酸ガス溶解量が大きくなる傾向にある。
【0063】
図19〜図21は、各温度における塩水流量及び圧力をそれぞれ変化させたときの前記重量比と炭酸ガス溶解量との関係を示すグラフである。この結果、前述と同様に、炭酸ガスと塩水の重量比を増大させるほど、炭酸ガス溶解量が増大する傾向にあるが、ある重量比以上では炭酸ガス溶解量がほぼ一定の飽和濃度レベルとなり、本炭酸ガス溶解水製造装置1の有効性が確認された。
【0064】
図22は、各圧力における温度と炭酸ガス溶解量との関係を示すグラフである。この結果、25℃〜40℃の範囲の一般的な温度条件においては、炭酸ガス溶解量に大きく影響を及ぼさないことが確認された。
【0065】
図23は、塩水と水とで炭酸ガス溶解量の違いを比較したグラフである。試験は、流量を変化させた2ケースについて、塩水と水との各場合について炭酸ガス溶解量を比較した。同図から水を用いた方が炭酸ガスの溶解度が25〜33%程度高いことが判明した。
【0066】
図24は、各塩水流量における充填材の平均粒径と炭酸ガス溶解量との関係を示すグラフである。この結果、本実施例では、充填材の平均粒径は、平均粒径1.0mm以下とすることにより、炭酸ガスの溶解効率に優れるようになる。
【実施例2】
【0067】
(実施例2−1)
本実施例2−1では、本炭酸ガス溶解水製造装置1による前記細泡化装置7での溶解効果、前記溶解槽4での溶解効果を定量的に検証するための実験を行った。
【0068】
実験は、ケース1:溶解槽4の充填材無し及び細泡化装置7無し、ケース2:溶解槽4の充填材無し及び細泡化装置7有り、ケース3:溶解槽4の充填材有り及び細泡化装置7有りの3ケースとし、(1)試験圧力:15MPa、試験温度:29℃、(炭酸ガス/塩水)重量比:約8%、(2)試験圧力:15MPa、試験温度:33℃、(炭酸ガス/塩水)重量比:約8%の2種類について溶解試験を行った。
【0069】
その結果を図25に示す。同図25より、細泡化装置7単独によってもかなり炭酸ガスの溶解が促進されている事、更に細泡化装置7と溶解槽4とを組合せることによって、更に溶解が促進されることが実証できた。
【0070】
(実施例2−2)
本実施例2−2では、前記細泡化装置7による溶解促進効果の検証実験を行った。
【0071】
一般に、炭酸ガス溶解量と溶解槽の容器高さZとの間には、下式(2)の関係が成り立つことが判明している。
【0072】
【数2】

【0073】
溶解に要する容器の高さZは、総括容量係数Kaに依存しており、この総括容量係数Kaを溶解効率を表す指標とした。実験は、細泡化装置無しと細泡化装置有りの各ケースについて、(1)試験圧力:15MPa、試験温度:29℃、(炭酸ガス/塩水)重量比:約8%、(2)試験圧力:15MPa、試験温度:29℃、(炭酸ガス/塩水)重量比:約10%、(3)試験圧力:15MPa、試験温度:33℃、(炭酸ガス/塩水)重量比:約8%の3種類について試験を行い、図26〜図28に示されるように、縦軸を総括容量係数Ka(mol/m3s)とし、横軸を水の断面モル流速(mol/(m2・s))とするグラフを得た。同図26〜図28のグラフによれば、水の断面モル流速(mol/(m2・s))の高い領域においては、細泡化装置有りのケースが細泡化装置無しのケースに比べて、総括容量係数Kaが1.5倍以上になることが判明した。
【0074】
(実施例2−3)
上記実施例2−2の実験結果を下式(1)に示すウェーバー数Weを用いて整理し直して、図29に示されるように、縦軸を総括容量係数比Ka(B)/Ka(NB)[ここに、Ka(B):細泡化装置有りの総括容量係数、Ka(NB):細泡化装置無しの総括容量係数]、横軸をウェーバー係数Weとするグラフを得た。
【0075】
同図より、ウェーバー数Weが10以上の領域で細泡化による溶解効率が高いことが判明した。従って、前記細泡化装置7においては、溶媒の流速、細孔30a(31a)の孔径は、ウェーバー数(We)が10以上となるように設定するのが望ましい。但し、細孔からの炭酸ガスの流速は、同実験によれば、8×10−2m/s以上であることを条件とする。
【図面の簡単な説明】
【0076】
【図1】本発明の第1形態例に係る汚染物の分離方法のシステム概略図である。
