説明

活性剤を呼吸器送達するための組成物、ならびに関連する方法および系

定量噴霧式吸入器により活性剤を肺送達または経鼻送達するための組成物、方法および系が提供される。一実施形態では、本組成物は、懸濁媒体、活性剤粒子および懸濁粒子を含み、該組成物中では、活性剤粒子と懸濁粒子とは、懸濁媒体内で共懸濁剤を形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、全般には、1つまたは複数の活性剤を気道を介して送達するための医薬製剤および方法に関する。一定の態様では、本開示は、活性剤を定量噴霧式吸入器を介して肺送達するための組成物、方法および系に関する。
【背景技術】
【0002】
活性剤を作用部位で送達する標的化薬物送達の方法は多くの場合、望ましい。たとえば、活性剤の標的化送達は、望ましくない副作用を減少させ、投与必要量を減少させ、治療費を削減することができる。呼吸器送達に関する場合、吸入器は、活性剤を対象の気道に投与するための周知の器具であり、いくつかの異なる吸入器系が現在市販されている。3つの一般的な吸入器系としては、乾燥粉末吸入器、ネブライザーおよび定量噴霧式吸入器(MDI)が挙げられる。
【0003】
MDIを使用して、可溶化形態の、または懸濁剤としての医薬を送達することができる。典型的には、MDIは、比較的高い蒸気圧の噴射剤を用いて、MDIを作動させたときに、活性剤を含有するエアロゾル化した小滴を気道中に排出する。乾燥粉末吸入器は一般に、患者の吸気努力に依存して、乾燥粉末形態の医薬を気道に導入する。他方、ネブライザーは、液体溶液剤または懸濁剤にエネルギーを賦与することにより、吸入すべき医薬エアロゾルを形成する。
【0004】
MDIは、噴射剤により生じる圧力を利用する能動型の送達器具である。慣用的に、クロロフルオロカーボン(CFC)がMDI系中の噴射剤として使用されているが、その理由は、CFCは、毒性が低く、安定な懸濁剤の製剤にとって望ましい蒸気圧および適合性を有するからである。しかし、伝統的なCFC噴射剤はマイナスの環境影響を有すると理解されており、そのことが、より環境に優しいと考えられる代替的な噴射剤(過フッ化化合物(PFC)およびヒドロフルオロアルカン(HFA)など)の開発につながっている。
【0005】
MDIにより送達されることになる活性剤は、典型的には、噴射剤または2つ以上の噴射剤の組合せ(すなわち、噴射剤「系」)内に分散した微細な微粒子として供給される。この微細な微粒子を形成するために、活性剤は、典型的には微粉化される。噴射剤または噴射剤系中に懸濁している活性剤の微細粒子は、急速に凝集または凝固する傾向がある。このことは、とりわけ、微粉化された形態で存在する活性剤に当てはまる。結果として、これらの微細粒子の凝集または凝固は、活性剤の送達を複雑にすると考えられる。たとえば、凝集または凝固は、機械的な故障(エアロゾル剤容器のバルブ開口部の閉塞が原因と考えられるものなど)につながりかねない。薬物粒子の不要な凝集または凝固は、薬物粒子の急速な沈降またはクリーミングにもつながりかねず、そのような挙動が生じる結果、用量送達が一定でなくなることがあり、このことは、とりわけ、高度に強力な低用量の医薬の場合に厄介であると考えられる。そのような懸濁剤MDI製剤に伴う別の問題は、保管中の薬物が結晶成長する結果、時間が経過するにつれ当該MDIのエアロゾル特性および送達用量均一性が低下することに関する。より最近では、抗コリン作用剤を含有するMDI製剤について、米国特許第6,964,759号で開示されているような解決法が提案されている。
【0006】
乾燥粉末吸入器中でのエアロゾル性能を改善するための1つのアプローチは、微細粒子担体(乳糖など)を組み込むことであった。そのような微細な添加剤の使用は、MDIについてはあまり研究されてこなかった。Youngらによる最近の報告「The influence of micronized particulates on the aerosolization properties of pressurized metered dose inhalers」、Aerosol Science、40、324〜337頁、(2009)では、MDI中でそのような微細粒子担体を使用すると、実際にはエアロゾル性能が低下する結果になることが示唆されている。
【0007】
伝統的なCFC系では、MDI製剤中に存在する活性剤が噴射剤または噴射剤系中に可溶である場合、凝集の問題を最小化または防止し、実質的に均一な分散を維持する目的で、界面活性物質を使用して活性剤の表面を被覆することが多い。こうした形での界面活性物質の使用は、時に、懸濁剤の「安定化」と呼ばれる。しかし、可溶性であることからCFC系中で有効な多くの界面活性物質は、HFAおよびPFCの噴射剤系中では有効ではなく、その理由は、そのような界面活性物質は、非CFC噴射剤中では異なる溶解性の特徴を呈するからである。
【発明の概要】
【課題を解決するための手段】
【0008】
本開示は、1つまたは複数の活性剤を呼吸器送達するための組成物、方法および系を提供する。特定の実施形態では、1つまたは複数の活性剤をMDIにより肺送達するための本明細書に記載の組成物が製剤化される。他の実施形態では、本明細書に記載の組成物は、MDIにより経鼻送達するために製剤化してもよい。本明細書に記載の方法は、呼吸器送達用の1つまたは複数の活性剤を含む製剤を安定化させる方法、ならびに、活性剤を肺送達する方法を含む。特定の実施形態では、本明細書に記載の方法は、特定の特徴を有する1つまたは複数の活性剤(強力なおよび高度に強力な活性剤、ならびに、特定の溶解の特徴を有する活性剤など)を含む製剤を安定化させる方法を含む。他の実施形態では、本明細書に記載の方法は、そのような活性剤の患者への送達を達成する方法を含む。さらに、本明細書には、1つまたは複数の活性剤を肺送達するための系、ならびに、本明細書に記載の組成物を利用するMDI系を含む当該系の特定の実施形態も記載する。
【図面の簡単な説明】
【0009】
【図1】本記載による例示的な共懸濁剤組成物(グリコピロレート、すなわち長時間作用性のムスカリン拮抗剤を活性剤として含ませた)が呈した粒子サイズ分布を示すグラフである。共懸濁剤MDIは、温度サイクリング条件(−5℃または40℃での6時間の保持時間を交互)に12週間さらした。
【図2】本記載による例示的な共懸濁剤組成物(グリコピロレート、すなわち長時間作用性のムスカリン拮抗剤を活性剤として含ませた)が呈した粒子サイズ分布を示すグラフである。共懸濁剤MDIは、温度サイクリング条件(−5℃または40℃での6時間の保持時間を交互)に24週間さらした。
【図3】実施例5に従って調製したさまざまな懸濁粒子の形態を例証する顕微鏡写真である。
【図4】グリコピロレートを使用して形成した活性剤粒子と糖を使用して形成した懸濁粒子とを使用して形成した共懸濁剤の可視化を可能にする2つのバイアルの写真である。
【図5】本記載に従って調製し(1作動当たり4.5μgの送達用量のグリコピロレートと6mg/mLの懸濁粒子とを含有する)、温度サイクリング条件(−5℃または40℃での6時間の保持時間を交互)にさらした例示的なグリコピロレート共懸濁剤の粒子サイズ分布を示すグラフである。
【図6】本記載に従って調製し(1作動当たり36μgの送達用量のグリコピロレートと6mg/mLの懸濁粒子とを含有する)、温度サイクリング条件(−5℃または40℃での6時間の保持時間を交互)にさらした例示的なグリコピロレート共懸濁剤の粒子サイズ分布を示すグラフである。
【図7】本記載に従って調製した例示的なグリコピロレート共懸濁剤(1作動当たり4.5μgの送達用量のグリコピロレートと6mg/mLの懸濁粒子とを含有する)の、缶の寿命を通じた送達用量を示すグラフである。
【図8】本記載に従って調製した例示的なグリコピロレート共懸濁剤(1作動当たり36μgの送達用量のグリコピロレートと6mg/mLの懸濁粒子とを含有する)の、缶の寿命を通じた送達用量を示すグラフである。
【図9】本記載に従って調製し(1作動当たり36μgの送達用量のグリコピロレートと6mg/mLの懸濁粒子とを含有する)、25℃/60%RH、非保護での12カ月の保管にさらした例示的なグリコピロレート共懸濁剤の粒子サイズ分布を示すグラフである。
【図10】本記載に従って調製し(1作動当たり32μgの送達用量のグリコピロレートと6mg/mLの懸濁粒子とを含有する)、温度サイクリング条件(−5℃または40℃での6時間の保持時間を交互)にさらした例示的なグリコピロレート共懸濁剤の、缶の寿命を通じた送達用量を示すグラフである。
【図11】本記載に従って調製し(1作動当たり32μgの送達用量のグリコピロレートと6mg/mLの懸濁粒子とを含有する)、温度サイクリング条件(−5℃または40℃での6時間の保持時間を交互)にさらした例示的なグリコピロレート共懸濁剤の粒子サイズ分布を示すグラフである。
【図12】本記載に従って調製し(1作動当たり24μgの送達用量のグリコピロレートと6mg/mLの懸濁粒子とを含有する)、50℃/周囲相対湿度で6週間の保管および40℃で12週間にさらした例示的なグリコピロレート共懸濁剤の粒子サイズ分布を示すグラフである。
【図13】フマル酸ホルモテロール活性剤粒子を含む本記載に従って調製した共懸濁剤組成物の可視化を可能にする写真である。
【図14】本記載に従って調製した、ホルモテロール共懸濁剤組成物により達成された送達用量均一性を示すグラフである。
【図15】本記載に従って調製し、25℃/75%RHで保護用のオーバーラップありの条件、または、40℃/75%RHで保護用のオーバーラップありの条件で3カ月間保管した例示的なホルモテロール共懸濁剤組成物の、カスケードインパクションにより定量した空気力学的粒子サイズ分布を示すグラフである。
【図16】結晶性のホルモテロールを活性剤として含む例示的な共懸濁剤組成物の化学的な安定性を示すグラフである。この図に示す結果から、結晶性のホルモテロール物質を使用して製剤化した共懸濁剤組成物において達成されたホルモテロールの化学的な安定性を、噴霧乾燥されたフマル酸ホルモテロールを使用して調製した懸濁製剤の化学的な安定性と比較することが可能である。
【図17】トレハロース懸濁粒子の顕微鏡写真を示す。
【図18】HP−β−シクロデキストリン懸濁粒子の顕微鏡写真を示す。
【図19】Ficoll MP70懸濁粒子の顕微鏡写真を示す。
【図20】イヌリン懸濁粒子の顕微鏡写真を示す。
【図21】本記載に従って調製しグリコピロレート活性剤粒子を含む例示的な共懸濁剤組成物の、カスケードインパクションにより定量した空気力学的粒子サイズ分布を示すグラフである。
【図22】本記載に従って調製しホルモテロール活性剤粒子を含む例示的な共懸濁剤組成物の、カスケードインパクションにより定量した空気力学的粒子サイズ分布を示すグラフである。
【図23】本記載に従って調整した、超低用量のホルモテロール共懸濁剤組成物により達成された送達用量均一性を示すグラフである。
【図24】本記載に従って調製した、グリコピロレートおよびフマル酸ホルモテロールを含む共懸濁製剤の送達用量均一性を示すグラフである。
【図25】図24に関連して記載された共懸濁製剤の送達用量比を示すグラフである。
【図26】本記載に従って調製したフマル酸ホルモテロールとグリコピロレートとを含有する第2の共懸濁製剤の送達用量均一性を示すグラフである。
【図27】図26に関して記載した第2の共懸濁製剤の送達用量比を示すグラフである。
【図28】本記載に従って調製した共懸濁製剤中のグリコピロレートおよびフマル酸ホルモテロールの送達用量均一性を、記載のとおりの異なる条件下で保管した場合について示すグラフである。
【図29】本記載に従って調製した例示的な共懸濁製剤におけるグリコピロレート(上)およびホルモテロール(下)の粒子サイズ分布を、記載のとおりの異なる条件下で保管した場合について示すグラフである。
【図30】例示的な共懸濁剤により達成されたグリコピロレート(上)およびホルモテロール(下)の粒子サイズ分布を、記載の条件で保管した場合について示すグラフである。
【図31】例示的な2剤型共懸濁剤により達成されたグリコピロレート(上)およびホルモテロール(下)の粒子サイズ分布を、グリコピロレートまたはフマル酸ホルモテロールのいずれかを単独で含む製剤により達成された粒子サイズ分布との比較で示すグラフである。
【図32】本記載に従って調製した共懸濁剤(微結晶性のフマル酸ホルモテロール活性剤粒子とグリコピロレート活性剤粒子とを含ませた)により達成されたフマル酸ホルモテロール粒子サイズ分布を、結晶性のフマル酸ホルモテロールを含有するのみの共懸濁剤との比較で示すグラフである。
【図33】本記載に従って調製した2剤型共懸濁剤(微結晶性のグリコピロレート活性剤粒子と、2つの異なる粒子サイズ分布(「細かい」および「粗い」と表示)を有する微結晶性のフマル酸ホルモテロール活性剤粒子、または噴霧乾燥したフマル酸ホルモテロールとを含ませた)により達成されたグリコピロレートの粒子サイズ分布を示すグラフである。
【図34】本記載に従って調製した第2の2剤型共懸濁剤(微結晶性のフマル酸ホルモテロール活性剤粒子と微結晶性のグリコピロレート活性剤粒子とを含ませた)により達成されたフマル酸ホルモテロール粒子サイズ分布を、微結晶性のグリコピロレート活性剤粒子と噴霧乾燥されたフマル酸ホルモテロール粒子とを含有する共懸濁剤との比較で示すグラフである。
【図35】本記載に従って調製した例示的な2剤型共懸濁製剤中のグリコピロレートおよびフマル酸ホルモテロールの送達用量均一性を示すグラフである。
【図36】例示的な3剤型共懸濁剤組成物(微結晶性のグリコピロレート活性剤粒子とフマル酸ホルモテロール活性剤粒子とフロ酸モメタゾン活性剤粒子とを含ませた)中に含まれる各活性剤の送達用量均一性を示すグラフである。
【図37】本記載に従って調製した3剤型共懸濁剤(微結晶性のグリコピロレート活性剤粒子とフマル酸ホルモテロール活性剤粒子とフロ酸モメタゾン活性剤粒子とを含ませた)において達成されたフマル酸ホルモテロールの空気力学的粒子サイズ分布を、2剤型共懸濁剤(グリコピロレートとフマル酸ホルモテロールとを含ませた)において達成された該分布との比較で示すグラフである。
【図38】本記載に従って調製した3剤型共懸濁剤(微結晶性のグリコピロレート活性剤粒子とフマル酸ホルモテロール活性剤粒子とフロ酸モメタゾン活性剤粒子とを含ませた)において達成されたグリコピロレートの空気力学的粒子サイズ分布を、2剤型共懸濁剤(グリコピロレートとフマル酸ホルモテロールとを含ませた)において達成された該分布との比較で示すグラフである。
【図39】本記載に従って調製した3剤型共懸濁剤(グリコピロレートまたは臭化チオトロピウムのいずれかに加え、フマル酸ホルモテロールおよびフロ酸モメタゾンの微結晶性の活性剤粒子を含ませた)により達成されたグリコピロレートおよび臭化チオトロピウムの空気力学的粒子サイズ分布を示すグラフである。
【発明を実施するための形態】
【0010】
特定の実施形態では、本明細書に記載の方法は、本明細書に記載のとおりの共懸濁剤組成物の呼吸器送達による治療を行いやすい肺疾患または肺障害を治療する方法を含む。たとえば、本明細書に記載の組成物、方法および系を使用して、炎症性または閉塞性の肺の疾患または状態を治療することができる。一定の実施形態では、本明細書に記載の組成物、方法および系を使用して、以下:喘息、慢性閉塞性肺疾患(COPD)、他の薬物療法の結果生じる気道過反応性の増悪、アレルギー性鼻炎、副鼻腔炎、肺血管収縮、炎症、アレルギー、呼吸障害、呼吸窮迫症候群、肺高血圧症、肺血管収縮、および、たとえば、LAMA、LABA、コルチコステロイドまたは本明細書に記載のとおりの他の活性剤の投与(単独であるか他の療法との組合せであるかを問わない)に応答する可能性のある任意の他の呼吸器の疾患、状態、形質、遺伝子型または表現型から選択される疾患または障害に罹患している患者を治療することができる。一定の実施形態では、本明細書に記載の組成物、系および方法を使用して、嚢胞性線維症に伴う肺の炎症および閉塞を治療することができる。本明細書中で使用する場合、用語「COPD」および「慢性閉塞性肺疾患」は、慢性閉塞性肺疾患(COLD)、慢性閉塞性気道疾患(COAD)、慢性気流制限(CAL)および慢性閉塞性呼吸器疾患(CORD)を包含し、慢性気管支炎、気管支拡張症および気腫を含む。本明細書中で使用する場合、用語「喘息」は、型または起源によらず全ての喘息を指し、以下:内因性(非アレルギー性)喘息および外因性(アレルギー性)喘息、軽度喘息、中等度喘息、重度喘息、気管支喘息、運動誘発性喘息、職業性喘息、ならびに、細菌感染に次いで誘導される喘息を包含する。喘息は、包括的な乳児喘鳴症候群としても理解されたい。
【0011】
本明細書に全般に記載されているような実施形態が例示的なものであることは、容易に理解されよう。以下の、多様な実施形態のより詳細な説明は、本開示の範囲を限定することを意図してはおらず、多様な実施形態を代表するにすぎない。したがって、本明細書中で列挙する詳細は、独立に特許性のある主題を包含することがある。さらに、本明細書中で開示する実施形態に関連して記載する方法のステップまたは行為の順序は、本開示の範囲から逸脱せずに当業者により変更されてもよい。言い換えれば、ステップまたは行為の特定の順序がその実施形態の正しい実施過程に必要でない限り、特定のステップまたは行為の順序または使用は改変されてもよい。
【0012】
定義
特に具体的に定義しない限り、技術用語は、本明細書中で使用する場合、当技術分野で理解されるとおりのその通常の意味を有する。明確を期すために、以下の用語を具体的に定義する。
【0013】
用語「活性剤」は、本明細書中では、任意の目的のためにヒトまたは動物に対して使用または投与してもよい任意の薬剤、薬物、化合物、組成物または他の物質(治療剤、医薬剤、薬理剤、診断剤、化粧剤および予防剤および免疫調節剤など)を包含するように使用される。用語「活性剤」は、用語「薬物」、「医薬剤」、「医薬」、「原薬」または「治療剤」と互換的に使用してもよい。本明細書中で使用する場合、「活性剤」は、一般に治療剤とみなされない天然製品またはホメオパシー製品を包含することがある。
【0014】
用語「会合する」、「〜と会合する」または「会合」は、表面(別の化学体、組成物または構造の表面など)に近い状態にある化学体、組成物または構造間の相互作用または関係を指す。会合としては、たとえば、吸着、接着、共有結合、水素結合、イオン結合および静電引力、リフシッツ・ファンデルワールス相互作用および極性相互作用が挙げられる。用語「接着する」または「接着」は、会合の一形態であり、粒子または塊を表面に引き付けさせる傾向がある全ての力についての一般的な用語として使用される。「接着する」は、さらに、粒子を互いに接触させその状態を保つことから、通常の条件下での噴射剤中の粒子の浮力が異なることによる粒子間の目に見える分離が実質的には存在しないことも指す。一実施形態では、表面と付着または結合する粒子は、用語「接着する」により包含される。通常の条件としては、室温での、または重力による加速力下での保管を挙げることができる。本明細書に記載のとおり、活性剤粒子は懸濁粒子と会合させて共懸濁剤を形成でき、その場合、噴射剤内での浮力に差があることによる懸濁粒子と活性剤粒子またはその凝固体との間の目に見える分離は、実質的には存在しない。
【0015】
「懸濁粒子」は、呼吸器送達にとって許容でき、活性剤粒子のためのビヒクルとして作用する物質または物質の組合せを指す。懸濁粒子は、活性剤粒子と相互作用して、送達の標的部位、すなわち気道への活性剤の反復可能な投与、送達または輸送を容易にする。本明細書に記載の懸濁粒子は、懸濁媒体(噴射剤または噴射剤系など)内に分散し、所望の懸濁安定性または活性剤送達性能の達成に適した任意の形状、サイズまたは表面特徴に従って構成できる。例示的な懸濁粒子としては、活性剤の呼吸器送達を容易にする粒子サイズを呈し、本明細書に記載のとおりの安定化された懸濁剤の製剤および送達に適した物理的な構成を有する粒子が挙げられる。
【0016】
用語「共懸濁剤」は、懸濁媒体内に異なる組成の2種以上の粒子を有する懸濁剤を指し、このとき、1種の粒子は、他の粒子種のうち1つまたは複数と少なくとも部分的に会合する。この会合により、懸濁媒体中に懸濁している個々の粒子種のうち少なくとも1種の1つまたは複数の特徴に、観察可能な変化が生じる。この会合により改変される特徴としては、たとえば、以下:凝集または凝固の速度、分離、すなわち沈降またはクリーミングの速度および性質、クリーム層または沈降層の密度、容器壁への接着、バルブ部品への接着、ならびに撹拌時の分散の速度およびレベルのうち1つまたは複数を挙げることができる。
【0017】
共懸濁剤が存在するか否かを調べるための例示的な方法としては、以下を挙げることができる。1つの粒子種の比重瓶密度が噴射剤より高く、別の粒子種の比重瓶密度が噴射剤より低い場合、クリーミング挙動または沈降挙動の目視観察を用いて共懸濁剤の存在を確認できる。用語「比重瓶密度」は、粒子を構成する物質の、粒子内の空隙を除いた密度を指す。一実施形態では、物質は、目視観察のために、製剤化するか、または透明なバイアル(典型的にはガラスバイアル)中に移動させることができる。最初の撹拌後、沈降層またはクリーム層の形成に十分な時間(典型的には24時間)をかけてバイアルを静かに放置する。沈降層またはクリーム層が完全にまたは大部分、均一な単一層であることが観察された場合は、共懸濁剤が存在する。用語「共懸濁剤」は、少なくとも2つの粒子種の大多数は互いに会合するが、少なくとも2つの粒子種のうちいくらかの分離(すなわち、大多数より少ない)が観察されることがある、部分的な共懸濁剤を包含する。
【0018】
例示的な共懸濁剤の試験を異なる噴射剤温度で実施して、室温で噴射剤密度に近い密度を有する粒子種の沈降挙動またはクリーミング挙動を際立たせてもよい。異なる粒子種が同じ分離性質(すなわち、全て沈降または全てクリーム)を有する場合、共懸濁剤の存在は、該懸濁剤の他の特徴(凝集または凝固の速度、分離の速度、クリーム層または沈降層の密度、容器壁への接着、バルブ部品への接着、ならびに撹拌時の分散の速度およびレベルなど)を測定し、その測定値を、同様に懸濁させた個々の粒子種のそれぞれの特徴と比較することにより、決定できる。当業者に公知の多様な分析法を用いて、こうした特徴を測定できる。
【0019】
呼吸可能な凝集体、粒子、液滴など(本明細書に記載の組成物など)を含有または供給する組成物に関する場合、用語「微細粒子用量」または「FPD」は、呼吸可能な範囲内にある、名目用量または計量された用量の全質量または分率いずれかの形態での用量を指す。呼吸可能な範囲内にある用量は、カスケードインパクターのスロートステージを越えて堆積する用量、すなわち、流速30l/分で運転されるNext Generation Impactorにおいてフィルターを通してステージ3で送達される用量の合計であるように、インビトロで測定する。
【0020】
呼吸可能な凝集体、粒子、液滴など(本明細書に記載の組成物など)を含有または供給する組成物に関する場合、用語「微細粒子分率」または「FPF」は、送達される物質の、呼吸可能な範囲内にある送達用量(すなわち、MDIなどの送達器具の作動装置を出る量)に対する比率を指す。呼吸可能な範囲内の送達物質の量は、カスケードインパクターのスロートステージを越えて堆積する物質の量、たとえば、流速30l/分で運転されるNext Generation Impactorにおいてフィルターを通してステージ3で送達される物質の合計としてインビトロで測定する。
【0021】
本明細書中で使用する場合、用語「〜を阻害する」は、現象、症状もしくは状態が生じる傾向、または、当該現象、症状もしくは状態が生じる程度が測定可能に減少することを指す。用語「〜を阻害する」またはその任意の形態は、その最も広い意味で使用され、〜を最小化させる、防止する、低下させる、抑圧する、抑制する、抑える、抑止する、制限する、〜の進行を遅らせるなどを包含する。
【0022】
「空気力学的質量中央径」または「MMAD」は、本明細書中で使用する場合、それを下回ればエアロゾルの質量の50%は、MMADより小さい空気力学的径を有する粒子から成る、エアロゾルの空気力学的径を指し、MMADは、合衆国薬局方(「USP」)のモノグラフ601に従って計算される。
【0023】
本明細書中で言及する場合、用語「光学直径」は、乾燥粉末ディスペンサーを装備したレーザー回折粒子サイズ分析装置(たとえば、Sympatec GmbH、Clausthal−Zellerfeld、ドイツ)を用いてフラウンホーファー回折モードにより測定した場合の粒子サイズを示す。
【0024】
溶液媒介転移という用語は、より可溶性の高い形態の固形物質(すなわち、曲率半径(オストワルド熟成に向かう駆動力)の小さい粒子、または非晶質の物質)が溶解し、その飽和している噴射剤溶液と平衡状態で共存できる、より安定な結晶形に再結晶する現象を指す。
【0025】
「患者」は、本明細書に記載のとおりの1つまたは複数の活性剤が治療効果を有するであろう動物を指す。一実施形態では、患者はヒトである。
【0026】
「有孔微細構造体」は、参照によりその全体が本明細書に組み込まれているWeersらに付与された米国特許第6,309,623号に記載されている当該物質および調製物などの微細構造に周囲の懸濁媒体を浸透、充填または充満させる空隙、細孔、欠陥、凹み、空間、格子間空間、開口、穿孔または孔を呈する、規定するまたは含む構造マトリックスを備える懸濁粒子を指す。有孔微細構造体の基本的形態は一般にはそれほど重要ではなく、所望の製剤特徴をもたらす任意の全体構成が本明細書中では企図される。したがって、一実施形態では、有孔微細構造体は、ほぼ球形状(中空の、多孔の、噴霧乾燥された微小球など)を含んでもよい。しかし、任意の基本的形態またはアスペクト比の、崩壊した、波形の、変形したまたは砕けた微粒子も適合すると考えられる。
【0027】
本明細書に記載の懸濁粒子に当てはまるように、有孔微細構造体は、選択された懸濁媒体中で実質的に分解または溶解しない任意の生体適合性物質から形成されてもよい。多種多様な物質を使用して粒子を形成してもよいが、いくつかの実施形態では、構造マトリックスは、界面活性物質(リン脂質またはフッ素系界面活性物質など)と会合しているか、またはそれらを含む。必須ではないが、有孔微細構造体、または、より一般的には懸濁粒子中に適合性の界面活性物質を組み込むと、呼吸器用の分散剤の安定性を向上させ、肺堆積量を増し、懸濁剤の調製を容易にすることができる。
【0028】
用語「懸濁媒体」は、本明細書中で使用する場合、中で活性剤粒子および懸濁粒子が分散して共懸濁製剤をもたらすことができる連続相を供給する物質を指す。本明細書に記載の共懸濁製剤中で使用される懸濁媒体は、噴射剤を含む。本明細書中で使用する場合、用語「噴射剤」は、通常の室温で十分に高い蒸気圧を発揮して、MDIの定量バルブの作動時にMDIの缶から患者に医薬を噴射する、1つまたは複数の薬理学的に不活性な物質を指す。したがって、用語「噴射剤」は、単一の噴射剤と、「噴射剤系」を形成する2つ以上の異なる噴射剤の組合せとの両方を指す。
【0029】
用語「呼吸可能な」は、一般に、吸入されて肺の気道に到達できるような大きさになっている粒子、凝集体、液滴などを指す。
【0030】
本明細書に記載の共懸濁剤組成物を指すために使用する場合、用語「物理的な安定性」および「物理的に安定な」は、凝集、凝固、および、溶液媒介転移による粒子サイズ変化のうち1つまたは複数に抵抗性であり、懸濁粒子のMMADおよび微細粒子用量を実質的に維持することが可能な組成物を指す。一実施形態では、物理的な安定性は、組成物を、本明細書に記載のとおりの温度サイクリングによるなど加速分解条件にさらすことにより評価してもよい。
【0031】
活性剤に言及する場合、用語「強力な」は、約0.01mg/kg〜約1mg/kgの範囲の用量以下で治療上有効な活性剤を指す。強力な活性剤の典型的な用量は、一般的に、約100μg〜約100mgの範囲である。
【0032】
活性剤に言及する場合、用語「高度に強力な」は、約10μg/kgの用量以下で治療上有効な活性剤を指す。高度に強力な活性剤の典型的な用量は、一般的に、最大約100μgの範囲である。
【0033】
用語「懸濁安定性」および「安定な懸濁剤」は、活性剤粒子と懸濁粒子との共懸濁剤の特性をある期間にわたり維持することが可能な懸濁製剤を指す。一実施形態では、懸濁安定性は、本明細書に記載の共懸濁剤組成物により達成される送達用量均一性により測定してもよい。
【0034】
用語「実質的に不溶性の」は、組成物が、特定の溶媒中で完全に不溶性であるか、またはその特定の溶媒中での可溶性が乏しいか、そのいずれかであることを意味する。用語「実質的に不溶性の」は、特定の溶質の溶解性が溶媒100部当たり1部であることを意味する。用語「実質的に不溶性の」は、Remington:The Science and Practice of Pharmacy、第21版、Lippincott、Williams&Wilkins、2006、212頁の表16−1に示されているように、「わずかに可溶性の」(溶質1部当たり溶媒100〜1000部)、「非常にわずかに可溶性の」(溶質1部当たり溶媒1000〜10,000部)および「実質的に不溶性の」(溶質1部当たり溶媒10,000部超)という定義を包含する。
【0035】
用語「界面活性物質」は、本明細書中で使用する場合、2つの非混和相間の界面(水と有機ポリマー溶液との間の界面、水/空気界面、または有機溶媒/空気界面など)に優先的に吸着する任意の薬剤を指す。界面活性物質は、一般に親水性部分と親油性部分とを有することから、微小粒子への吸着時には、同じように被覆された粒子を引き付けない連続相に部分を提示し、したがって粒子の凝集を低下させる傾向がある。いくつかの実施形態では、界面活性物質は、薬物の吸着を促進し、薬物の生体利用率を増加させることもできる。
【0036】
「治療上有効量」は、患者の疾患もしくは障害を阻害することにより、または、疾患もしくは障害の発症を予防的に阻害もしくは予防することにより治療効果を達成する化合物の量である。治療上有効量は、患者の疾患もしくは障害の1つもしくは複数の症状をある程度軽減し、該疾患もしくは障害に伴うもしくはその原因となる1つもしくは複数の生理学的もしくは生化学的なパラメーターを部分的もしくは完全のいずれかで正常に戻し、および/または疾患または障害の発症の可能性を低下させる量であってもよい。
【0037】
用語「化学的に安定な」および「化学的な安定性」は、活性剤の個々の分解産物が、ヒトが使用するための製品の品質保持期間中の規制要件により特定される制限(たとえば、ICHガイダンスQ3B(R2)に従うクロマトグラフィーの合計ピーク面積の1%)未満のままであり、活性剤アッセイと総分解産物との間に許容される質量バランスが存在する(たとえば、ICHガイダンスQ1Eで定義されているように)共懸濁製剤を指す。
【0038】
組成物
本明細書に記載の組成物は、噴射剤と、活性剤粒子と、懸濁粒子とを含む懸濁媒体を含む共懸濁剤である。当然ながら、必要に応じ、本明細書に記載の組成物は、1つまたは複数の追加成分を含んでもよい。さらに、本明細書に記載の組成物の成分の変形および組合せを使用してもよい。たとえば、共懸濁製剤中に含まれる活性剤粒子は2つ以上の活性剤を含んでもよく、または、異なる種の活性剤粒子それぞれが1つもしくは複数の異なる活性剤を含む2つ以上の異なる種の活性剤粒子を使用してもよい。あるいは、1つまたは複数の活性剤または活性剤粒子を送達するための組成物中で、2種以上の懸濁粒子を使用してもよい。さらには、たとえば、本組成物は、懸濁粒子を形成する物質内に配置された活性剤と、活性剤粒子として懸濁粒子と共懸濁している別の活性剤(複数可)とを含んでもよい。
【0039】
本記載による製剤中では、活性剤粒子が懸濁粒子との会合を呈し、これにより、懸濁粒子からの活性剤粒子の分離が実質的に防止される結果、活性剤粒子と懸濁粒子とが懸濁媒体内で同一場所に位置することになることが見出されている。一般的に、異なる種の粒子と、該粒子が中に懸濁している媒体(たとえば、噴射剤または噴射剤系)との間には密度差があることから、浮力により、噴射剤より低密度の粒子のクリーミングと、噴射剤より高密度の粒子の沈降とが生じる。したがって、異なる密度または異なる凝固傾向を有する異なる種の粒子の混合物から成る懸濁剤においては、沈降挙動またはクリーミング挙動は、異なる粒子種のそれぞれに特異的であると考えられ、懸濁媒体内の異なる粒子種の分離につながると考えられる。
【0040】
しかし、本明細書に記載の噴射剤と活性剤粒子と懸濁粒子との組合せは、活性剤粒子と懸濁粒子とが噴射剤内で同一場所に位置する、共懸濁剤をもたらす(すなわち、活性剤粒子が懸濁粒子と会合することから、懸濁粒子と活性剤粒子とは、示差的な沈降またはクリーミングによるなど、クリーム層または沈降層の形成にとって十分な時間の後でも、互いに関しては実質的な分離を呈さない)。特定の実施形態では、たとえば、本明細書に記載の組成物は、懸濁粒子が、温度変動および/または、最大で、たとえば、1g、10g、35g、50gおよび100gならびにそれ以上の加速度での遠心分離により増幅された浮力を受けたときに活性剤粒子と会合された状態のままである共懸濁剤を形成する。しかし、本明細書に記載の共懸濁剤は、特定閾の会合力により定義されない。たとえば、本明細書中で企図されるとおりの共懸濁剤は、活性剤粒子と懸濁粒子との実質的な分離が、典型的な患者の使用条件下で懸濁媒体により形成される連続相内で存在しないように活性剤粒子が懸濁粒子と会合する場合に、首尾よく達成することができる。
【0041】
本記載による活性剤粒子と懸濁粒子との共懸濁剤は、望ましい化学的な安定性、懸濁安定性および活性剤送達特徴をもたらす。たとえば、一定の実施形態では、MDI缶内に存在するとき、本明細書に記載のとおりの共懸濁剤は、以下:活性剤物質の凝固;活性剤粒子および懸濁粒子の示差的な沈降またはクリーミング;活性剤物質の溶液媒介転移;ならびに、容器施栓系、とりわけ定量バルブ部品の表面への活性剤の損失のうち1つまたは複数を阻害できる。そのような特性は、共懸濁製剤がMDIから送達される際にエアロゾル性能を達成および維持するように働くことから、望ましい微細粒子分率、微細粒子用量および送達用量均一性特徴が達成され、共懸濁製剤が含有されているMDI缶が空になるまで実質的に維持される。加えて、本記載による共懸濁剤は、たとえば、共溶媒、貧溶媒、可溶化剤またはアジュバントの添加による改変を必要としない比較的単純なHFA懸濁媒体を利用しながら、強力なおよび高度に強力な活性剤でも一定の投与特徴をもたらす安定な製剤を提供できる。
【0042】
本記載による共懸濁剤を提供することにより、所望の活性剤の製剤、送達および投与を単純化することもできる。特定の理論により拘束されるものではないが、活性剤粒子と懸濁粒子との共懸濁剤を達成することにより、そのような分散系内に含有される活性剤の送達、物理的な安定性および投与は、懸濁粒子のサイズ、組成、形態および相対量を制御することを通じて実質的に制御してもよく、活性剤の粒子のサイズおよび形態への依存度は比較的低いと考えられる。さらに、特定の実施形態では、本明細書に記載の医薬組成物は、貧溶媒、可溶化剤、共溶媒またはアジュバントを実質的に含まない非CFC噴射剤または噴射剤系と共に製剤化できる。
【0043】
本教示により製剤化される共懸濁剤組成物は、その中に含まれる活性剤の物理的および化学的な分解を阻害できる。たとえば、特定の実施形態では、本明細書に記載の組成物は、該組成物中に含まれる活性剤の化学的分解、凝固、凝集および溶液媒介転移のうち1つまたは複数を阻害できる。本明細書に記載の共懸濁剤組成物によりもたらされる化学的安定性および懸濁安定性により、送達すべき活性剤が高度に強力であり、非常に低用量で送達される場合であっても、該組成物を、MDI缶が空になるまで望ましい送達用量均一性(「DDU」)を達成する方式で分配させることができる。
【0044】
本明細書に記載のとおりの共懸濁剤組成物は、その中に含まれる活性剤のそれぞれについて±30%またはより良好なDDUを達成できる。そのような一実施形態では、本明細書に記載の組成物は、その中に含まれる活性剤のそれぞれについて±25%またはより良好なDDUを達成する。別のそのような実施形態では、本明細書に記載の組成物は、その中に含まれる活性剤のそれぞれについて±20%またはより良好なDDUを達成する。さらに、本記載による共懸濁剤組成物は、加速分解条件にさらされた後であっても、MDI缶が空になるまでFPFおよびFPDの成績を実質的に維持するように機能する。たとえば、本記載による組成物は、加速分解条件にさらされた後であっても、元のFPFまたはFPDの成績の80%、90%、95%またはそれ以上に相当するほどの高さを維持する。
【0045】
本明細書に記載の共懸濁剤組成物は、非CFC噴射剤を用いて製剤化されていてもそのような成績を達成するという付加利益を提供する。特定の実施形態では、本明細書に記載の組成物は、1つのみまたは複数の非CFC噴射剤を含む懸濁媒体を用いて製剤化されていても、目標となるDDU、FPFまたはFPDのうち1つまたは複数を達成し、たとえば、1つまたは複数の共溶媒、貧溶媒、可溶化剤、アジュバントまたは他の噴射剤改変物質の添加によるなど、非CFC噴射剤の特徴を改変する必要はない。
【0046】
懸濁媒体
本明細書に記載の組成物中に含まれる懸濁媒体は、1つまたは複数の噴射剤を含む。一般には、懸濁媒体としての使用に適した噴射剤は、室温での加圧下で液化でき、吸入または局所的な使用の際に安全で毒性学的に無害であるような噴射剤ガスである。加えて、選択される噴射剤は、懸濁粒子または活性剤粒子とあまり反応しないことが望ましい。例示的な適合性のある噴射剤としては、ヒドロフルオロアルカン(HFA)、過フッ化化合物(PFC)およびクロロフルオロカーボン(CFC)が挙げられる。
【0047】
本明細書中で開示する共懸濁剤の懸濁媒体を形成するために使用してもよい噴射剤の具体例としては、以下:1,1,1,2−テトラフルオロエタン(CFCHF)(HFA−134a)、1,1,1,2,3,3,3−ヘプタフルオロ−n−プロパン(CFCHFCF)(HFA−227)、ペルフルオロエタン、モノクロロフルオロメタン、1,1ジフルオロエタン、およびそれらの組合せが挙げられる。さらには、適当な噴射剤としては、たとえば以下:短鎖炭化水素;C1〜4水素含有クロロフルオロカーボン(CHClF、CClFCHClF、CFCHClF、CHFCClF、CHClFCHF、CFCHClおよびCClFCHなど);C1〜4水素含有フルオロカーボン(たとえばHFA)(CHFCHF、CFCHF、CHFCHおよびCFCHFCFなど);ならびにペルフルオロカーボン(CFCFおよびCFCFCFなど)が挙げられる。
【0048】
懸濁媒体として使用してもよい特定のフルオロカーボン、またはフッ化化合物の種類としては以下:フルオロヘプタン、フルオロシクロヘプタン、フルオロメチルシクロヘプタン、フルオロヘキサン、フルオロシクロヘキサン、フルオロペンタン、フルオロシクロペンタン、フルオロメチルシクロペンタン、フルオロジメチルシクロペンタン、フルオロメチルシクロブタン、フルオロジメチルシクロブタン、フルオロトリメチルシクロブタン、フルオロブタン、フルオロシクロブタン、フルオロプロパン、フルオロエーテル、フルオロポリエーテルおよびフルオロトリエチルアミンが挙げられるが、これらに限定されない。これらの化合物は、単独で、または、より揮発性の高い噴射剤と組み合わせて使用してもよい。
【0049】
前述のフルオロカーボンおよびヒドロフルオロアルカンに加え、多様な例示的なクロロフルオロカーボンおよび置換されているフッ化化合物を懸濁媒体として使用することもできる。この場合、FC−11(CClF)、FC−11B1(CBrClF)、FC−11B2(CBrClF)、FC12B2(CFBr)、FC21(CHClF)、FC21B1(CHBrClF)、FC−21B2(CHBrF)、FC−31B1(CHBrF)、FC113A(CClCF)、FC−122(CClFCHCl)、FC−123(CFCHCl)、FC−132(CHClFCHClF)、FC−133(CHClFCHF)、FC−141(CHClCHClF)、FC−141B(CClFCH)、FC−142(CHFCHCl)、FC−151(CHFCHCl)、FC−152(CHFCHF)、FC−1112(CClF=CClF)、FC−1121(CHCl=CFCl)およびFC−1131(CHCl=CHF)を使用することもできるが、環境上の懸念を伴う可能性があることは認識している。したがって、これらの化合物のそれぞれを、単独で、または他の化合物(すなわち、より揮発性の低いフルオロカーボン)と組み合わせて使用して、本明細書中で開示する安定化させた懸濁剤を形成してもよい。
【0050】
いくつかの実施形態では、懸濁媒体は、単一の噴射剤から形成してもよい。他の実施形態では、噴射剤の組合せを使用して懸濁媒体を形成してもよい。いくつかの実施形態では、比較的揮発性の化合物を、より蒸気圧の低い成分と混合して、安定性を高め、または分散された活性剤の生体利用率を高めるために選択された特定の物理的な特徴を有する懸濁媒体を得てもよい。いくつかの実施形態では、より蒸気圧の低い化合物は、沸点が約25℃超のフッ化化合物(たとえばフルオロカーボン)を含むことになろう。いくつかの実施形態では、懸濁媒体中で使用するためのより蒸気圧の低いフッ化化合物としては、以下:臭化ペルフルオロオクチルC17Br(PFOBまたはペルフルブロン)、ジクロロフルオロオクタンC16Cl、ペルフルオロオクチルエタンC17(PFOE)、ペルフルオロデシルブロミドC1021Br(PFDB)またはペルフルオロブチルエタンCを挙げることができる。一定の実施形態では、これらのより蒸気圧の低い化合物は、比較的低レベルで存在する。そのような化合物は、懸濁媒体に直接加えてもよく、または、懸濁粒子と会合させてもよい。
【0051】
いくつかの実施形態では、懸濁媒体は、追加的な物質(たとえば、貧溶媒、可溶化剤、共溶媒またはアジュバントなど)を実質的に含まない噴射剤または噴射剤系から形成してもよい。しかし、他の実施形態では、噴射剤の選択、懸濁粒子の特性または送達すべき活性剤の性質によっては、たとえば、懸濁粒子の蒸気圧、安定性、または溶解性を調節するために適切な貧溶媒、可溶化剤、共溶媒またはアジュバントのうち1つまたは複数などの追加的な物質を加えることができる。たとえば、プロパン、エタノール、イソプロピルアルコール、ブタン、イソブタン、ペンタン、イソペンタンまたはジアルキルエーテル(ジメチルエーテルなど)を、懸濁媒体中の噴射剤と共に組み込んでもよい。同様に、懸濁媒体は、揮発性のフルオロカーボンを含有してもよい。他の実施形態では、ポリビニルピロリドン(「PVP」)またはポリエチレングリコール(「PEG」)のうち一方または両方を懸濁媒体に加えてもよい。PVPまたはPEGを懸濁媒体に加えることにより1つまたは複数の所望の機能的な特徴を達成でき、一例では、PVPまたはPEGは、結晶成長阻害剤として懸濁媒体に加えてもよい。一般には、使用する場合、噴射剤の最大約1%w/wが、炭化水素またはフルオロカーボンなどの揮発性の共溶媒またはアジュバントを含んでもよい。他の実施形態では、懸濁媒体は、約0.01%w/w未満、0.1%w/w未満または0.5%w/w未満の共溶媒またはアジュバントを含んでもよい。PVPまたはPEGが懸濁媒体中に含まれる場合、そのような成分は、最大約1%w/wで含まれてもよく、または、懸濁媒体の約0.01%w/w未満、0.1%w/w未満または0.5%w/w未満を構成してもよい。
【0052】
活性剤粒子
本明細書に記載の共懸濁剤中に含まれる活性剤粒子は、懸濁媒体内に分散および懸濁させることが可能であり、共懸濁剤からの呼吸可能な粒子の送達を容易にするようなサイズの物質から形成される。したがって、一実施形態では、活性剤粒子は、活性剤粒子の少なくとも90体積%が約7μm以下の光学直径を呈する微粉化された物質として供給される。他の実施形態では、活性剤粒子は、活性剤粒子の少なくとも90体積%が、約7μm〜約1μm、約5μm〜約2μm、および約3μm〜約2μmの範囲から選択される光学直径を呈する微粉化された物質として供給される。さらなる実施形態では、活性剤粒子は、活性剤粒子の少なくとも90体積%が、6μm以下、5μm以下、4μm以下または3μm以下から選択される光学直径を呈する微粉化された物質として供給される。別の実施形態では、活性剤粒子は、活性剤粒子物質の少なくとも50体積%が約4μm以下の光学直径を呈する微粉化された物質として供給される。さらなる実施形態では、活性剤粒子は、活性剤粒子物質の少なくとも50体積%が、約3μm以下、約2μm以下、約1.5μm以下および約1μm以下から選択される光学直径を呈する微粉化された物質として供給される。またさらなる実施形態では、活性剤粒子は、活性剤粒子の少なくとも50体積%が、約4μm〜約1μm、約3μm〜約1μm、約2μm〜約1μm、約1.3μmおよび約1.9μmの範囲から選択される光学直径を呈する微粉化された物質として供給される。
【0053】
活性剤粒子は、完全に活性剤から形成してもよく、または、1つもしくは複数の活性剤を1つもしくは複数の添加剤もしくはアジュバントと組み合わせて含むように製剤化してもよい。特定の実施形態では、活性剤粒子中に存在する活性剤は、完全にまたは実質的に結晶性であってもよい。別の実施形態では、活性剤粒子は、結晶状態および非晶質状態の両方で存在する活性剤を含んでもよい。また別の実施形態では、活性剤粒子は、実質的に非晶質状態で存在する活性剤を含んでもよい。またさらなる一実施形態では、2つ以上の活性剤が活性剤粒子に存在する場合、少なくとも1つのそのような活性剤は、結晶性または実質的に結晶性の形態で存在してもよく、少なくとももう1つの活性剤は非晶質状態で存在してもよい。さらに別の実施形態では、2つ以上の活性剤が活性剤粒子に存在する場合、そのような活性剤はそれぞれ結晶性または実質的に結晶性の形態で存在してもよい。本明細書に記載の活性剤粒子が、1つまたは複数の活性剤を1つまたは複数の添加剤またはアジュバントと組み合わせて含む場合、該添加剤およびアジュバントは、使用される活性剤の化学的および物理的な特性に基づいて選択できる。さらに、活性剤粒子の製剤に適した添加剤は、懸濁粒子と会合している本明細書に記載のものを含む。特定の実施形態では、たとえば、活性剤粒子は、たとえば、懸濁粒子と会合している、脂質、リン脂質、炭水化物、アミノ酸、有機塩、ペプチド、タンパク質、アルジトール、合成もしくは天然のポリマーまたは界面活性物質である記載のとおりの物質のうち1つまたは複数と共に製剤化してもよい。
【0054】
2つ以上の活性剤を含む他の実施形態では、活性剤のうち少なくとも1つは、懸濁粒子と共懸濁している活性剤粒子中に含まれるが、少なくとも1つの他の活性剤は、共懸濁剤中で利用されている懸濁粒子中に含まれていてもよい。たとえば、1つまたは複数の活性剤を、脂質、リン脂質、炭水化物、アミノ酸、有機塩、ペプチド、タンパク質、アルジトール、合成もしくは天然のポリマーまたは界面活性物質である物質のうち1つまたは複数の溶液に加え、噴霧乾燥させて、懸濁粒子を形成する物質内に活性剤を含有する1種または異なる複数種の懸濁粒子を形成してもよい。
【0055】
任意の適当なプロセスを用いて、本明細書に記載の組成物の中に含めるための微粉化された活性剤物質を達成してもよい。本明細書に記載の共懸濁製剤中での使用に適した活性剤粒子を作り出すにはさまざまなプロセスを使用してもよく、そのようなプロセスとしては以下:製粉または粉砕プロセスによる微粉化、結晶化または再結晶プロセス、および、超臨界または超臨界近傍の溶媒からの沈殿を用いるプロセス、噴霧乾燥、噴霧凍結乾燥または凍結乾燥が挙げられるが、これらに限定されない。微粉化された活性剤粒子を得るための適当な方法を教示する特許参考文献は、たとえば、米国特許第6,063,138号、米国特許第5,858,410号、米国特許第5,851,453号、米国特許第5,833,891号、米国特許第5,707,634号および国際特許公開第2007/009164号が挙げられる。活性剤粒子が1つまたは複数の添加剤またはアジュバントと共に製剤化された活性剤物質を含む場合、微粉化された活性剤粒子は、先に記載のプロセスのうち1つまたは複数を用いて形成でき、そのようなプロセスを利用して、所望のサイズ分布および粒子構成を有する活性剤粒子を達成することができる。
【0056】
活性剤粒子は、懸濁媒体内で任意の適当な濃度で供給されてもよい。活性剤粒子中に含まれる活性剤は、懸濁媒体中では実質的に不溶性である。いくつかの実施形態では、活性剤は、実質的に不溶性であるにもかかわらず、懸濁媒体中で測定可能な溶解性を呈する。しかし、活性剤が懸濁媒体中で測定可能な溶解性を呈した場合でも、本明細書に記載の組成物は、そのような活性剤の物理的な安定性を維持するように機能する。とりわけ、特定の実施形態では、本明細書に記載の組成物中に含まれる活性剤は、活性剤の全質量の5%相当の量が懸濁媒体に溶解するように懸濁媒体中で十分な溶解性を呈してもよい。あるいは、活性剤の溶解性は、活性剤の全質量の1%相当の量が懸濁媒体に溶解する結果をもたらしてもよい。別の実施形態では、活性剤の溶解性は、活性剤の全質量の0.5%相当の量が懸濁媒体に溶解する結果をもたらしてもよい。また別の実施形態では、活性剤の溶解性は、活性剤の全質量の0.05%相当の量が懸濁媒体に溶解する結果をもたらしてもよい。さらなる別の実施形態では、活性剤の溶解性は、活性剤の全質量の0.025%相当の量が懸濁媒体に溶解する結果をもたらしてもよい。
【0057】
さまざまな治療剤または予防剤を、本明細書中で開示する共懸濁剤組成物中に組み込むことができる。例示的な活性剤としては、エアロゾル化された医薬の形態で投与してもよいものが挙げられ、本明細書に記載の組成物中での使用に適した活性剤としては、選択された懸濁媒体内で分散性である(たとえば、実質的に不溶性であるか、または、共懸濁製剤を実質的に維持する懸濁媒体中で溶解性を呈する)形態で存在するかまたはそうした方式で製剤化してもよいものが挙げられ、懸濁粒子と共に共懸濁剤を形成することが可能であり、生理学的に有効な量で呼吸可能に取り込まれやすい。本明細書に記載の活性剤粒子の形成において利用してもよい活性剤は、さまざまな生物活性を有することができる。
【0058】
本記載による組成物中に含ませてもよい特定の活性剤の例は、たとえば以下:短時間作用性のβ作動剤、たとえば、ビトルテロール、カルブテロール、フェノテロール、ヘキソプレナリン、イソプレナリン(イソプロテレノール)、レボサルブタモール、オルシプレナリン(メタプロテレノール)、ピルブテロール、プロカテロール、リミテロール、サルブタモール(アルブテロール)、テルブタリン、ツロブテロール、レプロテロール、イプラトロピウムおよびエピネフリン;長時間作用性のβアドレナリン受容体作動剤(「LABA」)、たとえば、バンブテロール、クレンブテロール、ホルモテロール、サルメテロール;超長時間作用性のβアドレナリン受容体作動剤、たとえば、カルモテロール、ミルベテロール(milveterol)、インダカテロール、および、サリゲニンまたはインドールを含有しアダマンチル誘導性のβ作動剤;コルチコステロイド、たとえば、ベクロメタゾン、ブデソニド、シクレソニド、フルニソリド、フルチカゾン、メチルプレドニゾロン、モメタゾン、プレドニゾンおよびトリアムシノロン;抗炎症薬、たとえばプロピオン酸フルチカゾン、二プロピオン酸ベクロメタゾン、フルニソリド、ブデソニド、トリペダン(tripedane)、コルチゾン、プレドニゾン、プレドニゾロン、デキサメタゾン、ベタメタゾンまたはトリアムシノロンアセトニド;鎮咳剤、たとえばノスカピン;気管支拡張剤、たとえば、エフェドリン、アドレナリン、フェノテロール、ホルモテロール、イソプレナリン、メタプロテレノール、サルブタモール、アルブテロール、サルメテロール、テルブタリン;ならびにムスカリン拮抗剤(長時間作用性のムスカリン拮抗剤(「LAMA」)など)、たとえば、グリコピロレート、デキシピロニウム(dexipirronium)、スコポラミン、トロピカミド、ピレンゼピン、ジメンヒドリネート、チオトロピウム、ダロトロピウム(darotropium)、アクリジニウム、トロスピウム、イプラトロピウム、アトロピン、ベンズトロピンまたはオキシトロピウムであってもよい。
【0059】
適切な場合、本組成物中で供給される活性剤(本明細書に具体的に記載のものなどであるが、これらに限定されない)は、塩(たとえばアルカリ金属もしくはアミン塩、または酸付加塩として)の形態で、または、エステル、溶媒和物(水和物)、誘導体もしくはそれらの遊離塩基として、使用してもよい。加えて、活性剤は、任意の結晶形態または異性体形態または異性体形態の混合物の形態で、たとえば、純粋なエナンチオマー、エナンチオマーの混合物として、ラセミ化合物として、またはその混合物として、存在してもよい。この場合、活性剤の形態は、活性剤の活性および/または安定性を最適化するように、および/または、懸濁媒体中の活性剤の溶解性を最小化させるように選択してもよい。
【0060】
開示する組成物は非常に低用量の活性剤の再現性のある送達を可能にするので、一定の実施形態では、本明細書に記載の組成物中に含まれる活性剤は、1つまたは複数の強力なまたは高度に強力な活性剤から選択してもよい。たとえば、一定の実施形態では、本明細書に記載の組成物は、MDIの1作動当たり約100μg〜約100mg、約100μg〜約10mg、および約100μg〜1mgから選択される用量で送達されるべき1つまたは複数の強力な活性剤を含んでもよい。他の実施形態では、本明細書に記載の組成物は、MDIの1作動当たり最大約80μg、最大約40μg、最大約20μg、または約10μg〜約100μgから選択される用量で送達されるべき1つまたは複数の強力なまたは高度に強力な活性剤を含んでもよい。加えて、一定の実施形態では、本明細書に記載の組成物は、MDIの1作動当たり約0.1〜約2μg、約0.1〜約1μg、および約0.1〜約0.5μgから選択される用量で送達されるべき1つまたは複数の高度に強力な活性剤を含んでもよい。
【0061】
本明細書に記載のとおりの組成物は、必要に応じ、2つ以上の活性剤の組合せを含有してもよい。たとえば、2種以上の活性剤粒子が単一種の懸濁粒子と共懸濁していてもよい。あるいは、組成物は、2つ以上の異なる種の懸濁粒子と共懸濁している2種以上の活性剤粒子を含んでもよい。さらには、本明細書に記載のとおりの組成物は、単一種の活性剤粒子内で組み合わさった2つ以上の活性剤を含んでもよい。たとえば、活性剤物質に加え1つまたは複数の添加剤またはアジュバントを使用して活性剤粒子が製剤化される場合、そのような活性剤粒子は、2つ以上の異なる活性剤を含む個別の粒子を含んでもよい。
【0062】
一定の実施形態では、本明細書に記載の組成物中に含まれる活性剤はLAMA活性剤である。該組成物がLAMA活性剤を含む場合、特定の実施形態では、LAMA活性剤は、たとえば以下:グリコピロレート、デキシピロニウム、チオトロピウム、トロスピウム、アクリジニウム、ダロトロピウム(その任意の薬学的に許容できる塩、エステル、異性体または溶媒和物を包含する)から選択してもよい。
【0063】
グリコピロレートを使用して炎症性または閉塞性の肺疾患および肺障害(たとえば、本明細書に記載のものなど)を治療することができる。抗コリン作用剤として、グリコピロレートは、気管支拡張剤として作動し、粘液分泌の増加を特徴とする肺疾患および肺障害の療法における使用にとっての利益である抗分泌効果をもたらす。グリコピロレートは四級アンモニウム塩である。適切な場合、グリコピロレートは、塩(たとえばアルカリ金属もしくはアミン塩、または酸付加塩として)の形態で、またはエステルとして、または溶媒和物(水和物)として使用してもよい。加えて、グリコピロレートは、任意の結晶形態または異性体形態または異性体形態の混合物、たとえば、純粋なエナンチオマー、エナンチオマーの混合物、ラセミ化合物またはその混合物の形態であってもよい。この場合、グリコピロレートの形態は、グリコピロレートの活性および/または安定性を最適化するように、および/または、懸濁媒体中のグリコピロレートの溶解性を最小化させるように選択してもよい。適当な対イオンは、たとえば以下:フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン、硝酸イオン、硫酸イオン、リン酸イオン、ギ酸イオン、酢酸イオン、トリフルオロ酢酸イオン、プロピオン酸イオン、酪酸イオン、乳酸イオン、クエン酸イオン、酒石酸イオン、リンゴ酸イオン、マレイン酸イオン、コハク酸イオン、安息香酸イオン、p−クロロ安息香酸イオン、酢酸ジフェニルイオンまたは酢酸トリフェニルイオン、o−ヒドロキシ安息香酸イオン、p−ヒドロキシ安息香酸イオン、1−ヒドロキシナフタレン−2−カルボキシレート、3−ヒドロキシナフタレン−2−カルボキシレート、メタンスルホン酸イオンおよびベンゼンスルホン酸イオンなどの薬学的に許容できる対イオンである。本明細書に記載の組成物の特定の実施形態では、グリコピロレートの臭化物塩、すなわち3−[(シクロペンチル−ヒドロキシフェニルアセチル)オキシ]−1,1−ジメチルピロリジニウムブロミドを使用し、米国特許第2,956,062号に記載の手順により調製できる。
【0064】
本明細書に記載の組成物がグリコピロレートを含む場合、一定の実施形態では、該組成物は、MDIの1作動当たり約10μg〜約200μg、MDIの1作動当たり約15μg〜約150μg、およびMDIの1作動当たり約18μg〜144μgから選択される目標送達用量をもたらすのに十分なグリコピロレートを含んでもよい。他のそのような実施形態では、この製剤は、1作動当たり最大約200μg、最大約150μg、最大約75μg、最大約40μgまたは最大約20μgから選択される用量をもたらすのに十分なグリコピロレートを含む。またさらなる実施形態では、この製剤は、1作動当たり約18μg、1作動当たり36μgまたは1作動当たり約72μgから選択される用量をもたらすのに十分なグリコピロレートを含む。本明細書に記載のとおりの目標となる送達用量を達成するためには、本明細書に記載の組成物がグリコピロレートを活性剤として含む場合、特定の実施形態では、該組成物中に含まれるグリコピロレートの量は、たとえば、約0.04mg/ml〜約2.25mg/mlから選択してもよい。
【0065】
他の実施形態では、チオトロピウム(その任意の薬学的に許容できる塩、エステル、異性体または溶媒和物を包含する)を、本明細書に記載のとおりの組成物中に含ませるためのLAMA活性剤として選択してもよい。チオトロピウムは、肺の炎症または閉塞を伴う疾患または障害(本明細書に記載のものなど)の治療における使用に適した、公知の長時間作用性の抗コリン作用剤である。チオトロピウム(結晶および薬学的に許容できる塩の形態のチオトロピウムを包含する)は、たとえば、米国特許第5,610,163号、米国特許第RE39820号、米国特許第6,777,423号および米国特許第6,908,928号に記載されている。本明細書に記載の組成物がチオトロピウムを含む場合、一定の実施形態では、該組成物は、1作動当たり約2.5μg〜約50μg、約4μg〜約25μg、約2.5μg〜約20μg、約10μg〜約20μg、および約2.5μg〜約10μgから選択される送達用量をもたらすのに十分なチオトロピウムを含んでもよい。他のそのような実施形態では、この製剤は、MDIの1作動当たり最大約50μg、最大約20μg、最大約10μg、最大約5μgまたは最大約2.5μgから選択される送達用量をもたらすのに十分なチオトロピウムを含む。またさらなる実施形態では、この製剤は、MDIの1作動当たり約3μg、6μg、9μg、18μg、および36μgから選択される送達用量をもたらすのに十分なチオトロピウムを含む。本明細書に記載のとおりの送達用量を達成するためには、本明細書に記載の組成物がチオトロピウムを活性剤として含む場合、特定の実施形態では、該組成物中に含まれるチオトロピウムの量は、たとえば、約0.01mg/ml〜約0.5mg/mlから選択してもよい。
【0066】
一定の実施形態では、本明細書に記載の組成物はLABA活性剤を含む。そのような実施形態では、LABA活性剤は、たとえば以下:バンブテロール、クレンブテロール、ホルモテロール、サルメテロール、カルモテロール、ミルベテロール、インダカテロール、および、サリゲニンまたはインドールを含有しアダマンチル誘導性のβ作動剤、ならびにその任意の薬学的に許容できる塩、エステル、異性体または溶媒和物から選択できる。一定のそのような実施形態では、ホルモテロールはLABA活性剤として選択される。ホルモテロールを使用して、炎症性または閉塞性の肺疾患および肺障害(たとえば本明細書に記載のものなど)を治療することができる。ホルモテロールの化学名は(±)−2−ヒドロキシ−5−[(1RS)−1−ヒドロキシ−2−[[(1RS)−2−(4−メトキシフェニル)−1−メチルエチル]−アミノ]エチル]ホルムアニリドであり、医薬組成物中で、ラセミのフマル酸二水和物塩として通常使用される。適切な場合、ホルモテロールは、塩(たとえばアルカリ金属もしくはアミン塩、または酸付加塩として)の形態で、またはエステルとして、または溶媒和物(水和物)として、使用してもよい。加えて、ホルモテロールは、任意の結晶形態または異性体形態または異性体形態の混合物、たとえば、純粋なエナンチオマー、エナンチオマーの混合物、ラセミ化合物またはその混合物の形態であってもよい。この場合、ホルモテロールの形態は、ホルモテロールの活性および/または安定性を最適化するように、および/または、懸濁媒体中のホルモテロールの溶解性を最小化させるように選択してもよい。ホルモテロールの薬学的に許容できる塩としては、たとえば以下:無機酸(塩酸、臭化水素酸、硫酸およびリン酸など)、ならびに、有機酸(フマル酸、マレイン酸、酢酸、乳酸、クエン酸、酒石酸、アスコルビン酸、コハク酸、グルタル酸、グルコン酸、トリカルバリル酸、オレイン酸、安息香酸、p−メトキシ安息香酸、サリチル酸、o−およびp−ヒドロキシ安息香酸、p−クロロ安息香酸、メタンスルホン酸、p−トルエンスルホン酸ならびに3−ヒドロキシ−2−ナフタレンカルボン酸など)の塩が挙げられる。ホルモテロールの水和物は、たとえば、米国特許第3,994,974号および米国特許第5,684,199号に記載されている。ホルモテロールの特定の結晶形態および他のβアドレナリン受容体作動剤は、たとえば国際特許公開第95/05805号に記載されており、ホルモテロールの特定の異性体は、米国特許第6,040,344号に記載されている。
【0067】
特定の実施形態では、ホルモテロール粒子を形成するために利用されるホルモテロール物質はフマル酸ホルモテロールであり、そのような一実施形態では、フマル酸ホルモテロールは、二水和物形態で存在する。本明細書に記載の組成物がホルモテロールを含む場合、一定の実施形態では、本明細書に記載の組成物は、ホルモテロールを、MDIの1作動当たり約1μg〜約30μg、約1μg〜約10μg、約2μg〜5μg、約2μg〜約10μg、約5μg〜約10μg、および3μg〜約30μgから選択される目標となる送達用量を達成する濃度で含んでもよい。他の実施形態では、本明細書に記載の組成物は、ホルモテロールを、1作動当たり最大約30μg、最大約10μg、最大約5μg、最大約2.5μg、最大約2μgまたは最大約1.5μgから選択される目標となる送達用量をもたらすのに十分な量で含んでもよい。本明細書に記載のとおりの目標となる送達用量を達成するために、本明細書に記載の組成物がホルモテロールを活性剤として含む場合、特定の実施形態では、組成物中に含まれるホルモテロールの量は、たとえば、約0.01mg/ml〜約1mg/ml、約0.01mg/ml〜約0.5mg/ml、および約0.03mg/ml〜約0.4mg/mlから選択してもよい。
【0068】
本明細書に記載の医薬共懸濁剤組成物がLABA活性剤を含む場合、一定の実施形態では、活性剤は、サルメテロール(任意の薬学的に許容できるその塩、エステル、異性体または溶媒和物を包含する)でよい。サルメテロールを使用して炎症性または閉塞性の肺疾患および肺障害(たとえば、本明細書に記載のものなど)を治療することができる。サルメテロール、サルメテロールの薬学的に許容できる塩、および、それを作製する方法は、たとえば、米国特許第4,992,474号、米国特許第5,126,375号および米国特許第5,225,445号に記載されている。
【0069】
サルメテロールがLABA活性剤として含まれる場合、一定の実施形態では、本明細書に記載の組成物は、サルメテロールを、MDIの1作動当たり約2μg〜約120μg、約4μg〜約40μg、約8μg〜20μg、約8μg〜約40μg、約20μg〜約40μg、および12μg〜約120μgから選択される送達用量を達成する濃度で含んでもよい。他の実施形態では、本明細書に記載の組成物は、サルメテロールを、MDIの1作動当たり最大約120μg、最大約40μg、最大約20μg、最大約10μg、最大約8μgまたは最大約6μgから選択される送達用量をもたらすのに十分な量で含んでもよい。本明細書に記載のとおりの目標送達用量を達成するためには、本明細書に記載の組成物がサルメテロールを活性剤として含む場合、特定の実施形態では、該組成物中に含まれるサルメテロールの量は、たとえば、約0.04mg/ml〜約4mg/ml、約0.04mg/ml〜約2.0mg/ml、および約0.12mg/ml〜約0.8mg/mlから選択してもよい。たとえば、本明細書に記載の組成物は、MDIの1作動当たり約4μg〜約120μg、約20μg〜約100μg、および約40μg〜約120μgから選択される目標送達用量をもたらすのに十分なサルメテロールを含んでもよい。さらに他の実施形態では、本明細書に記載の組成物は、MDIの1作動当たり最大約100μg、最大約40μgまたは最大約15μgから選択される目標送達用量をもたらすのに十分なサルメテロールを含んでもよい。
【0070】
さらに他の実施形態では、本明細書に記載の組成物はコルチコステロイドを含む。そのような活性剤は、たとえば、ベクロメタゾン、ブデソニド、シクレソニド、フルニソリド、フルチカゾン、メチルプレドニゾロン、モメタゾン、プレドニゾンおよびトリアムシノロンから選択してもよい。該組成物がコルチコステロイド活性剤を含む場合、特定の実施形態では、モメタゾンを選択してもよい。モメタゾン、モメタゾンの薬学的に許容できる塩(フロ酸モメタゾンなど)、および、そのような物質の調製は公知であり、たとえば、米国特許第4,472,393号、米国特許第5,886,200号および米国特許第6,177,560号に記載されている。モメタゾンは、肺の炎症または閉塞を伴う疾患または障害(本明細書に記載のものなど)の治療における使用に適している(たとえば、米国特許第5,889,015号、米国特許第6,057,307号、米国特許第6,057,581号、米国特許第6,677,322号、米国特許第6,677,323号および米国特許第6,365,581号を参照のこと)。
【0071】
本明細書に記載の組成物がモメタゾンを含む場合、特定の実施形態では、該組成物は、モメタゾン(その任意の薬学的に許容できる塩、エステル、異性体または溶媒和物を包含する)を、MDIの1作動当たり約20μg〜約400μg、約20μg〜約200μg、約50μg〜約200μg、約100μg〜約200μg、約20μg〜約100μg、および約50μg〜約100μgから選択される目標送達用量をもたらすのに十分な量で含む。さらに他の実施形態では、本明細書に記載の組成物は、モメタゾン(その任意の薬学的に許容できる塩、エステル、異性体または溶媒和物を包含する)を、MDIの1作動当たり最大約400μg、最大約200μgまたは最大約100μgから選択される目標送達用量をもたらすのに十分な量で含んでもよい。