【図2】本発明の第2形態例に係る汚染物の分離方法のシステム概略図である。
【図3】炭酸ガス溶解水製造装置1を示す概略図である。
【図4】溶解槽4を示す縦断面図である。
【図5】炭酸ガス溶解水製造装置1Aを示す概略図である。
【図6】細泡化装置7Aの縦断面図である。
【図7】細泡化装置7Bの縦断面図である。
【図8】細泡化装置7Cの縦断面図である。
【図9】溶解槽4Aの縦断面図である。
【図10】既往文献によるNacl水溶液のCO分圧と温度・pHとの関係を示すグラフである。
【図11】既往文献によるほう素抽出率とpHとの関係を示すグラフである。
【図12】既往文献によるヒ素・セレン抽出率とpHとの関係を示すグラフである。
【図13】既往文献による洗浄方法が六価クロムの回収量に与える影響を示すグラフである。
【図14】既往文献によるトリクロロエチレン検出量と炭酸水濃度の関係を示すグラフである。
【図15】他の形態例に係る高濃度炭酸ガス溶解水の利用方法を示した概略図である。
【図16】実験装置の概念図である。
【図17】実施例1における温度29℃における粒度並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。
【図18】実施例1における温度33℃における粒度並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。
【図19】実施例1における温度25℃における圧力並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。
【図20】実施例1における温度29℃における圧力並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。
【図21】実施例1における温度33℃における圧力並びに塩水流量の条件を変えたときの炭酸ガス/塩水重量比と炭酸ガス溶解量との関係を示すグラフである。
【図22】実施例1における温度と炭酸ガス溶解量との関係を示すグラフである。
【図23】実施例1における塩水/水の重量比と炭酸ガス溶解量との関係を示すグラフである。
【図24】実施例1における充填材の平均粒径と炭酸ガス溶解量との関係を示すグラフである。
【図25】実施例2ー1における細泡化装置7での溶解効果及び溶解槽4での溶解効果の定量的に検証実験結果を示すグラフである。
【図26】実施例2−2における総括容量係数Kaと水の断面モル流速との関係を表すグラフ(その1)である。
【図27】実施例2−2における総括容量係数Kaと水の断面モル流速との関係を表すグラフ(その2)である。
【図28】実施例2−2における総括容量係数Kaと水の断面モル流速との関係を表すグラフ(その3)である。
【図29】実施例2−3における総括容量係数比Ka(B)/Ka(NB)とウェーバー数Weとの関係を表すグラフである。
【符号の説明】
【0077】
1…炭酸ガス溶解水製造装置、2…炭酸ガス圧縮装置、3…溶媒圧送ポンプ、4・4A…溶解槽、5…圧力容器、6…重金属処理タンク、7…細泡化装置、8…脱水装置、10…容器、11…炭酸ガス注入口、12…溶媒注入口、13…吐出口、14…多孔板、15…メッシュ板、16…充填材、19…整流板、30…主流管路、31…炭酸ガス供給管路、30a・31a…細孔

【特許請求の範囲】
【請求項1】
圧力容器内に重金属によって汚染された物質を投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器内に供給し、前記重金属汚染物質と撹拌混合する第1ステップと、
前記重金属汚染物質の脱水処理を行い、処理水を重金属処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記重金属処理タンクに供給する第2ステップと、
前記重金属処理タンクにおいて、重金属用凝集剤を添加した後、脱水処理によって重金属を分離回収する第3ステップからなることを特徴とする汚染物の分離方法。
【請求項2】
圧力容器内に揮発性有機ハロゲン化物によって汚染された物質を投入し、高濃度に炭酸ガスが溶解されるとともに、高圧状態に維持された炭酸ガス溶解水を前記圧力容器内に供給し、前記揮発性有機ハロゲン化物汚染物質と撹拌混合する第1ステップと、