【0072】
他の実施形態では、本明細書に記載の組成物は、フルチカゾンおよびブデソニドから選択されるコルチコステロイドを含む。フルチカゾンおよびブデソニドは両方とも、肺の炎症または閉塞を伴う状態(本明細書に記載のものなど)の治療における使用に適している。フルチカゾン、フルチカゾンの薬学的に許容できる塩(プロピオン酸フルチカゾンなど)、およびそのような物質の調製は公知であり、たとえば、米国特許第4,335,121号、米国特許第4,187,301号および米国特許出願公開第2008125407号に記載されている。ブデソニドも周知であり、たとえば米国特許第3,929,768号に記載されている。一定の実施形態では、本明細書に記載の組成物は、フルチカゾン(その任意の薬学的に許容できる塩、エステル、異性体または溶媒和物を包含する)を、MDIの1作動当たり約20μg〜約200μg、約50μg〜約175μg、および約80μg〜約160μgから選択される目標送達用量をもたらすのに十分な量で含んでもよい。他の実施形態では、本明細書に記載の組成物は、フルチカゾン(その任意の薬学的に許容できる塩、エステル、異性体または溶媒和物を包含する)を、MDIの1作動当たり最大約175μg、最大約160μg、最大約100μgまたは最大約80μgから選択される目標送達用量をもたらすのに十分な量で含んでもよい。特定の実施形態では、本明細書に記載の組成物は、ブデソニド(その任意の薬学的に許容できる塩、エステル、異性体または溶媒和物を包含する)を、MDIの1作動当たり約30μg〜約240μg、約30μg〜約120μg、および約30μg〜約50μgから選択される目標送達用量をもたらすのに十分な量で含んでもよい。さらに他の実施形態では、本明細書に記載の組成物は、ブデソニド(その任意の薬学的に許容できる塩、エステル、異性体または溶媒和物を包含する)を、MDIの1作動当たり最大約240μg、最大約120μgまたは最大約50μgから選択される目標送達用量をもたらすのに十分な量で含んでもよい。
【0073】
本明細書に記載の共懸濁剤組成物は、単一の活性剤を含む(および送達する)ように製剤化できる。あるいは、本明細書に記載の共懸濁剤組成物は、2つ以上の活性剤を含んでもよい。特定の実施形態では、2つ以上の活性剤が含まれる場合、本明細書に記載の組成物は、以下:LAMA活性剤とLABA活性剤との組合せ、LAMA活性剤とコルチコステロイド活性剤との組合せ、LABA活性剤とコルチコステロイド活性剤との組合せから選択される活性剤の組合せを含んでもよい。他の実施形態では、本明細書に記載の共懸濁剤組成物は、3つ以上の活性剤を含んでもよい。一定のそのような実施形態では、本組成物は、LAMA活性剤とLABA活性剤とコルチコステロイド活性剤との組合せから選択される活性剤の組合せを含む。たとえば、本明細書に記載のとおりの共懸濁剤組成物は、以下:ホルモテロールとブデソニドとの組合せ、グリコピロレートとホルモテロールとの組合せ、シクレソニドとホルモテロールとの組合せ、ブデソニドとモメタゾンとの組合せ、サルメテロールとフルチカゾンとの組合せ、グリコピロレートとホルモテロールとブデソニドとの組合せ、およびグリコピロレートとホルモテロールとモメタゾンとの組合せから選択される活性剤の組合せを含んでもよい。
【0074】
本開示を用いて、本明細書中で開示する懸濁剤中に多種多様な活性剤を組み込んでもよいことは当業者には明らかであろう。前記の活性剤リストは、例を目的としており、制限を目的としたものではない。
【0075】
懸濁粒子
本明細書に記載の共懸濁剤組成物中に含まれる懸濁粒子は、該組成物中に含まれる活性剤の安定化および送達を容易にするように機能する。多様な形態の懸濁粒子を使用してもよいが、懸濁粒子は、典型的には、吸入にとって許容でき、選択される噴射剤中で実質的に不溶性の薬理学的に不活性な物質から形成される。一般的に、大多数の懸濁粒子は、呼吸可能な範囲内のサイズになっている。したがって、特定の実施形態では、懸濁粒子のMMADは、約10μmを超えないであろうが、約500nmを下回らない。代替的な一実施形態では、懸濁粒子のMMADは約5μm〜約750nmである。また別の実施形態では、懸濁粒子のMMADは約1μm〜約3μmである。MDIからの経鼻送達のための一実施形態で使用される場合、懸濁粒子のMMADは10μm〜50μmである。
【0076】
記載したMMAD範囲内の呼吸可能な懸濁粒子を達成するには、懸濁粒子は、典型的には、約0.2μm〜約50μmの光学直径体積中央値を呈することになろう。一実施形態では、懸濁粒子は、約25μmを超えない光学直径体積中央値を呈する。別の実施形態では、懸濁粒子は、約0.5μm〜約15μm、約1.5μm〜約10μm、および約2μm〜約5μmから選択される光学直径体積中央値を呈する。
【0077】
本記載による組成物中に含まれる懸濁粒子の濃度は、たとえば、使用する活性剤粒子および懸濁媒体の量に応じて調節できる。一実施形態では、懸濁粒子は、約1mg/ml〜約15mg/ml、約3mg/ml〜約10mg/ml、5mg/ml〜約8mg/ml、および約6mg/mlから選択される濃度で懸濁媒体中に含まれる。別の実施形態では、懸濁粒子は、最大約30mg/mlの濃度で懸濁媒体中に含まれる。また別の実施形態では、懸濁粒子は、最大約25mg/mlの濃度で懸濁媒体中に含まれる。
【0078】
懸濁粒子対活性剤粒子の相対量は、本明細書中で企図されるとおりの共懸濁剤を達成するように選択される。質量により測定した場合の懸濁粒子の量が活性剤粒子の量を超える共懸濁剤組成物を達成してもよい。たとえば、特定の実施形態では、懸濁粒子の全質量対活性剤粒子の全質量の比率は、約3:1〜約15:1、または代替的には約2:1〜8:1であってもよい。あるいは、懸濁粒子の全質量対活性剤粒子の全質量の比率は約1を超えてもよい(使用する懸濁粒子および活性剤粒子の性質に応じ、最大約1.5、最大約5、最大約10、最大約15、最大約17、最大約20、最大約30、最大約40、最大約50、最大約60、最大約75、最大約100、最大約150および最大約200など)。さらなる実施形態では、懸濁粒子の全質量対活性剤粒子の全質量の比率は、約10〜約200、約60〜約200、約15〜約60、約15〜約170、約15〜約60、約16、約60および約170から選択してもよい。
【0079】
他の実施形態では、質量により測定した場合の懸濁粒子の量は、活性剤粒子の量を下回る。たとえば、特定の実施形態では、懸濁粒子の質量は、活性剤粒子の全質量の20%に相当するほど低くてもよい。しかし、いくつかの実施形態では、懸濁粒子の全質量は、活性剤粒子の全質量に近似しているか、または等しくてもよい。
【0080】
本明細書に記載の組成物中での使用に適した懸濁粒子を、吸入送達に適しており懸濁媒体中で実質的に分解または溶解しない1つまたは複数の薬学的に許容できる物質または添加剤から形成してもよい。一実施形態では、本明細書中で定義するとおりの有孔微細構造体を懸濁粒子として使用してもよい。本明細書に記載の懸濁粒子の製剤において使用してもよい例示的な添加剤としては以下:(a)炭水化物、たとえば、単糖(フルクトース、ガラクトース、グルコース、D−マンノース、ソルボースなど)、二糖(ショ糖、乳糖、トレハロース、セロビオースなど)、シクロデキストリン(2−ヒドロキシプロピル−β−シクロデキストリンなど)、および多糖(ラフィノース、マルトデキストリン、デキストラン、デンプン、キチン、キトサン、イヌリンなど)など、(b)アミノ酸(アラニン、グリシン、アルギニン、アスパラギン酸、グルタミン酸、システイン、リシン、ロイシン、イソロイシン、バリンなど)など、(c)有機酸および有機塩基から調製される金属塩および有機塩(クエン酸ナトリウム、アスコルビン酸ナトリウム、グルコン酸マグネシウム、グルコン酸ナトリウム、塩酸トロメタミンなど)など、(d)ペプチドおよびタンパク質(アスパルテーム、トリロイシン(trileucine)、ヒト血清アルブミン、コラーゲン、ゼラチンなど)など、(e)アルジトール(マンニトール、キシリトールなど)など、(f)合成もしくは天然のポリマーまたはその組合せ(ポリラクチド、ポリラクチドグリコリド、シクロデキストリン、ポリアクリレート、メチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ポリ酸無水物、ポリラクタム、ポリビニルピロリドン、ヒアルロン酸、ポリエチレングリコールなど)、ならびに(g)界面活性物質(飽和および不飽和の脂質、非イオン性界面活性剤、非イオン性ブロックコポリマー、イオン性界面活性物質およびそれらの組合せなどのフッ化化合物および非フッ化化合物を包含する)が挙げられるが、これらに限定されない。
【0081】
加えて、天然源および合成源の両方に由来するリン脂質を、本明細書に記載の組成物中での使用に適した懸濁粒子の調製において使用してもよい。特定の実施形態では、選ばれるリン脂質は、ゲルから液晶への相転移が約40℃超であろう。例示的なリン脂質は比較的長鎖(すなわち、C16〜C22)の飽和脂質であり、アシル鎖長が16Cまたは18C(パルミトイルおよびステアロイル)の飽和ホスファチジルコリンなどの飽和リン脂質を含んでもよい。例示的なリン脂質としては、以下:ジパルミトイルホスファチジルコリン、ジステアロイルホスファチジルコリン、ジアラキドイルホスファチジルコリン、ジベヘノイルホスファチジルコリン、ジホスファチジルグリセロール、短鎖ホスファチジルコリン、長鎖飽和ホスファチジルエタノールアミン、長鎖飽和ホスファチジルセリン、長鎖飽和ホスファチジルグリセロールおよび長鎖飽和ホスファチジルイノシトールなどのホスホグリセリドが挙げられる。追加的な添加剤は、国際特許公開第96/32149号および米国特許第6,358,530号、同第6,372,258号および同第6,518,239号に開示されている。
【0082】
特定の実施形態では、懸濁粒子は、本明細書に記載のとおりの1つまたは複数の脂質、リン脂質または糖を用いて形成してもよい。いくつかの実施形態では、懸濁粒子は、1つまたは複数の界面活性物質を含む。1つまたは複数の界面活性物質から形成されまたはそれらを組み込んでいる懸濁粒子を使用すると、選択された活性剤の吸収を促進し、それにより生体利用率を高めることができる。本明細書に記載の懸濁粒子(たとえば、1つまたは複数の脂質を用いて形成された懸濁粒子など)は、所望の表面粗度(粗さ)を呈するように形成でき、これにより、粒子間の相互作用をさらに低下させ、粒子−粒子相互作用に利用可能な表面積を減少させることによりエアロゾル化を改善できる。さらなる実施形態では、適当な場合、肺中に自然に存在する脂質を懸濁粒子の形成において使用できると考えられるが、その理由は、そのような懸濁粒子は、オプソニン化を低下させる(および、それにより、肺胞のマクロファージによる貪食を低下させる)ことから、肺中でより長寿命の制御放出粒子をもたらす可能性を有するからである。
【0083】
別の態様では、本明細書に記載の組成物中で利用される懸濁粒子は、国際特許公開第2005/000267号で開示されているものと同様に、選択された活性剤の保管安定性を増すように選択してもよい。たとえば、一実施形態では、懸濁粒子は、Tgが少なくとも55℃、少なくとも75℃または少なくとも100℃の薬学的に許容できるガラス安定化用添加剤を含んでもよい。本明細書に記載の組成物中での使用に適したガラス形成剤としては以下:トリロイシン、クエン酸ナトリウム、リン酸ナトリウム、アスコルビン酸、イヌリン、シクロデキストリン、ポリビニルピロリドン、マンニトール、ショ糖、トレハロース、乳糖およびプロリンのうち1つまたは複数が挙げられるが、これらに限定されない。追加的なガラス形成用添加剤の例は、米国特許第RE37,872号、同第5,928,469号、同第6,258,341号および同第6,309,671号に開示されている。特定の実施形態では、懸濁粒子は、たとえば米国特許第7,442,388号に記載のように、塩化カルシウムなどのカルシウム塩を含んでもよい。
【0084】
懸濁粒子は、望ましい安定性および活性剤送達特徴をもたらすように、所望により設計、サイズ加工および成形してもよい。例示的な一実施形態では、懸濁粒子は、本明細書に記載のとおりの有孔微細構造体を含む。有孔微細構造体を本明細書に記載の組成物中の懸濁粒子として使用する場合、該構造体は、本明細書に記載のとおりの1つまたは複数の添加剤を使用して形成してもよい。たとえば、特定の実施形態では、有孔微細構造体は、以下:脂質、リン脂質、非イオン性界面活性剤、非イオン性ブロックコポリマー、イオン性界面活性物質、生体適合性フッ素系界面活性物質およびそれらの組合せ、とりわけ、肺での使用について認可されているもののうち少なくとも1つを含んでもよい。有孔微細構造体の調製において使用してもよい特定の界面活性物質としては、ポロキサマー188、ポロキサマー407およびポロキサマー338が挙げられる。他の特定の界面活性物質としては、オレイン酸またはそのアルカリ塩が挙げられる。一実施形態では、有孔微細構造体は、約10%w/w超の界面活性物質を含む。
【0085】
いくつかの実施形態では、懸濁粒子は、フルオロカーボン油(たとえば、臭化ペルフルオロオクチル、ペルフロオロデカリン)を使用して水中油エマルションを形成することにより調製してもよく、フルオロカーボン油は、長鎖飽和リン脂質などの界面活性物質を用いて乳化させたものであってもよい。次に、その結果得られる水中ペルフルオロカーボンエマルションを、高圧ホモジナイザーを用いて加工して、油小滴のサイズを小さくしてもよい。有孔微細構造体のマトリックス内に活性剤を含むことが望ましい場合には、ペルフルオロカーボンエマルションを、任意選択的に活性剤溶液と共に噴霧乾燥機に投入してもよい。周知のとおり、噴霧乾燥は、液体の供給原料を乾燥微粒子形態に転換させる1ステッププロセスである。噴霧乾燥は、多様な投与経路(吸入など)のための粉末状医薬物質を得るために使用されている。噴霧乾燥機の運転条件(入口および出口の温度、供給速度、霧化圧、乾燥用空気の流速およびノズル構成など)を調節して、結果的に得られる乾燥微細構造体の収率をもたらす所望の粒子サイズを得ることができる。例示的な有孔微細構造体を作製するそのような方法は、Weersらに付与された米国特許第6,309,623号に開示されている。
【0086】
本明細書に記載のとおりの有孔微細構造体は、凍結乾燥およびそれに次ぐ製粉または微粉化により形成することもできる。凍結乾燥は、組成物を凍結させた後、組成物から水を昇華させる凍結乾燥プロセスである。このプロセスは、高温を用いずに乾燥させることが可能である。またさらなる実施形態では、懸濁粒子は、米国特許第5,727,333号に開示されているような噴霧凍結乾燥プロセスを用いて作製してもよい。
【0087】
さらに、本明細書に記載のとおりの懸濁粒子は、増量剤(ポリマー性粒子など)を含んでもよい。ポリマー性ポリマーは、生体適合性および/または生分解性のポリマー、コポリマーまたはブレンドから形成してもよい。一実施形態では、空気力学的に軽い粒子を形成することが可能なポリマー(官能化ポリエステルグラフトコポリマーおよび生分解性のポリ酸無水物など)を使用してもよい。たとえば、ポリエステルベースのバルク侵食ポリマー(ポリ(ヒドロキシ酸)など)を使用できる。ポリグリコール酸(PGA)、ポリ乳酸(PLA)またはそれらのコポリマーを使用して懸濁粒子を形成してもよい。ポリエステルは、荷電基または官能化可能な基(アミノ酸など)を含んでもよい。たとえば、懸濁粒子は、DPPCなどの界面活性物質を組み込んでいる、ポリ(D,L−乳酸)および/またはポリ(D,L−乳酸−co−グリコール酸)(PLGA)から形成してもよい。
【0088】
懸濁粒子中で使用するための他の潜在的なポリマー候補としては、以下:ポリアミド、ポリカーボネート、ポリアルキレン(ポリエチレン、ポリプロピレン、ポリ(エチレングリコール)、ポリ(エチレンオキシド)、ポリ(エチレンテレフタレート)など)、ポリビニル化合物(ポリビニルアルコール、ポリビニルエーテルおよびポリビニルエステルなど)、アクリル酸およびメタクリル酸のポリマー、セルロースおよび他の多糖、ならびにペプチドもしくはタンパク質、またはそのコポリマーもしくはブレンドを挙げることができる。ポリマーは、異なる制御薬物送達用途のために、インビボでの適切な安定性および分解速度で選択しても、またはそれらを有するように改変してもよい。
【0089】
グリコピロレート、フルチカゾン、モメタゾンおよびブデソニドのうち1つまたは複数を活性剤として含む本明細書に記載のとおりの組成物の一実施形態では、懸濁粒子の全質量対活性剤粒子の全質量の比率は、約1〜約20、約2.5〜約15、および約2.5〜約10から選択してもよい。フルチカゾン、モメタゾンおよびブデソニドのうち1つまたは複数を活性剤として含む本明細書に記載のとおりの組成物の一実施形態では、懸濁粒子の全質量対活性剤粒子の全質量の比率は、約1〜約15、約1.5〜約10、および約2.5〜約8から選択してもよい。記載のとおりの組成物の別の実施形態では、該組成物がサルメテロールを活性剤として含む場合、懸濁粒子の全質量対活性剤粒子の全質量の比率は、約10〜約30、約15〜約25、および約20から選択してもよい。またさらなる一実施形態では、本明細書に記載のとおりの組成物がホルモテロールを活性剤として含む場合、懸濁粒子の全質量対活性剤粒子の全質量の比率は、約10〜約200、約50〜約125、約5および約50、約1〜約15、約1.5〜約10、および約2.5〜約8から選択してもよい。
【0090】
本明細書に記載の組成物は、2種以上の懸濁粒子を含んでもよい。たとえば、本明細書に記載の組成物は、単一種の活性剤粒子と2種以上の懸濁粒子とを含んでもよい。あるいは、他の実施形態では、本明細書に記載の組成物は、2種以上の懸濁粒子と組み合わせた2種以上の活性剤粒子を含んでもよい。さらには、本記載による組成物は、懸濁粒子中に組み込まれた1つまたは複数の活性剤を含む懸濁粒子を含むことができる。活性剤を懸濁粒子中に組み込む場合、懸濁粒子は、呼吸できるサイズのものであると考えられ、たとえば、活性剤粒子、懸濁粒子に関して本明細書に記載の方法および物質、ならびに提供される実験的な実施例を用いて製剤化および作製できる。
【0091】
本教示により製剤化される組成物は、その中に含まれる活性剤の分解を阻害できる。たとえば、特定の実施形態では、本明細書に記載の組成物は、該組成物中に含まれる活性剤物質の凝固、凝集および溶液媒介転移のうち1つまたは複数を阻害する。本明細書に記載の医薬組成物は、強力なおよび高度に強力な活性剤を含む組合せを用いた場合でも、2つ以上の活性剤の組合せ中に含まれる各活性剤の望ましい送達用量均一性(「DDU」)を達成する方式でのMDIによる呼吸器送達に適している。本明細書中に含まれる実施例において詳細に例証するように、非常に低用量の2つ以上の活性剤を送達する場合でも、本明細書に記載の組成物は、MDI缶が空になるまで、各活性剤について±30%またはより良好なDDUを達成できる。そのような一実施形態では、本明細書に記載の組成物は、MDI缶が空になるまで、各活性剤について±25%またはより良好なDDUを達成する。また別のそのような実施形態では、本明細書に記載の組成物は、MDI缶が空になるまで、各活性剤について±20%またはより良好な、活性剤のDDUを達成する。
【0092】
本明細書に記載の医薬組成物は、加速分解条件にさらされた後であっても、MDI缶が空になるまで、FPFおよびFPDの成績を実質的に維持するようにも機能する。たとえば、本記載による組成物は、加速分解条件にさらされた後であっても、MDI缶が空になるまで、元のFPFおよびFPDの成績の80%、90%、95%以上に相当するほどの高さを維持する。本明細書に記載の組成物は、非CFC噴射剤を用いて製剤化されていてもそのような成績を達成し、多数の活性剤を組み込んでいる組成物でしばしば経験される組合せ効果を排除または実質的に回避するという付加利益を提供する。特定の実施形態では、本明細書に記載の組成物は、1つのみまたは複数の非CFC噴射剤を含む懸濁媒体を用いて製剤化されていても、目標となるDDU、FPFまたはFPDの成績のうちの1つまたは全てを達成し、たとえば、1つまたは複数の共溶媒、貧溶媒、可溶化剤、アジュバントまたは他の噴射剤改変物質の添加によるなど、非CFC噴射剤の特徴を改変する必要はない。
【0093】
方法
本教示に従って製剤化した組成物は、その中に含まれる活性剤の分解を阻害できる。たとえば、特定の実施形態では、本明細書に記載の組成物は、該組成物中に含まれる活性剤(複数可)の凝固、凝集およびオストワルド熟成のうち1つまたは複数を阻害する。本明細書に記載の組成物によりもたらされる安定性は、送達すべき活性剤が高度に強力であり、活性剤の送達用量が、たとえば、MDIの1作動当たり100μg、80μg、40μg、20μg、10μg、9μg、8μg、7μg、6μg、5μg、4μg、3μg、2μg、1μg、0.5μgおよび0.1μgのうち1つより少ないものから選択される場合でも、MDI缶が空になるまで望ましい送達用量均一性(「DDU」)を達成する方式で該組成物を分配させることが可能になる。本明細書中に含まれる実施例において詳細に記載するように、低用量の高度に強力な活性剤であっても、本明細書に記載の組成物は、該組成物中に含まれる各活性剤について±30%またはより良好なDDUを達成できる。代替的な一実施形態では、本明細書に記載の組成物は、該組成物中に含まれる各活性剤について±25%またはより良好なDDUを達成する。また別の実施形態では、本明細書に記載の組成物は、該組成物中に含まれる各活性剤について±20%またはより良好なDDUを達成する。
【0094】
さらに、本記載による組成物は、加速分解条件にさらされた後であっても、MDI缶が空になるまで、FPFおよびFPDの成績を実質的に維持するように機能する。たとえば、本記載による組成物は、多数の活性剤を組み込んでいても、元のFPFおよびFPDの成績の80%、90%、95%またはそれ以上に相当するほどの高さを維持する。本明細書に記載の組成物は、非CFC噴射剤を用いて製剤化されていてもそのような成績を達成するという付加利益を提供する。特定の実施形態では、本明細書に記載の組成物は、1つのみまたは複数の非CFC噴射剤を含む懸濁媒体を用いて製剤化されていても、目標となるDDU、FPFおよびFPDの成績のうち所望の1つまたは全てを達成し、たとえば、1つまたは複数の共溶媒、貧溶媒、可溶化剤、アジュバントまたは他の噴射剤改変物質の添加によるなど、非CFC噴射剤の特徴を改変する必要はない。
【0095】
本明細書に記載の組成物の安定性および物理的特徴は、いくつかの方法を支持する。たとえば、一実施形態では、活性剤を呼吸器送達するための医薬組成物を製剤化する方法が本明細書中で提供される。この方法は、本明細書に記載のとおりの、懸濁媒体と、1種または複数種の活性剤粒子と、1種または複数種の懸濁粒子とを供給するステップ、および、そのような成分を組み合わせて、活性剤粒子が懸濁粒子と会合して懸濁媒体内で懸濁粒子と同一場所に位置する組成物を形成することから本明細書に記載のとおりの共懸濁剤が形成されるステップを含む。そのような一実施形態では、活性剤粒子と懸濁粒子との会合は、噴射剤中での浮力が異なることからこれらの粒子が分離しないようなものである。理解されるであろうが、本明細書に記載のとおりの医薬組成物を製剤化する方法は、2種以上の活性剤粒子を1種または複数種の懸濁粒子と組み合わせて供給することを含むことができる。あるいは、この方法は、2つ以上の懸濁粒子を、1種または複数種の活性剤粒子と組み合わせて供給することを含んでもよい。
【0096】
さらなる実施形態では、本明細書に記載の組成物は、たとえば、肺送達用の活性剤の安定化した製剤を形成する方法、MDI缶が空になるまでFPFおよび/またはFPDを維持する方法、強力なもしくは高度に強力な活性剤を肺送達する方法、ならびに、肺送達により投与される強力なおよび高度に強力な薬物について、±30%もしくはより良好な、±25%もしくはより良好な、および±20%もしくはより良好なものから選択されるDDUを達成する方法を支持する。
【0097】
本明細書に記載の組成物を用いた活性剤の肺送達を含む方法では、本組成物は、MDIにより送達してもよい。したがって、そのような方法の特定の実施形態では、本明細書に記載の組成物を入れたMDIを入手し、所望の活性剤を、MDIの作動を介した肺送達により患者に投与する。たとえば、一実施形態では、MDI器具を振った後、マウスピースを患者の口の中(口唇と歯との間)に挿入する。患者は、典型的には、大きく息を吐き出して肺を空にしてから、MDIのカートリッジを作動させながらゆっくり深呼吸する。作動すると、特定の体積の製剤が作動装置ノズルの外の膨張室に移動して高速スプレーとなり、これが、患者の肺の中に吸い込まれる。一実施形態では、MDI缶が空になるまで送達される活性剤の用量は、平均送達用量の20%を超えて上回らず、平均送達用量の20%減を下回らない。
【0098】
肺送達用の活性剤を安定化させた製剤を供給する方法の特定の実施形態では、本開示は、肺送達用の医薬製剤中の活性剤の溶液媒介転移を阻害する方法を提供する。一実施形態では、本明細書に記載のとおりの懸濁媒体(HFA噴射剤により形成される懸濁媒体など)を入手する。懸濁粒子も、本明細書に記載のとおりに入手または調製する。1種または複数種の活性剤粒子も本明細書に記載のとおりに入手し、懸濁媒体と懸濁粒子と活性剤粒子とを合わせて、活性剤粒子が懸濁粒子と会合して、懸濁媒体により形成される連続相内で懸濁粒子と同一場所に位置する共懸濁剤を形成する。懸濁粒子不在下での同じ懸濁媒体中に含有された活性剤と比較した場合、本記載による共懸濁剤は、溶液媒介転移および不可逆的な結晶凝集へのより高い耐性を呈し、したがって、安定性および投与均一性の改善につながる可能性があることが見出されており、このことから、懸濁媒体単独中では、いくらか物理的に不安定な活性剤の製剤化が可能になる。
【0099】
肺送達のための医薬製剤によりもたらされるFPFおよび/またはFPDを維持する方法の特定の実施形態では、MDI缶が空になるまで、該FPDおよび/または該FPFを、それぞれ最初のFPDおよび/またはFPFの±20%以内、±10%以内またはさらには±5%以内に維持することが可能な、本明細書に記載のとおりの呼吸可能な共懸濁剤が提供される。そのような成績は、共懸濁剤が加速分解条件にさらされた後であっても、達成できる。一実施形態では、本明細書に記載のとおりの懸濁媒体(HFA噴射剤により形成される懸濁媒体など)を入手する。懸濁粒子も、本明細書に記載のとおりに入手または調製する。1種または複数種の活性剤粒子も本明細書に記載のとおりに入手し、懸濁媒体と懸濁粒子と活性剤粒子とを合わせて、活性剤粒子が懸濁粒子と会合し懸濁媒体内で懸濁粒子と同一場所に位置する共懸濁剤を形成する。そのような組成物を1つまたは複数の温度サイクリング事象に曝露した後でも、共懸濁剤は、該組成物を1つまたは複数の温度サイクリング事象に曝露する前に測定したそれぞれの値の±20%以内、±10%以内またはさらには±5%以内のFPDまたはFPFを維持する。
【0100】
炎症性または閉塞性の肺疾患または状態に罹患している患者を治療する方法が本明細書中で提供される。特定の実施形態では、そのような方法は、本明細書に記載の治療上有効量の医薬組成物の肺送達を含み、一定のそのような実施形態では、該医薬組成物の肺投与は、MDIを用いて該組成物を送達することにより達成される。一定の実施形態では、本明細書に記載の組成物、方法および系を使用して、以下:喘息、COPD、他の薬物療法の結果生じる気道過反応性の増悪、アレルギー性鼻炎、副鼻腔炎、肺血管収縮、炎症、アレルギー、呼吸障害、呼吸窮迫症候群、肺高血圧症、肺血管収縮、および、たとえば、LAMA、LABA、コルチコステロイドまたは本明細書に記載のとおりの他の活性剤の投与(単独であるか他の療法との組合せであるかを問わない)に応答する可能性のある任意の他の呼吸器の疾患、状態、形質、遺伝子型または表現型から選択される疾患または障害に罹患している患者を治療することができる。一定の実施形態では、本明細書に記載の組成物、系および方法を使用して、嚢胞性線維症に伴う肺の炎症および閉塞を治療することができる。炎症性または閉塞性の肺疾患または状態に罹患している患者を治療する方法の特定の実施形態では、肺疾患または状態は、本明細書に具体的に記載するものから選択され、この方法は、本記載による共懸濁剤組成物をMDIにより患者に肺送達することを含み、この場合、そのような組成物の肺送達は、本明細書中で開示する共懸濁剤組成物に関して記載されているとおりの用量または用量範囲で1つまたは複数の活性剤を投与することを含む。
【0101】
定量噴霧式吸入器系
本明細書中で提供される方法に関して記載するように、本明細書中で開示する組成物はMDI系において使用してもよい。MDIは、エアロゾル形態の特定の量の医薬を送達するように構成される。一実施形態では、MDI系は、マウスピースと共に形成された作動装置中に配置された、加圧された液相製剤の充填された缶を備える。MDI系は、懸濁媒体と、少なくとも1種の活性剤粒子と、少なくとも1種の懸濁粒子とを含む本明細書に記載の製剤を含んでもよい。MDIにおいて使用される缶は、任意の適当な構成のいずれかであってもよく、例示的な一実施形態では、缶の体積は、約5mL〜約25mLの範囲(たとえば、19mLの体積を有する缶など)であってもよい。器具を振った後、マウスピースを患者の口の中(口唇と歯との間)に挿入する。患者は、典型的には、大きく息を吐き出して肺を空にしてから、カートリッジを作動させながらゆっくり深呼吸する。
【0102】
例示的なカートリッジの内側には、規定の体積の製剤(たとえば63μl、または、市販の定量バルブ中で得られる任意の他の適当な体積)を保持することが可能な計量室を備える定量バルブがあり、この製剤は、作動時にバルブ軸の遠位端にある膨張室中に放出される。作動装置は缶を保持し、定量バルブのバルブ軸を受けるための、作動装置ノズルの付いたポートを備えていることもある。作動すると、特定の体積の製剤が作動装置ノズルの外の膨張室に移動して高速スプレーとなり、これが、患者の肺の中に吸い込まれる。
【0103】
本明細書中に含まれる具体的な実施例は、例証目的のみのものであり、本開示への限定とみなされるべきではない。さらに、本明細書中で開示する組成物、系および方法をその一定の実施形態と関連させて説明してきており、多くの詳細を例証の目的で記載してきているが、当業者には、本発明は追加的な実施形態を受け入れる余地があること、および、本明細書に記載の詳細のうち一定のものは、本発明の基本的な原理から逸脱することなく変更できることは明らかであろう。以下の実施例において使用するいずれの活性剤および試薬も、市販されているか、または、本明細書で提供された教示を得ることで、当業者による標準的な文献手順により調製できるか、そのいずれかである。本明細書中で参照する全ての刊行物、特許および特許出願の全内容は、参照により本明細書に組み込まれる。
【実施例】
【0104】
[実施例1]
グリコピロレート(ピロリジニウム,3−((シクロペンチルヒドロキシフェニルアセチル)オキシ)−1,1−ジメチル−ブロミド)から形成される活性剤粒子を、ジェットミルを用いてグリコピロレートを微粉化することにより形成した。微粉化されたグリコピロレート(GP)の粒子サイズ分布をレーザー回折により定量した。この微粉化された粒子の50体積%は2.1μm未満の光学直径を呈し、90体積%は5μm未満であった。
【0105】
懸濁粒子を以下のように製造した。500mLの、リン脂質により安定化させたPFOB(臭化ペルフルオロオクチル)の水中フルオロカーボンエマルションを調製した。18.7gのリン脂質、DSPC(1,2−ジステアロイル−sn−グリセロ−3−ホスホコリン)および1.3gの塩化カルシウムを、高せん断ミキサーを用いて400mLの湯(75℃)の中でホモジナイズした。ホモジナイゼーションの間、100mLのPFOBをゆっくり加えた。次に、その結果得られる粗いエマルションを、高圧ホモジナイザー(モデルC3、Avestin、Ottawa、CA)を5パスにわたり最大170MPaの圧力で用いてさらにホモジナイズした。
【0106】
このエマルションを、以下の噴霧乾燥条件:入口温度95℃、出口温度72℃、エマルション供給速度2.4mL/分、総気体流速525L/分を用いて窒素中で噴霧乾燥させた。懸濁粒子の粒子サイズ分布をレーザー回折により定量した。懸濁粒子の50体積%は2.9μm未満であり、該分布の幾何標準偏差は1.8であった。
【0107】
定量噴霧式吸入器を、目標質量の微粉化されたGP粒子および懸濁粒子を体積19mLのフッ化エチレンポリマー(FEP)被覆したアルミニウム缶(Presspart、Blackburn、UK)中に計り入れることにより調製した。目標質量および目標送達用量(20%が作動装置に堆積すると仮定)を、5つの異なる構成物(構成1A〜1CはGP粒子と懸濁粒子とから成る異なる懸濁剤を表し、構成1DはGP粒子単独を表し、構成1Eは懸濁粒子単独を表す)について表1に示す。この缶を63μlバルブ(#BK357、Bespak、King’s Lynn、UK)でクリンプシールし、バルブ軸を通した過圧により12.4gのHFA134a(1,1,1,2−テトラフルオロエタン)(Ineos Fluor、Lyndhurst、UK)を充填した。噴射剤の注入後、缶を15秒間超音波処理して、リストアクション振盪機で30分間撹拌した。缶に、0.3mmの開口部のあるポリプロピレン製作動装置(#BK636、Bespak、King’s Lynn、UK)を取り付けた。懸濁剤の特性の目視観察用の追加的な吸入器を、ガラスバイアルを用いて調製した。
【0108】
【表1】

【0109】
エアロゾル性能は、製造した後すぐに、USP<601>(合衆国薬局方モノグラフ601)に従って調べた。流速30L/分で運転するNext Generation Impactor(NGI)を粒子サイズ分布の定量に使用した。試料缶を作動装置中に設置し、2回の空作動およびさらに2回の呼び水用空作動を行った。5回の作動分を、USPスロートの付いたNGI中で回収した。バルブ、作動装置、スロート、NGIカップ、ステージおよびフィルターを、体積測定して分配した溶媒ですすいだ。試料溶液を、薬物特異的なクロマトグラフィー法を用いてアッセイした。フィルターを通ったステージ3の合計分を用いて微細粒子分率を定義した。USP<601>に記載されているように、用量均一性サンプリング装置を用いて、使用を通じた送達用量均一性試験を実施した。前述のように、吸入器を設置し、呼び水作業を行った。使用の開始時点、中間時点および終了時点で、2回の作動分を回収し、アッセイした。
【0110】
共懸濁させた構成物(1A、1B、1C)の目視観察では、薬物結晶の沈降は示されなかった。懸濁剤はゆっくり凝固し、単独で懸濁させた懸濁粒子を含む対照構成1Eに似た、均質な単一のクリーム層を形成した。これに対し、微粉化されたGP粒子単独(構成1D)は急速に凝固および沈降した。構成1Bでは、35gで20分間の遠心分離の後でも、懸濁粒子からのGP粒子の分離の徴候は示されなかった。最大200gで遠心分離したときも、同じ結果が観察された(すなわち、GP粒子の分離はなかった)。構成1C(懸濁濃度が低い)では、35gで20分間の遠心分離の後、沈殿する小量のGP結晶が示された。
【0111】
共懸濁させた構成物は目標の10%以内の送達用量を達成したが、単独で懸濁させたGP粒子は、目標を著しく下回る範囲で、送達用量のはるかに高いばらつきを示した。構成1Dに対する微細粒子分率は、50%超改善された。共懸濁させた構成物のMMADは、許容できるものであり、懸濁粒子の懸濁濃度に依存していた。使用を通じた送達用量均一性を構成1Bおよび1Cについて試験した。全ての個々の送達用量は平均の±20%以内であった。この結果から、GP粒子を形成する薬物結晶が懸濁粒子と会合し、共懸濁剤が形成され、共懸濁剤のエアロゾル性能は大部分が懸濁粒子により決定したことが示された。
【0112】
GP結晶と懸濁粒子との間の会合は、GP結晶が有孔微細構造体から分離せず、該結晶の沈殿が阻害されることが観察されたとおり、浮力を克服するだけ十分に強かった。
【0113】
[実施例2]
グリコピロレート(GP)粒子は、ジェットミルを用いた微粉化により形成した。懸濁粒子を実施例1に記載のように製造した。微粉化されたGPの粒子サイズ分布をレーザー回折により定量した。この微粉化された粒子の50体積%は1.7μm未満の光学直径を呈し、90体積%は4.1μm未満の光学直径を呈した。5つの異なるロットの定量噴霧式吸入器を作製した。構成2A、2Bおよび2Cについては、供給原料中のDSPC、CaClおよびGPの総濃度は40mg/mL、構成2Dおよび2Eについては、この濃度は2倍であった。
【0114】
定量噴霧式吸入器は、実施例1に記載のように、目標質量のGP粒子および懸濁粒子を缶中に計り入れることにより調製した。さらなる添加剤は使用しなかった。目標質量をGP粒子については4mg/缶、懸濁粒子については60mg/缶とした結果、構成2Aおよび2Dについては、懸濁粒子対GP粒子の比率は15となった。目標質量をGP粒子については5.1mg/缶、懸濁粒子については51mg/缶とした結果、構成2Bについては、懸濁粒子対GP粒子の比率は10となった。目標質量をGP粒子については8mg/缶、懸濁粒子については60mg/缶とした結果、構成2Cおよび2Eについては、懸濁粒子対GP粒子の比率は7.5となった。噴射剤および容器施栓系は、実施例1に記載のとおりであった。
【0115】
GP結晶を缶中のHFA134a中に加圧下で置き、3週間室温で平衡化させて、噴射剤中でのその溶解性を定量した。試料は、周囲温度での加圧下、孔の幅が0.22μmのフィルターを通して濾過した。濾液を蒸発させ、GPをメタノールに溶解して、クロマトグラフィーにより分析した。0.17±0.07μg/gの溶解性が認められた。この値を用いて、缶中に存在する2.1μgまたは0.05%のGPが噴射剤に溶解したと決定した。先行論文では、噴射剤中の測定可能な溶解性を有する微結晶性の物質は溶液媒介転移により物理的に安定にならないこと[N.C.Miller、The Effects of Water in Inhalation Suspension Aerosol Formulations、収録先:P.A.Byron編、Respiratory Drug Delivery、CRC Press、1990、250頁]、または、0.1μg/gを超える溶解性を有する活性剤は、アジュバントを用いて製剤化して溶液媒介転移を防止すべきであること[P.Rogueda、Novel Hydrofluoroalkane Suspension Formulations for Respiratory Drug Delivery、Expert Opin.Drug Deliv.、2、625〜638頁、2005]が教示されている。
【0116】
充填済の定量噴霧式吸入器を、オーバーラップをせずに、2つの異なる条件:1)5℃で冷蔵、および2)室温25℃/60%RHで、バルブを下げて保管した。実施例1に記載のとおりのエアロゾル性能および送達用量均一性の試験を、異なる時点で実施した。表2にまとめる結果は、冷蔵条件および室温条件での安定な微細粒子分率を示すものである。
【0117】
【表2】