前記揮発性有機ハロゲン化物の脱水処理を行い、処理水を揮発性有機ハロゲン化物処理タンクに供給するとともに、前記圧力容器内の炭酸ガス溶解水を抜き出し、大気圧に開放することにより所定量の炭酸ガスを放出させた状態で前記揮発性有機ハロゲン化物処理タンクに供給する第2ステップと、
前記揮発性有機ハロゲン化物処理タンクにおいて、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する第3ステップからなることを特徴とする汚染物の分離方法。
【請求項3】
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽とから構成され、前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された炭酸ガス溶解水製造装置と、
重金属汚染物質が投入されるとともに、攪拌機が備えられ、前記炭酸ガス溶解水製造装置によって製造された炭酸ガスが圧力状態を維持したまま供給される1又は複数の圧力容器と、
前記圧力容器から取り出した重金属汚染物質の脱水処理を行う第1脱水処理装置と、
前記脱水処理装置の処理水が供給されるとともに、前記圧力容器から抜き出され、大気圧開放された炭酸ガス溶解水が供給され、重金属用凝集剤が添加される重金属処理タンクと、
前記重金属処理タンクの被処理物を脱水処理し、重金属を分離回収する第2脱水処理装置とからなることを特徴とする請求項1記載の汚染物の分離方法のための設備。
【請求項4】
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプと、前記圧縮された炭酸ガス及び溶媒が注入され、前記溶媒に前記炭酸ガスを溶解させて炭酸ガス溶解水とする1又は複数の溶解槽とから構成され、前記溶解槽は、密閉された容器の下部に、前記炭酸ガス圧縮装置から送られた炭酸ガスが注入される炭酸ガス注入口と、前記溶媒圧送ポンプから送られた溶媒が注入される溶媒注入口とが形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された炭酸ガス溶解水製造装置と、
揮発性有機ハロゲン化物汚染物質が投入されるとともに、攪拌機が備えられ、前記炭酸ガス溶解水製造装置によって製造された炭酸ガスが圧力状態を維持したまま供給される1又は複数の圧力容器と、
前記圧力容器から取り出した揮発性有機ハロゲン化物汚染物質の脱水処理を行う脱水処理装置と、
前記脱水処理装置の処理水が供給されるとともに、前記圧力容器から抜き出され、大気圧開放された炭酸ガス溶解水が供給され、曝気又は吸着処理によって揮発性有機ハロゲン化物を分離除去する揮発性有機ハロゲン化物処理タンクとからなることを特徴とする請求項2記載の汚染物の分離方法のための設備。
【請求項5】
前記炭酸ガス溶解水製造装置に代えて、
炭酸ガスを液体又は超臨界状態まで圧縮する炭酸ガス圧縮装置と、海水及び/又は水からなる溶媒を圧縮・搬送する圧送ポンプとを設け、前記溶媒を所定の高流速で流した主流管路の内部に前記炭酸ガスの供給管路を配設するか、前記主流管路を外嵌する前記炭酸ガスの供給管路を配設し、前記溶媒と炭酸ガスとを仕切る管路壁面に細孔を形成し、前記主流管路を流れる溶媒のせん断力によって前記炭酸ガスを細泡化しながら混入させる高圧用炭酸ガス細泡化装置を設置し、前記高圧用炭酸ガス細泡化装置の後段に設置された、密閉された容器の下部に、前記細泡化された炭酸ガスが混入された溶媒の注入口が形成されるとともに、前記容器の上部に前記炭酸ガス溶解水が吐出される吐出口が形成され、前記容器内に粒状の充填材が充填されて構成された1又は複数の溶解槽とから構成された炭酸ガス溶解水製造装置を用いる請求項3、4いずれかに記載の汚染物の分離方法のための設備。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate


【公開番号】特開2009−233630(P2009−233630A)
【公開日】平成21年10月15日(2009.10.15)
【国際特許分類】
【出願番号】特願2008−86165(P2008−86165)
【出願日】平成20年3月28日(2008.3.28)
【出願人】(000003687)東京電力株式会社 (2,580)
【Fターム(参考)】