【0118】
構成2Cおよび2Eを温度サイクリング試験に供した。缶を、総継続期間12週間にわたり、6時間ごとに−5℃および40℃の温度間に交互にさらした。微細粒子分率は、試験開始時点では、両方の構成について53%であった。サイクリングの12週後、FPFは変化しておらず、すなわち、構成2Cについては55%、構成2Eについては53%であった。
【0119】
使用を通じた送達用量均一性を、1カ月、2カ月および6カ月の時点で試験した。全ての個々の送達用量は平均の±20%以内であった。図1および2は、構成2Aおよび2Bそれぞれについて、NGIにより測定した場合のエアロゾルの粒子サイズ分布を示すものである。作動装置から、ならびに、誘導ポート(スロート)およびそのマウスピースアダプターから回収された薬物の量も示す。回収分の質量を名目用量の比率(%)として表す。構成2Aについては、空気力学的粒子サイズ分布の個々の反復測定結果を、4週、8週および12週の時点、ならびに、構成2Bについては8週、12週および24週の時点で示す。噴射剤に溶解させた懸濁GPの測定可能な画分は存在するものの、このサイズ分布の粗大化の証拠はない。さらに、これらの実施例により証拠付けられるように、適当な懸濁粒子対GPの比率での共懸濁剤のエアロゾル性能は、懸濁粒子により大部分が決定する。
【0120】
[実施例3]
いくつかの類似のバッチの懸濁粒子を、実施例1に記載のように作製した。この懸濁粒子を、2つの異なるタイプのジェットミルを多様な製粉パラメーターで用いて、異なる程度に微粉化されたグリコピロレート(GP)粒子と合わせた。微粉化されたGP粒子の光学直径および粒子サイズ分布をレーザー回折により定量した。表3は、使用した異なるロットの微粉化された物質についてのd50およびd90の値を記載するものである。d50およびd90は、粒子サイズ測定装置により報告された累積体積分布がそれぞれ50%および90%に達する時点の粒子サイズを表す。
【0121】
12個の異なるロットの定量噴霧式吸入器を、実施例1に記載のように調製した。全ての場合において、HFA134a中のGP粒子の懸濁濃度は0.32〜0.45mg/mLの範囲であり、懸濁粒子の懸濁濃度は5.8〜6.1mg/mLの範囲であった。構成は、この実施例において提示されるメタ分析用のデータをプールするのに十分類似しているとみなされた。
【0122】
充填済の定量噴霧式吸入器を、オーバーラップをせずに、2つの異なる条件:5℃で冷蔵、および、室温を25℃/60%RHで制御で、バルブを下げて保管した。実施例1に記載のとおりのエアロゾル性能試験を、異なる時点で実施した。結果は、12週の保管までは、時間の関数として、何ら統計的に有意な傾向を示さなかった。室温保管と冷蔵保管との間の差は認められなかった。したがって、微粉化された物質の粒子サイズ分布がエアロゾル性能にどのように影響するかを確認するために、異なるストレス条件および時点の結果をプールした。
【0123】
表3は、メタ分析のMMADの結果をまとめたものである。第1のカラムには、6つの異なる構成を記載してある。第2のカラムは、それぞれの構成についてデータの編集に個々のロットをいくつ使用したかを特定するものである。第3のカラムには、それぞれの構成について平均MMADを計算するために使用した個々のMMAD定量値の数を挙げてある。カラム4および5は、共懸濁剤を製造するために使用した微粉化された物質のd90およびd50を示すものである。結果は、粗いものから細かいものへ、d90値により並べ換えてある。最後の2つのカラムは、平均MMADおよび標準偏差を示す。
【0124】
【表3】

【0125】
この結果から、MMADは、微粉化された物質のd90にあまり依存していないことが示される。d50についての同様の分析からは、統計的に有意な傾向は示されなかった。微粉化された物質のサイズ分布の変化(たとえば、微粉化された物質のロットの違い、または溶液媒介転移により誘導される変化)は、定量噴霧式吸入器から排出されるエアロゾルのサイズ分布のわずかな差につながるにすぎないと結論付けることができる。
【0126】
[実施例4]
微粉化されたグリコピロレート(GP)粒子を、実施例1に記載のように形成し、試験した。微粉化されたGP粒子の光学直径を定量したところ、この微粉化されたGP粒子の50体積%は1.7μm未満であり、90体積%は3.8μm未満であった。
【0127】
5つのバッチの懸濁粒子を、実施例1に記載のように作製した。バッチは、噴霧乾燥前の供給エマルションの濃度(C)、およびPFOBの体積分率(VPFOB)が異なり、それぞれ、20mg/mL〜160mg/mL、および20%〜40%の範囲であった。異なる構成を表4に記載する。
【0128】
定量噴霧式吸入器を、目標質量の微粉化されたGP粒子および懸濁粒子を体積15mLの被覆したガラスバイアル中に計り入れることにより調製した。目標懸濁剤濃度および懸濁粒子対GPの比率を、試験した26個の異なるバイアルについて表4に示す。缶を63μlバルブ(Valois、Les Vaudreuil、フランス)でクリンプシールし、バルブ軸を通した過圧により10gまたは12gのHFA134a(1,1,1,2−テトラフルオロエタン)(Ineos Fluor、Lyndhurst、UK)を充填した。噴射剤の注入後、缶を15秒間超音波処理し、リストアクション振盪機で30分間撹拌した。
【0129】
実施例1に記載のように、単独で製剤化した微粉化されたGP粒子は急速に凝固および沈降した。この実施例におけるガラスバイアルは、撹拌せずに少なくとも24時間静置させてから、結晶、GP粒子が完全に共懸濁したかどうかを目視観察により試験した。表4中で「あり」と印を付けたバイアルについては、バイアルの底でGP粒子は観察されなかったが、ただし、いくつかのバイアル中では非常にわずかな異質な微粒子が観察された。ところどころ見られる異質な粒子は、懸濁粒子のみを充填したバイアル中でも、同様の非常に少ない量が視認できた。「部分的」と印を付けたバイアルについては、GP粒子の画分がバイアルの底で視認できた。
【0130】
【表4】

【0131】
[実施例5]
グリコピロレート(GP)粒子を、実施例1に記載のように、ジェットミルで微粉化し試験した。この微粉化された粒子の50体積%は1.7μm未満の光学直径を呈し、90体積%は4.4μm未満の光学直径を呈した。
【0132】
6つのバッチの懸濁粒子を、実施例1に記載のように噴霧乾燥により作製した。構成5Aは、エマルションから噴霧乾燥させた。構成5Bは、類似の様式で、ただし、ジパルミトイルホスファチジルコリン(DPPC)をDSPCの代わりに用いて製造した。構成5Cは、エタノール性溶液から噴霧乾燥させた。構成5D、5Eおよび5Fについては、糖を水溶液から噴霧乾燥させた。全ての構成についての噴霧乾燥パラメーターを表5aに示す。
【0133】
【表5】

【0134】
懸濁粒子の粒子サイズ分布をレーザー回折により定量した。光学直径体積中央値(VMD)および幾何標準偏差(GSD)を、異なる構成について表5bに示す。
【0135】
【表6】

【0136】
懸濁粒子の電子顕微鏡写真はさまざまな形態を示したので、これを図3にまとめた。エマルションから噴霧乾燥させた粒子(5Aおよび5B)は、有孔性が高く密度が低かった。エタノール性溶液から噴霧乾燥させたDSPC粒子(5C)は、はるかに小さい粒子サイズを示し、有孔性は顕著でなく、このことから高密度であることが示唆された。全ての糖からは、滑らかな粒子が作製され、有孔性は視認できなかった。構成5Eは、供給濃度が低いことから予想されたとおり、最も小さい粒子を有した。
【0137】
定量噴霧式吸入器を、4mgの微粉化されたGP粒子および60mgの懸濁粒子を体積15mLの被覆したガラスバイアル中に計り入れることにより調製した。缶を63μlバルブ(Valois DF30/63 RCU、Les Vaudreuil、フランス)でクリンプシールし、バルブ軸を通した過圧により9.5mLのHFA134a(Ineos Fluor、Lyndhurst、UK)を充填した。噴射剤の注入後、缶を15秒間超音波処理し、リストアクション振盪機で30分間撹拌した。懸濁粒子のみの入った追加的な吸入器を、各構成についての対照として製造した。
【0138】
実施例5A、5Bおよび5Cの懸濁粒子は、真密度が噴射剤より低い。これらの懸濁粒子はクリーム層を形成し、実施例4に記載のように共懸濁剤の存在について試験した。GP粒子は、構成5Aおよび5Bについてはバイアルの底で視認できなかった。構成5Cは、部分的な共懸濁剤を形成した。
【0139】
糖粒子は沈降するが、その理由は、糖は噴射剤より真密度が高いからである。しかし、糖構成物についての全ての対照バイアルは、微粉化されたGP粒子単独の場合より顕著に速い沈降速度を示した。構成5D、5Eおよび5Fにおいては、沈降速度は懸濁粒子のみの入った対照バイアルの沈降速度と同等であり、微粉化されたGP粒子単独の場合より速かったが、このことから、GP結晶と懸濁粒子とが会合していることが実証された。共懸濁剤は、これらの場合で形成された。図4は、この挙動の例を構成5Dについて示すものである。撹拌後1分、ガラスバイアルを観察した。共懸濁剤はすでに沈殿して透明な噴射剤層が残されたが、GP粒子単独を含有する対照においては、結晶の大部分は依然として噴射剤中に懸濁している。
【0140】
[実施例6]
グリコピロレート(GP)は、ジェットミルを用いて、光学直径体積中央値(d50)が1.4μm、累積的な分布の90%(d90)の体積光学直径が3.0μm未満になるまで微粉化した。懸濁粒子は、実施例1のものと同様に製造した。MDI缶は、FEP被覆した缶(Presspart、Blackburn、UK)を用いて製造して、計量用量が1作動当たり5.5μgのGPおよび1作動当たり44μgのGPを有する製品を得たが、この用量は、50μlのEPDMバルブ(Bespak、King’s Lynn、UK)からの1作動当たりおよそ4.5μgおよび1作動当たり36μgのGP送達用量と相関する。この製剤は、6mg/mLの懸濁粒子を含有していた。MDIの製造は、薬物添加容器(DAV)を用いて、まず、懸濁粒子量の半分を加え、次に、微結晶性のGPを充填し、最後に、残り半分の懸濁粒子を一番上に加えることにより達成された。10%RH未満の湿度制御環境下でこの容器に物質を加えた。次に、DAVを4Lの懸濁容器に接続し、HFA134a噴射剤を流してから混合した。バッチ作製全体を通して、容器内部の温度を21〜23℃で維持した。30分間のバッチ再循環後、バルブ経由で懸濁剤混合物を缶に充填した。次に、試料缶を、正確な製剤量を確実にするための缶の総合アッセイ用にランダムに選択した。次に、新しく製造した共懸濁剤MDIバッチを1週間隔離場所に置いてから、最初の製品性能分析を行った。加えて、各ロットからの缶を温度サイクリング安定性試験に供した。缶を、84サイクル(3週間)および168サイクル(6週間)の総継続期間について6時間ごとに−5℃および40℃の温度間に交互にさらした。
【0141】
各ロットを、カンの寿命を通じた送達用量均一性、および、USP<601>に従ったNext Generation Impactor(NGI)による空気力学的粒子サイズ分布について試験した。NGIにより測定した場合の当初のおよび温度サイクルにさらしてからの空気力学的粒子サイズ分布を図5および6に示す。さらに、バルブ軸および作動装置(作動装置と表示)から、ならびに誘導ポート(スロート)およびそのマウスピースアダプターから回収された薬物の量も示す。回収分の質量を名目用量の比率(%)として表す。168サイクルの後では、FPF(%)(作動装置を出た分)は、初期値と有意差はない。微細粒子分率の安定性をまとめたものを表6に示す。微細粒子分率は、168サイクルにわたり不変のままであったが、このことから、本明細書中で開示するGP共懸濁剤は、GP用量範囲にわたって安定であったことが示された。
【0142】
【表7】

【0143】
MDI缶の寿命を通じた送達用量を図7および8に示す。カンの使い始めから中間までの送達用量に変化は観察されず、缶の中間から使い終わりまでは約10%増加している。中間から使い終わりまでの変化は、カンが空になるに従って生じる噴射剤の蒸発損失に基づいて予測される。図7および8は、MDIが、1作動当たり4.5μgに相当するほどの低い用量について望ましい送達用量均一性を有することを実証する。
【0144】
[実施例7]
MDI缶は、実施例6に従って、6mg/mLの懸濁粒子濃度を有するように、また、50μlバルブ体積で1作動当たり36μgの計量用量がもたらされるように、製造した。微粉化されたGPのd50およびd90はそれぞれ1.6μmおよび4.1μmであり、懸濁粒子は、実施例1に記載のプロセスと同様に製造した。缶は、保護的な包装を用いず、25℃/60%RHの条件で保管し、12カ月の継続期間にわたり保管した。各ロットを、カンの寿命を通じた送達用量均一性、およびUSP<601>に従ったNext Generation Impactor(NGI)による空気力学的粒子サイズ分布について試験した。空気力学的粒子サイズ分布を、Next Generation Impactionにより、2週、1カ月、2カ月、3カ月、6カ月または12カ月の時点で定量した。最初のサンプリング時点での微細粒子分率(作動装置を出るGPの比率(%)として)は、50.2%であった。微細粒子分率の有意な変化は、25℃/60%RH、アルミニウムフォイルのオーバーラップなしの条件では、12カ月の保管を通じいずれの時点でも認められず、12カ月後のFPFは47.7%であった。図9は、安定性用試料のそれぞれについての空気力学的なサイズ分布全体を見るものであり、エアロゾル送達について望ましい一貫性が実証される。微細粒子分率をまとめたものを表7に示す。
【0145】
【表8】

【0146】
[実施例8]
1作動当たり36μgを含有するグリコピロレートMDI缶を、実施例6に記載のように調製し、乾燥剤を含有する熱シール型のアルミニウムフォイルのオーバーラップ中に包装し、6週間のサイクルにさらした(−5℃で6時間、40℃で6時間)。使用を通じたグリコピロレートの送達用量均一性を0週、2週、4週および6週の時点で試験した。各時期での各ロットの平均グリコピロレート送達用量は、1つ例外はあったが、図10において実証されたように平均の±15%以内であった。NGIにより測定した場合の空気力学的粒子サイズ分布は、図11に示すように、168回の温度サイクル後も変化しないままであった。
【0147】
[実施例9]
1作動当たり24μgを含有するグリコピロレートMDI缶を、実施例6に記載のように調製し、50℃、周囲湿度下で6週間保管した。別のロットは、40℃/75%相対湿度で8週間保管した。また別のロットは、40℃/75%相対湿度で12週間保管した。最初の微細粒子分率(FPF)は59.3%であった。50℃で6週間保管した缶のFPF(58.4%)は、初期値と比較して変化していなかった。40℃で保管したロットの当初のFPFは、8週間および12週間後変化していないままであり、FPFはそれぞれ56.8%および57.6%であった。NGIにより測定した場合の空気力学的粒子サイズ分布を図12に示す。MMADは、50℃で6週間後、比較的変化しないままの3.94μmであり、40℃で12週間まででは3.84μmであり、これに対し、初期値は3.54μmである。加えて、バルブ軸および作動装置から、ならびに誘導ポート(スロート)およびそのマウスピースアダプターから回収されたグリコピロレートのFPFおよび量は、図12に示すように、高温で3カ月にわたり比較的変化しないままであった。
【0148】
[実施例10]
本明細書に記載のとおりのフマル酸ホルモテロールの医薬組成物を備える定量噴霧式吸入器を調製した。フマル酸ホルモテロール、すなわち(±)−2−ヒドロキシ−5−[(1RS)−1−ヒドロキシ−2−[[(1RS)−2−(4−メトキシフェニル)−1−メチルエチル]−アミノ]エチル]ホルムアニリドフマレート、別名(±)−2’−ヒドロキシ−5’−[(RS)−1−ヒドロキシ−2−[[(RS)−p−メトキシ−α−メチルフェネチル]−アミン]エチル]ホルムアニリドフマレート、二水和物を微粉化して、活性剤粒子を形成した。微粉化されたフマル酸ホルモテロール(FF)の粒子サイズ分布をレーザー回折により定量した。この微粉化された粒子の50体積%は1.6μm未満の光学直径を呈し、90体積%は3.9μm未満の光学直径を呈した。
【0149】
懸濁粒子を以下のように製造した。503mLの、リン脂質により安定化させたPFOB(臭化ペルフルオロオクチル)の水中フルオロカーボンエマルションを調製した。20.6gのリン脂質、DSPC(1,2−ジステアロイル−sn−グリセロ−3−ホスホコリン)および1.9gの塩化カルシウムを、高せん断ミキサーを用いて403mLの湯(75℃)の中でホモジナイズした。ホモジナイゼーションの間、100mLのPFOBをゆっくり加えた。次に、その結果得られる粗いエマルションを、高圧ホモジナイザー(モデルC3、Avestin、Ottawa、CA)を5パスにわたり最大170MPaの圧力で用いてさらにホモジナイズした。
【0150】
このエマルションを、以下の噴霧乾燥条件:入口温度95℃、出口温度71℃、エマルション供給速度2.4mL/分、総気体流速498L/分を用いて窒素中で噴霧乾燥させた。懸濁粒子の粒子サイズ分布をレーザー回折により定量した。懸濁粒子の50体積%は3μm未満であり、該分布の幾何標準偏差は1.9であった。
【0151】
定量噴霧式吸入器を、目標質量の微粉化された活性剤粒子および懸濁粒子を体積15mLの被覆したガラスバイアル中に計り入れることにより調製した。目標質量および目標送達用量(作動装置での堆積を20%と仮定)を、3つの異なる構成について表8に示す。各構成について、追加的なガラス瓶にそれぞれの量のFF活性剤粒子を、懸濁粒子は一切加えずに充填した。缶を63μlバルブ(Valois、Les Vaudreuil、フランス)でクリンプシールし、バルブ軸を通した過圧により11g(25℃で9.1mL)のHFA134a(1,1,1,2−テトラフルオロエタン)(Ineos Fluor、Lyndhurst、UK)を充填した。噴射剤の注入後、缶を15秒間超音波処理し、リストアクション振盪機で30分間撹拌した。
【0152】
【表9】

【0153】
共懸濁させた構成物(6A、6B、6C)の目視観察からは、活性剤粒子を形成する結晶性のFFの沈降は示されなかった。懸濁剤はゆっくり凝固し、均質な単一のクリーム層を形成した。試験した全濃度について、微粉化された活性剤粒子単独のものが急速に沈降した。共懸濁剤および伝統的な対照懸濁剤(星印により示す)の写真を図13に示す。バイアルは、撹拌せずに24時間静置させた。共懸濁剤バイアルのいずれの底にも、FF結晶は視認できなかった。
【0154】
この結果から、FF結晶は懸濁粒子と会合したことが示された。FF粒子と懸濁粒子との間の会合は、3つの異なる製剤構成のそれぞれにおいて、FF粒子が懸濁粒子から分離せず、活性剤粒子の沈殿が首尾よく阻害されたように、浮力を克服するだけ十分に強かった。
【0155】
[実施例11]
フマル酸ホルモテロールMDI組成物を本発明に従って調製した。微粉化されたフマル酸ホルモテロールは市販のものを入手し、実施例1に記載のように測定したその粒子サイズ分布を、d10、d50、d90がそれぞれ0.6μm、1.9μmおよび4.4μm、スパンが2.0と特徴付けた。使用する懸濁粒子を、実施例1に記載のものと同様の様式で調製した。MDIの製造は、薬物添加容器(DVA)を用いて、まず、懸濁粒子量の半分を加え、次に、微結晶性のFFを充填し、最後に、残り半分の懸濁粒子を一番上に加えることにより達成された。10%RH未満の湿度制御環境下でDAVに物質を加えた。次に、DAVを4Lの懸濁容器に接続した。次に、既知量のHFA−134a噴射剤(Ineos Fluor、Lyndhurst、UK)をDAV中に加えることによりスラリーを形成し、次いでこのスラリーを懸濁容器から取り出し、穏やかに渦流させる。次に、このスラリーを懸濁剤混合容器に戻し、インペラで穏やかに撹拌しながら、追加のHFA−134aで希釈して、目標濃度の最終懸濁剤を形成する。バッチ作製全体を通して、容器内部の温度を21〜23℃で維持した。30分間のバッチ再循環後、懸濁剤混合物を、50μLのEPDMバルブ(Bespak、King’s Lynn、UK)経由で、14mLのフッ化エチレンポリマー(FEP)で被覆したアルミニウム缶(Presspart、Blackburn、UK)に充填した。次に、試料缶を、正確な製剤量を確実にするための缶の総合アッセイ用にランダムに選択した。
【0156】
次に、新しく製造した共懸濁剤MDIバッチを1週間隔離場所に置いてから、最初の性能分析を行った。エアロゾル性能は、USP<601>(合衆国薬局方モノグラフ601)に従って調べた。流速30L/分で運転するNext Generation Impactor(NGI)を粒子サイズ分布の定量に使用した。試料缶を作動装置中に設置し、2回の空作動およびさらに2回の呼び水用空作動を行った。5回の作動分を、USPスロートの付いたNGI中で回収した。バルブ、作動装置、スロート、NGIカップ、ステージおよびフィルターを、体積測定して分配した溶媒ですすいだ。試料溶液を、薬物特異的なクロマトグラフィー法を用いてアッセイした。フィルターを通ったステージ3の合計分を用いて微細粒子分率を定義した。USP<601>により記載されているように、用量均一性サンプリング装置を用いて、使用を通した送達用量均一性試験を実施した。使用の開始時点、中間時点および終了時点で、2回の作動分を回収し、アッセイした。
【0157】
図14は、1作動当たり4.8μgの目標用量での、FFの共懸濁剤の送達用量均一性を示すものである。作動の開始時点、中間時点および終了時点についての1作動当たりの個々の送達用量は、図14で実証するように、平均送達用量の±25%以内であった。
【0158】
[実施例12]
フマル酸ホルモテロールMDI組成物を本発明に従って調製した。微粉化されたフマル酸ホルモテロールは、市販のものを入手し、実施例1に記載のように測定したその粒子サイズ分布を、d10、d50、d90がそれぞれ0.6μm、1.9μmおよび4.4μm、スパンが2.0と特徴付けた。使用する懸濁粒子を、実施例1に記載のものと同様の様式で調製した。MDIの製造は、実施例11に記載のように達成された。
【0159】
エアロゾル性能は、USP<601>に従って調べた。流速30L/分で運転するNext Generation Impactor(NGI)を粒子サイズ分布の定量に使用した。試料缶を作動装置中に設置し、2回の空作動およびさらに2回の呼び水用空作動を行った。5回の作動分を、USPスロートの付いたNGI中で回収した。バルブ、作動装置、スロート、NGIカップ、ステージおよびフィルターを、体積測定して分配した溶媒ですすいだ。試料溶液を、薬物特異的なクロマトグラフィー法を用いてアッセイした。フィルターを通ったステージ3の合計分を用いて微細粒子分率を定義した。FF共懸濁製剤の空気力学的粒子サイズ分布を、製造後、ならびに、25℃/75%RH(保護されていない缶)および40℃/75%RH(アルミニウムフォイルの小袋中に包まれた保護されている缶)での保管の3カ月後に評価した。図15に示す空気力学的粒子サイズ分布からは、記載の組成物は、加速条件であっても望ましい安定性特徴を示すことが実証される。
【0160】
[実施例13]
実施例11に従って調製した共懸濁製剤中に含まれるフマル酸ホルモテロール(FF)の化学的な安定性を評価した。HFA134aを含有するFF MDI缶は、アルミニウムフォイルの小袋でオーバーラップし、25℃/60%相対湿度、および40℃/75%相対湿度の条件で、それぞれ13カ月間および6カ月間保管した。同様に、HFA227eaを含有するFF MDI缶は、アルミニウムフォイルの小袋でオーバーラップし、25℃/60%相対湿度、および40℃/75%相対湿度の条件で6カ月間保管した。不純物Fの量、FFの特徴的な分解産物、および総不純物量を逆相HPLCアッセイにより以下のように定量した。各缶を冷やし、切り開き、カンの内容物を遠心管に移動し、この内容物を有機溶媒に溶解し、次いでこの溶液から水性溶媒を沈殿した添加剤(DSPC)に加え、この溶液を遠心分離して透明な上清溶液を得、各試料溶液を、C18カラム、4.6×150mmおよび3.0μm粒子サイズを用いて分析した。カラム温度は30℃で維持した。注入体積は20μlであり、流速は1mL/分に設定し、214nmでのUV吸収を定量することにより検出した。勾配は、pH3.1の水性リン酸緩衝液とアセトニトリルとを混合して使用し、17%アセトニトリルでまず27分、次に50%アセトニトリルで30秒間、次いで75%アセトニトリルで6.5分および17%アセトニトリルで8分間とした。不純物は、ホルモテロールのピーク面積の面積率(%)として報告された(可能な場合、関連のある応答因子について補正した)。図16(または表9および10)に示すように、HFA134a中で懸濁粒子と懸濁させた結晶性のFF活性剤粒子を用いて調製した共懸濁剤は、温度25℃/60%相対湿度の条件では18カ月間化学的に安定であったが、これに対し、噴霧乾燥させた非共懸濁ホルモテロール製剤は、同じ保管条件下で、より急速な分解速度を示した。同様に、結晶性のFF活性剤粒子は、表11に示すように、HFA227a中で化学的に安定な共懸濁剤を形成した。
【0161】
【表10】

【0162】
【表11】

【0163】
【表12】

【0164】
[実施例14]
本実施例において使用した、微粉化されたフマル酸ホルモテロール二水和物(FF)(Inke,S.A.、Barcelona、スペイン)は、微粉化された粒子の50体積%が1.9μm未満の光学直径を呈し、90体積%が4.1μm未満の光学直径を呈するという、レーザー回折による粒子サイズ分布を有した。4つのバッチの懸濁粒子を、実施例1に記載のように噴霧乾燥により製造した。全4つのバッチは水溶液から噴霧乾燥させたので、溶液濃度および噴霧乾燥パラメーターを表12に示す。
【0165】
【表13】

【0166】
懸濁粒子の粒子サイズ分布をレーザー回折により定量した。光学直径体積中央値(VMD)および幾何標準偏差(GSD)を表12に示す。
【0167】
懸濁粒子の電子顕微鏡写真はさまざまな形態を示したので図17〜図20に示すが、図17はトレハロース懸濁粒子の顕微鏡写真を示し、図18はHP−β−シクロデキストリン懸濁粒子の顕微鏡写真を示し、図19はFicoll MP70懸濁粒子の顕微鏡写真を示し、図20はイヌリン懸濁粒子の顕微鏡写真を示す。トレハロース粒子は外見が球形であり、滑らかな表面を有する。HP−β−シクロデキストリン粒子は、広範なしわのある表面を示すが、このことから、中空のコアを有する部分的に歪んだ外面であることが示唆される。Ficoll MP70粒子およびイヌリン粒子は、多少粗い表面を示すが、全体的にはほぼ球形である。
【0168】
定量噴霧式吸入器を、0.9mgの微粉化されたFF活性剤粒子および60mgの懸濁粒子を体積15mLの被覆したガラスバイアル中に計り入れることにより調製した。FFを表12の各種の4つの懸濁粒子種と合わせた。缶を50μLバルブ(Valois DF31/50 RCU、Les Vaudreuil、フランス)でクリンプシールし、バルブ軸を通した過圧により10mLのHFA噴射剤134a(Ineos Fluor、Lyndhurst、UK)を充填した。噴射剤の注入後、缶を30秒間超音波処理し、リストアクション振盪機で30分間撹拌した。懸濁粒子のみおよび活性剤粒子のみを含有する追加的な吸入器を、各構成についての対照として充填した。
【0169】
結晶性のFFは、室温で噴射剤134aより密度が高く、本実施例の全4種の懸濁粒子も同様である。結果的に、FFおよび懸濁粒子は両方とも、吸入器の底に室温で沈殿した。これらの吸入器を、共懸濁を示す活性剤粒子−懸濁粒子間の相互作用について試験するために、吸入器を、−10℃以下のエタノール浴に浸漬させ(その結果、噴射剤の密度が高まった)、最低30分間平衡化させた。この温度では、FF活性剤粒子は噴射剤より密度が低く、結果的に、噴射剤体積の表面にクリーム化するが、全4種の懸濁化剤粒子は、噴射剤体積の底に沈殿したままである。
【0170】
試験した構成および観察結果を表13に示す。FF活性剤粒子単独では、噴射剤体積の表面にクリーム層を形成し、トレハロース、HP−β−シクロデキストリン、イヌリンおよびFicoll PM70粒子単独では、全て、ガラスバイアルの底に沈殿した。トレハロース懸濁粒子と組み合わせたFF活性剤粒子は単一の沈降層を形成し、いずれの粒子も噴射剤中でクリーム化しまたは浮くことはなかったが、このことから、FF粒子がトレハロース懸濁粒子と相互作用して共懸濁剤が形成されることが示唆された。HP−β−シクロデキストリン懸濁粒子と組み合わせたFF粒子の場合、懸濁粒子のみの対照バイアル中で観察されたものと同様、噴射剤中に多少濁りが存在した。加えて、多少浮遊フロックが観察され、このフロックはFF粒子であったと考えられるが、そのようなフロックは、対照バイアルと比較して固形の塊が小量であることを説明しており、このことから、全てではなくても多少のFF粒子が懸濁化剤粒子と相互作用していたことが示唆された。イヌリン懸濁粒子と組み合わせたFF粒子は単一の沈降層を形成したことから、共懸濁剤が形成されたことが示唆された。この構成中では多少濁りが存在したが、イヌリンのみの対照バイアル中では同様の曇りが観察された。Ficoll PM70懸濁粒子と組み合わせたFF活性剤粒子はバイアルの底に沈降層を形成したことから、共懸濁剤が形成されたことが示唆された。この構成中では多少濁りおよび浮遊フロックが観察されたが、Ficollのみの対照バイアル中でも、同様の濁りおよびフロック発生頻度が観察された。
【0171】
【表14】

【0172】
[実施例15]
グリコピロレート(GP)活性剤粒子とフマル酸ホルモテロール(FF)活性剤粒子とを含む共懸濁剤組成物を作製し、この共懸濁剤組成物を組み込んでいるMDIを調製した。作製した共懸濁剤組成物には、GP活性剤粒子、FF活性剤粒子、またはGP活性剤粒子およびFF活性剤粒子両方の組合せを含ませた。GPおよびFF物質は、表14に示すとおりの粒子サイズ分布を有する微粉化された結晶性の物質として供給された。
【0173】
懸濁粒子を、噴霧乾燥したエマルションにより以下の条件:供給原料濃度は80mg/mL、組成は93.44%がDSPC(1,2−ジステアロイル−sn−グリセロ−3−ホスホコリン)および6.56%が無水塩化カルシウム(2:1のDSPC:CaClモル/モル比率と等価)で製造した。エマルション調製の間、DSPCおよびCaClは、高せん断ミキサーを、加熱水(80±3℃)を含有する容器中にて8000〜10000rpmで用いて分散させ、このプロセス中、PFOBをゆっくり加えた。次に、このエマルションを高圧ホモジナイザー(10000〜25000psi)中で6パスにて加工した。次に、このエマルションを、0.42”のアトマイザーノズルを取り付けた噴霧乾燥機により、規定のアトマイザー気体流速18SCFMで噴霧乾燥させた。乾燥気体流速は72SCFMに設定し、入口温度は135℃、出口温度70℃、エマルション流速は58mL/分であった。
【0174】
共懸濁剤は、まず、適切な量の微粉化したGP活性剤粒子およびFF活性剤粒子および懸濁粒子を、湿度制御したチャンバー(RHは5%未満)内部の薬物添加容器(DAV)中に分配することにより調製した。本実施例においては、懸濁粒子は、1回目および2回目の添加後にそれぞれGPおよびFFの添加をはさんで3回等量で加えた。次に、DAVを窒素雰囲気下で密封し、12kgのHFA−134a(Ineos Fluor、Lyndhurst、UK)を含有する懸濁容器に接続した。次に、0.5〜1kgのHFA−134aをDAV中に加えることによりスラリーを形成し、次いでこのスラリーを懸濁容器から取り出し、穏やかに渦流させる。次に、このスラリーを懸濁剤混合容器に戻し、インペラで穏やかに撹拌しながら、追加のHFA−134aで希釈して目標濃度の最終的な懸濁剤を形成する。次に、この懸濁剤をポンプにより最低限の時間にわたり充填系に再循環させてから、充填を開始する。混合および再循環は充填プロセスを通して続ける。50μLのバルブ(Bespak、King’s Lynn、UK)を14mLのフッ化エチレンポリマー(FEP)被覆したアルミニウム缶(Presspart、Blackburn、UK)上に設置してから、真空クリンピングプロセス、またはHFA−134aのパージプロセスに次ぐバルブクリンピングのいずれかにより空気をパージする。次に、クリンピングした缶に、バルブを通して適切な量の懸濁剤を充填し、計量シリンダーにより調節する。
【0175】
【表15】

【0176】
この実施例に記載した2剤型共懸濁剤を含有するMDIを、2つの異なる用量のGPおよびFFを含有するように調製した。具体的には、第1回分の2剤型共懸濁剤組成物を、1作動当たり18μgのGPおよび1作動当たり4.8μgのFF(「低用量」)をもたらすように調製し、第2回分の2剤型共懸濁剤組成物を、1作動当たり36μgのGPおよび1作動当たり4.8μgのFF(「高用量」)をもたらすように調製した。2剤型共懸濁剤組成物に加え、単一種の活性剤粒子を含む共懸濁剤を調製した。これらの組成物は、GP活性剤粒子またはFF活性剤粒子のいずれかを含み、「単剤」または「単独療法」型の共懸濁剤と名付けた。単剤療法型共懸濁剤組成物は、2剤型共懸濁剤について記載のように調製したが、ただし、1種のみの活性剤粒子(GPまたはFFのいずれか)を含ませた。単剤療法型共懸濁剤を製剤化し、単剤療法型MDIを、以下の目標送達用量:1作動当たり18μgのGP、および、1作動当たり0.5μg、1.0μg、3.6μgまたは4.8μgのFFをもたらすように調製した。1作動当たり0.5μgのFFおよび1μgのFFをもたらす該組成物およびMDIを、「超低」用量と呼び、4Lスケールで同様の方式で製造した。
【0177】
この実施例に従って調製した共懸濁剤組成物を含有するMDIで達成された薬物特異的な空気力学的サイズ分布を、実施例1に記載のように定量した。低用量および高用量の2剤型共懸濁剤から得られるGPの空気力学的サイズ分布の比例性、ならびに、2剤型共懸濁剤と単剤療法型共懸濁剤間の等価性を図21において実証する。同様の方式で、超低用量、低用量および高用量の組成物を含む2剤型共懸濁剤および単剤療法型共懸濁剤から得られるFFの空気力学的サイズ分布の比例性を図22において実証する。
【0178】
超低用量のFF単剤療法型MDIの送達用量均一性も、実施例1に記載のように測定した。1作動当たり0.5μgおよび1作動当たり1.0μgを含有するFF MDIについてのDDUを図23に示す。望ましい用量送達均一性は、超低用量の場合でも達成される。
【0179】
[実施例16]
微粉化されたキシナホ酸サロメテロール(4−ヒドロキシ−α1−[[[6−(4−フェニルブトキシ)ヘキシル]アミノ]メチル]−1,3−ベンゼンジメタノール、1−ヒドロキシ−2−ナフタレンカルボキシレート)をメーカー(Inke SA、ドイツ)により受け入れ、活性剤粒子として使用した。キシナホ酸サロメテロール(SX)の粒子サイズ分布をレーザー回折により定量した。この微粉化された粒子の50体積%は2μm未満の光学直径を呈し、90体積%は3.9μm未満の光学直径を呈した。
【0180】
懸濁粒子を以下のように製造した。150mLの、リン脂質により安定化させたPFOB(臭化ペルフルオロオクチル)の水中フルオロカーボンエマルションを調製した。12.3gのリン脂質、DSPC(1,2−ジステアロイル−sn−グリセロ−3−ホスホコリン)および1.2gの塩化カルシウムを、高せん断ミキサーを用いて100mLの湯(70℃)の中でホモジナイズした。ホモジナイゼーションの間、65mLのPFOBをゆっくり加えた。次に、その結果得られる粗いエマルションを、高圧ホモジナイザー(モデルC3、Avestin、Ottawa、CA)を3パスにわたり最大140MPaの圧力で用いてさらにホモジナイズした。
【0181】
このエマルションを、以下の噴霧乾燥条件:入口温度90℃、出口温度69℃、エマルション供給速度2.4ml/分、および総気体流速498l/分を用いて窒素中で噴霧乾燥させた。懸濁粒子の粒子サイズ分布、すなわちVMDをレーザー回折により定量した。懸濁粒子の50体積%は2.7μm未満であり、該分布の幾何標準偏差は2.0であった。加えて、懸濁粒子の空気力学的粒子サイズ分布を、時間飛行型の粒子サイズ測定装置を用いて定量した。懸濁粒子の50体積%は空気力学的粒子径が1.6μm未満であった。空気力学的粒子径と光学的粒子径との間の差が大きいことから、この懸濁粒子は0.5kg/l未満の低い粒子密度を有したことが示唆される。
【0182】
定量噴霧式吸入器は、2mgのSX活性剤粒子および60mgの懸濁粒子を、体積19mLのフッ化エチレンポリマー(FEP)被覆したアルミニウム缶(Presspart、Blackburn、UK)中に計り入れることにより調製した。懸濁粒子対活性剤粒子の比率は30であった。目標送達用量(作動装置での堆積を20%と仮定)は10μgであった。この缶を63μlバルブ(#BK357、Bespak、King’s Lynn、UK)でクリンプシールし、バルブ軸を通した過圧により10mLのHFA134a(1,1,1,2−テトラフルオロエタン)を充填した。噴射剤の注入後、缶を15秒間超音波処理して、リストアクション振盪機で30分間撹拌した。缶に、0.3mmの開口部のあるポリプロピレン製作動装置(#BK636、Bespak、King’s Lynn、UK)を取り付けた。懸濁剤の特性の目視観察用の追加的な吸入器を、微粉化されたSXのみを充填した対照を含む15mLガラスバイアルを用いて調製した。エアロゾル性能は、実施例1に記載のように調べた。MMADは3.7μmであり、微細粒子分率は48%であった。活性剤粒子を形成するSX結晶と噴射剤とは、15℃〜20℃でほぼ密度が対等であったことから、目視観察は、水浴中で最高30℃〜35℃に加熱したガラスバイアル上で実施した。これらの条件下では、単独で製剤化したSX活性剤粒子は急速に沈降したが、共懸濁剤バイアルの底ではSX結晶は視認できなかった。
【0183】
微粉化されたキシナホ酸サルメテロール活性剤粒子は、本明細書中で提供した開示に従って製剤化した低密度の懸濁粒子との会合により共懸濁した。サルメテロール結晶と懸濁粒子との間の会合は、結晶の沈殿が阻害されることが観察されたように、浮力を克服するだけ十分に強かった。
【0184】
[実施例17]
微粉化されたプロピオン酸フルチカゾン(S−(フルオロメチル)6α,9−ジフルオロ−11β−17−ジヒドロキシ−16α−メチル−3−オキソアンドロスタ−1,4−ジエン−17β−カルボチオエート、17−プロピオネート)は、メーカー(Hovione FarmaCiencia SA、Loures、ポルトガル)により微粉化されたままの状態で受け入れ、活性剤粒子として使用した。プロピオン酸フルチカゾン(FP)の粒子サイズ分布をレーザー回折により定量した。この微粉化された粒子の50体積%は2.6μm未満の光学直径を呈し、90体積%は6.6μm未満の光学直径を呈した。
【0185】
懸濁粒子は、実施例16において使用したものと同じロットであり、懸濁粒子の製造および特徴については該実施例に記載されている。
【0186】
定量噴霧式吸入器を実施例16に記載のように調製した。6つの構成についての、噴射剤の種類、充填重量、懸濁粒子対活性剤粒子の比率、および作動装置を出る目標用量を、表15に記載する。懸濁剤の特性の目視観察用の追加的な吸入器を、15mLのガラスバイアルを用いて調製した。2つの対照ガラスバイアルに、HFA134a中またはHFA227ea中いずれかの微粉化されたFPのみを充填した。
【0187】
【表16】

【0188】
エアロゾル性能を実施例1に記載のように調べた。結果を表15に示す。これらの共懸濁剤は、比較的粗い粒子サイズ分布を有する微粉化されたFPを用いて作製した。MMADは比較的大きく、FP濃度が高くなるにつれ上昇する傾向があるが、依然として呼吸による薬物送達に使用可能な範囲である。噴射剤の種類間で有意差は観察されなかった。
【0189】
HFA134a中の共懸濁させた構成物(9A、9Cおよび9E)の目視観察では、活性剤粒子を形成する薬物結晶の沈降は示されなかった。懸濁剤はゆっくり凝固し、均質な単一のクリーム層を形成した。これに対し、HFA134a中の微粉化されたFPは沈降した。HFA227ea中の構成についての試験は実施例16に記載のように35〜40℃で実施したが、その理由は、FPは室温でこの噴射剤とほぼ密度が対等だからである。高温では、微粉化されたFP活性剤粒子はHFA227ea中で沈降したが、構成9B、9Dおよび9Fにおいては活性剤粒子の沈降は見られなかった。この結果から、プロピオン酸フルチカゾンは、本明細書中で提供する開示に従って製剤化すると、試験した両方の噴射剤中で、懸濁粒子との共懸濁剤を形成することが示される。
【0190】
[実施例18]
共懸濁剤形態でのキシナホ酸サルメテロール(SX)活性剤粒子とプロピオン酸フルチカゾン(FP)活性剤粒子との組合せ製品の製剤化について記載する。FPおよびSXは両方とも、噴射剤中に、微粉化された結晶性の粒子として存在する。2種の微粉化された活性剤粒子は、噴霧乾燥された懸濁粒子と共懸濁する。
【0191】
使用したプロピオン酸フルチカゾンおよびキシナホ酸サルメテロールは、それぞれ実施例16および17に記載のとおりのものであった。
【0192】
懸濁粒子は、実施例16において使用したものと同じロットであり、懸濁粒子の製造および特徴については該実施例に記載されている。
【0193】
定量噴霧式吸入器は、目標質量の微粉化されたプロピオン酸フルチカゾンおよびキシナホ酸サロメテロールおよび懸濁粒子を体積19mLのフッ化エチレンポリマー(FEP)被覆したアルミニウム缶(Presspart、Blackburn、UK)中に計り入れることにより調製した。この缶を63μlバルブ(#BK357、Bespak、King’s Lynn、UK)でクリンプシールし、バルブ軸を通した過圧により10mLのHFA134a(1,1,1,2−テトラフルオロエタン)(Ineos Fluor、Lyndhurst、UK)を充填した。噴射剤の注入後、缶を15秒間超音波処理して、リストアクション振盪機で30分間撹拌した。缶に、0.3mmの開口部のあるポリプロピレン製作動装置(#BK636、Bespak、King’s Lynn、UK)を取り付けた。エアロゾル性能は、上の実施例1に記載のように、製造した後すぐに、USP601に従って調べた。結果を以下の表16に報告する。
【0194】
【表17】

【0195】
プロピオン酸フルチカゾン活性剤粒子およびキシナホ酸サルメテロール活性剤粒子のMMADは、許容できるものであり、それぞれ実施例16および17に記載されているそれぞれの単独療法型共懸濁剤のエアロゾル性能に似ていた。使用を通して送達用量均一性を試験したところ、全ての個々の送達用量は、平均の±20%以内、相対標準偏差は6.1%であった。
【0196】
実施例16に記載のように、共懸濁剤の目視観察をガラスバイアル中で実施した。活性剤粒子の沈降は観察されなかった。該懸濁剤はゆっくり凝固し、均質な単一のクリーム層を形成した。
【0197】
[実施例19]
キシナホ酸サルメテロール(SX)活性剤粒子とプロピオン酸フルチカゾン(FP)懸濁粒子との組合せ製品の共懸濁剤形式での製剤について説明する。SXは、微粉化された結晶性の活性剤粒子として噴射剤中に存在する。SXを、微粉化されたFPを組み込む噴霧乾燥された懸濁粒子と共懸濁させる。これを達成するために、FP結晶は、脂質ベースの懸濁粒子を製造するために使用される供給原料中に懸濁させる。
【0198】
この実施例で参照される、活性剤粒子および懸濁粒子を形成するために使用するプロピオン酸フルチカゾンおよびキシナホ酸サルメテロールはそれぞれ、実施例16および17に記載のとおりであった。
【0199】
プロピオン酸フルチカゾン含有懸濁粒子を次のように製造した。200mLの、リン脂質により安定化させたPFOBの水中フルオロカーボンエマルションを調製した。3.3gのリン脂質(DSPC)および0.8gの微粉化されたプロピオン酸フルチカゾンを分散させ、0.3gの塩化カルシウム二水和物を、高せん断ミキサーを用いて100mLの温水(70℃)に溶解した。分散の間、44mLのPFOBをゆっくり加えた。次に、その結果得られる粗いエマルションを、高圧ホモジナイザーを3パスにわたり140MPaで用いてさらにホモジナイズした。ホモジナイゼーションにより、懸濁しているFP結晶の粒子サイズは低下した。このエマルションを、以下の噴霧乾燥条件:入口温度95℃、出口温度72℃、エマルション供給速度2.4ml/分、および総気体流速525l/分を用いて窒素中で噴霧乾燥させた。
【0200】
定量噴霧式吸入器を、目標質量の微粉化されたキシナホ酸サルメテロール活性剤粒子およびプロピオン酸フルチカゾン含有懸濁粒子を体積19mLのフッ化エチレンポリマー(FEP)被覆したアルミニウム缶(Presspart、Blackburn、UK)中に計り入れることにより調製した。この缶を63μlバルブ(#BK357、Bespak、King’s Lynn、UK)でクリンプシールし、バルブ軸を通した過圧により10mlのHFA134a(1,1,1,2−テトラフルオロエタン)(Ineos Fluor、Lyndhurst、UK)を充填した。噴射剤の注入後、缶を15秒間超音波処理して、リストアクション振盪機で30分間撹拌した。缶に、0.3mmの開口部のあるポリプロピレン製作動装置(#BK636、Bespak、King’s Lynn、UK)を取り付けた。エアロゾル性能は、先に実施例1に記載したように、製造した後すぐにUSP<601>に従って調べた。結果を以下の表17に記録する。
【0201】
【表18】

【0202】
使用を通した送達用量均一性を試験したところ、全ての個々の送達用量は、平均の±25%以内、FPのRSDは9.0%、SXのRSDは13%であった。共懸濁剤の目視観察をガラスバイアル中で実施したところ、活性剤粒子の沈降は観察されなかった。該バイアルを撹拌せずに24時間静置させた。懸濁剤はゆっくり凝固し、均質な単一のクリーム層を形成し、SXおよび懸濁粒子の分離の徴候は示されなかった。
【0203】
[実施例20]
ブデソニド、16,17−(ブチリデンビス(オキシ))−11,21−ジヒドロキシ−、(11−β,16−α)−プレグナ−1,4−ジエン−3,20−ジオンは、メーカー(AARTI、Mumbai、インド)により微粉化されて受け入れ、活性剤粒子として使用した。ブデソニドの粒子サイズ分布をレーザー回折により定量した。この微粉化された粒子の50体積%は1.9μm未満の光学直径を呈し、90体積%は4.3μm未満の光学直径を呈した。
【0204】
フロ酸モメタゾン、9α,21−ジクロロ−11β,17−ジヒドロキシ−16α−メチルプレグナ−1,4−ジエン−3,20−ジオン 17−(2−フロエート)は、メーカー(AARTI、Mumbai、インド)により微粉化されて受け入れ、活性剤粒子として使用した。ブデソニドの粒子サイズ分布をレーザー回折により定量した。この微粉化された粒子の50体積%は1.6μm未満の光学直径を呈し、90体積%は3.5μm未満の光学直径を呈した。
【0205】
懸濁粒子を実施例1に記載のように製造した。このエマルションを以下の噴霧乾燥条件:入口温度95℃、出口温度72℃、エマルション供給速度2.4ml/分、および総気体流速498l/分を用いて窒素中で噴霧乾燥させた。
【0206】
定量噴霧式吸入器を、目標質量の微粉化された活性剤および懸濁粒子を体積15mLの被覆したガラスバイアル中に計り入れることにより調製した。缶を63μlバルブ(Valois、Les Vaudreuil、フランス)でクリンプシールし、バルブ軸を通した過圧により9.2gのHFA134a(1,1,1,2−テトラフルオロエタン)(Ineos Fluor、Lyndhurst、UK)を充填した。噴射剤の注入後、缶を15秒間超音波処理し、リストアクション振盪機で30分間撹拌した。缶に、0.3mmの開口部のあるポリプロピレン製作動装置(#BK636、Bespak、King’s Lynn、UK)を取り付けた。エアロゾル性能は、先に実施例1に記載したように、製造した後すぐに、USP601に従って調べた。懸濁剤濃度は、ブデソニド活性剤粒子については0.8mg/ml、フロ酸モメタゾン活性剤粒子については1.1mg/ml、懸濁粒子については6mg/mlであった。懸濁粒子対活性剤粒子の比率は、ブデソニドについては7.5、フロ酸モメタゾンについては5.5であった。作動装置を出る目標用量は、ブデソニドについては40μg、フロ酸モメタゾンについては55μgであった。
【0207】
共懸濁させた構成物の目視観察では、活性剤粒子の沈降は示されなかった。懸濁剤は凝固し、クリーム層を形成した。バイアルを撹拌せずに16時間静置させた。共懸濁剤のバイアルの底には、活性剤粒子は視認できなかった。活性剤粒子と懸濁粒子との間の会合は、活性剤粒子の沈殿が首尾よく阻害されたように、浮力を克服するだけ十分に強かった。
【0208】
[実施例21]
本明細書に記載のとおりの例示的な共懸濁剤組成物を調製および評価した。この組成物には、グリコピロレート(GP)活性剤とフマル酸ホルモテロール(FF)活性剤との組合せを含ませた。GPは、微粉化した結晶性の活性剤粒子として噴射剤中に存在した。GPを、懸濁粒子を形成する物質内に配置されたFFを含んだ噴霧乾燥した懸濁粒子と共懸濁させた。これを達成するため、脂質ベースの懸濁粒子を製造するために使用される原料にFFを溶解した。
【0209】
GP活性剤粒子は、ジェットミルを用いてグリコピロレートを微粉化することにより形成した。グリコピロレート活性剤粒子の粒子サイズ分布は、レーザー回折により定量した。50体積%の活性剤粒子は1.7μm未満の光学直径を呈し、90体積%は3.5μm未満の光学直径を呈した。
【0210】
FF含有懸濁粒子を以下のように製造した。654mLの、リン脂質により安定化させたPFOB(臭化ペルフルオロオクチル)の水中フルオロカーボンエマルションを調製し、26.5gのリン脂質、DSPC(1,2−ジステアロイル−sn−グリセロ−3−ホスホコリン)および2.4gの塩化カルシウムを、高せん断ミキサーを用いて276mLの湯(80℃)の中でホモジナイズし、ホモジナイゼーションの間、142mLのPFOBをゆっくり加えた。次に、その結果得られる粗いエマルションを、高圧ホモジナイザー(モデルC3、Avestin、Ottawa、CA)を5パスにわたり最大170MPaの圧力で用いてさらにホモジナイズした。552mgのFFを273mlの温水(50℃)に溶解し、この溶液の大部分を、高せん断ミキサーを用いてエマルションと合わせた。このエマルションを、以下の噴霧乾燥条件:入口温度95℃;出口温度68℃;エマルション供給速度2.4ml/分;および総気体流速498l/分を用いて窒素中で噴霧乾燥させた。噴霧乾燥粉末中のホルモテロールの最終的な質量分率は2%であった。
【0211】
第2ロットのFF含有懸濁粒子を同様の様式で製造した。噴霧乾燥粉末中のFFの質量分率は、このロットについては1%であった。第3ロットの懸濁粒子は、FFを含ませずに製造した。
【0212】
懸濁粒子の粒子サイズ分布(VMD)をレーザー回折により定量した。FF含有懸濁粒子の両方のロットについては50体積%が3.5μm未満であり、該分布の幾何標準偏差は1.7であった。FFを含まない懸濁粒子については、50体積%が3.2μm未満であり、該分布の幾何標準偏差は1.8であった。
【0213】
MDIを、目標質量の活性剤粒子および懸濁粒子を体積19mLのフッ化エチレンポリマー(FEP)被覆したアルミニウム缶(Presspart、Blackburn、UK)中に計り入れることにより調製した。この缶を63μlバルブ(#BK357、Bespak、King’s Lynn、UK)でクリンプシールし、バルブ軸を通した過圧により12.4gのHFA134a(1,1,1,2−テトラフルオロエタン)(Ineos Fluor、Lyndhurst、UK)を充填した。その結果得られる懸濁剤濃度および目標送達用量(20%が作動装置に堆積すると仮定)を、3つの異なる構成(構成1A〜1C)について表18aに示す。噴射剤の注入後、缶を15秒間超音波処理して、リストアクション振盪機で30分間撹拌した。缶に、0.3mmの開口部のあるポリプロピレン製作動装置(#BK636、Bespak、King’s Lynn、UK)を取り付けた。
【0214】
【表19】

【0215】
充填済のMDIを、以下の2つの異なる条件:5℃で冷蔵、オーバーラップなし、および、制御された25℃の室温/60%RH、フォイルのオーバーラップありで、バルブを下げて保管した。エアロゾル性能および送達用量均一性の試験を、異なる時点で実施した。エアロゾル性能は、製造した後すぐに、USP<601>に従って調べた。流速30l/分で運転するNext Generation Impactor(NGI)を粒子サイズ分布の定量に使用した。試料缶を作動装置中に設置し、2回の空作動およびさらに2回の呼び水用空作動を行った。5回の作動分を、USPスロートの付いたNGI中で回収した。バルブ、作動装置、スロート、NGIカップ、ステージおよびフィルターを、体積測定して分配した溶媒ですすいだ。試料溶液を、薬物特異的なクロマトグラフィー法を用いてアッセイした。フィルターを通ったステージ3の合計分を用いて微細粒子分率を定義した。USP<601>により記載されているように、用量均一性サンプリング装置を用いて、使用を通した送達用量均一性試験を実施した。前述のように、吸入器を設置し、呼び水作業を行った。使用の開始時点、中間時点および終了時点で、2回の作動分を回収し、アッセイした。
【0216】
エアロゾル性能または送達用量均一性においては、試験の継続期間(3カ月)にわたり、または保管温度の関数として、何ら傾向は観察されなかった。したがって、全てのエアロゾル性能試験結果をプールした。表18bは、異なる構成の平均成績を記載するものである。微細粒子用量は、インパクターのステージ3からフィルター上で回収した質量の合計であり、計量された用量により正規化してある。全3つの構成についての平均エアロゾル性能は同等であった。
【0217】
【表20】

【0218】
本組合せ製品の両方の活性剤について、缶の寿命にわたり用量含有量均一性を試験した。図24および26は、構成1Aおよび1Bそれぞれについての作動装置を出る用量を示すものであり、缶の実際の計量された用量により正規化してある。作動装置での堆積を20%と仮定して、両方の活性剤についての作動装置を出る目標用量は80%であった。個々のFF用量およびGP用量を、それぞれ点および三角形で表す。実線はホルモテロール用量の平均を表し、破線はグリコピロレート用量の平均を表す。図25および27は、構成1Aおよび1Bそれぞれについての作動装置を出る正規化した用量の比率を示すものである。結果から、用量比は缶の寿命を通じて一定に保たれたことが示唆される。さらに、用量比のばらつきは個々の用量のものよりはるかに低く、このことから、一貫した担体対活性剤比率を有する共懸濁剤が形成され、容器の寿命を通じて維持されたことが示唆される。
【0219】
この結果は、本明細書中で提供した開示内容により製剤化すると、活性医薬原料(この場合はFF)のうち1つを含有する懸濁粒子を用いて組合せ製品の共懸濁剤が形成されることを示している。懸濁粒子対活性剤粒子の比率を調節して、同様のエアロゾル性能を維持しながら、目標用量含有量の均一性を達成することができる。
【0220】
[実施例22]
FFおよびGPを含有するMDIを、FFおよびGPそれぞれ1作動当たり示された目標送達用量2.4μgおよび18μgに調製した。GP活性剤を微粉化したところ、実施例21に記載のようにレーザー回折により測定した場合、それぞれ、d10、d50、d90が得られ、スパンは0.6μm、1.7μm、3.6μmおよび1.9μmであった。FFは、噴霧乾燥した懸濁粒子中に組み込み、2%がFF、91.5%がDSPCおよび6.5%がCaClの組成で実施例21に記載のように調製した。GP、FFおよびGP+FFのMDIを、目標質量の活性剤粒子および懸濁粒子を体積19mLのフッ化エチレンポリマー(FEP)被覆したアルミニウム缶(Presspart、Blackburn、UK)中に計り入れることにより調製した。缶を50μlバルブ(#BK357、Bespak、King’s Lynn、UK)でクリンプシールし、バルブ軸を通した過圧により10.2gのHFA134a(1,1,1,2−テトラフルオロエタン)(Ineos Fluor、Lyndhurst、UK)を充填した。噴射剤の注入後、缶を15秒間超音波処理して、リストアクション振盪機で30分間撹拌した。缶に、0.3mmの開口部のあるポリプロピレン製作動装置(#BK636、Bespak、King’s Lynn、UK)を取り付けた。
【0221】
これらのMDI組成物の長期安定性および送達特徴を調べた。とりわけ、当該組成物のエアロゾル粒子サイズ分布および送達用量特徴を、多様な条件下で、場合により、最大12カ月に延長した期間にわたり、実施例21に記載のようにUSP<601>に従って評価した。たとえば、図28に示すように、実施例21に従って調製した組成物によりもたらされる送達用量均一性は、当該組成物を5℃で12カ月の保管後、または、アルミニウムフォイルの小袋内で保管してMDI缶中への水の侵入を最小化させた(すなわち、「保護保管された」)試料については、25℃、60%相対湿度(RH)の条件で4.5カ月後であっても、実質的に維持された。
【0222】
当該組成物のエアロゾル性能も、最長12カ月まで延長する非保護保管条件、および、最長6カ月まで延長する保護保管条件を通じて評価した。図29に示すように、この共懸濁剤組成物によりもたらされたGPおよびFFの粒子サイズ分布は、5℃での保護保管の12カ月後、および、25℃、60%RHでの非保護保管条件の6カ月後、実質的に維持された。図30に示すように、ストレスのかかった条件下(40℃、75%RH)でも、該組成物は6カ月後に定量噴霧式吸入器から送達されたGPおよびFFの粒子サイズ分布において目立った劣化を示さなかった。
【0223】
図31でわかるように、GP活性剤およびFF活性剤を両方とも含む組合せ共懸濁剤組成物のエアロゾル性能は、FFを単独で含む懸濁剤組成物またはGPを単独で含む共懸濁剤組成物により達成されるエアロゾル性能と全く異ならなかったが、このことから、単一成分型共懸濁剤または2成分組合せ型共懸濁剤から達成された場合、個々の活性剤のエアロゾル特性は実質的に同じであることが実証された。
【0224】
[実施例23]
本記載による例示的な2剤型共懸濁剤組成物を作製し、該組成物を組み込んでいる定量噴霧式吸入器を調製した。該組成物には、グリコピロレート(GP)とフマル酸ホルモテロール(FF)との組合せを含ませ、それぞれは、微粉化された結晶性の物質として供給された。組合せの結晶性の共懸濁剤MDIを半自動の懸濁剤充填により製造した。この2剤型共懸濁剤は、HFA134a噴射剤中で懸濁粒子と共懸濁させた2つの微結晶性の活性医薬原料(「APIs」、または単数形では「API」とも呼ぶ)であるGPとFFとの組合せから成っていた。2剤型共懸濁剤は、1作動当たり18μgのGPおよび1作動当たり4.8μgのFFの送達用量を供給するように製剤化した。2剤型共懸濁剤組成物の調製においては、一定の組成物中では、使用したFF API物質は「粗い」として表示され、他の組成物中では、使用したFF API物質は「細かい」として表示された。共懸濁剤組成物に組み込まれたのが粗いFFであるか細かいFFであるかによらず、該組成物は、1作動当たり4.8μgの送達FF用量を供給するように製剤化した。この実施例で記載した共懸濁剤組成物の製剤において使用した粗いFF、細かいFFおよびGP API物質の粒子サイズ特徴は、表19に詳細を記載してある。2剤型共懸濁剤組成物に加え、FF活性剤物質のみを組み込んでいる単剤療法型共懸濁剤組成物を製剤化した。このFF単剤療法型共懸濁剤は、粗いFF APIを利用した。当該FF単剤療法型共懸濁剤を使用して単剤療法型MDIを製造し、このFF単剤療法型MDIを、1作動当たり送達用量4.8μgのFFを供給するように製剤化および製造した。
【0225】
懸濁粒子を、噴霧乾燥したエマルションにより以下の条件:供給原料濃度は80mg/mL、組成は93.44%がDSPC(1,2−ジステアロイル−sn−グリセロ−3−ホスホコリン)および6.56%が無水塩化カルシウム(2:1のDSPC:CaClモル/モル比率と等価)で製造した。エマルション調製の間、DSPCおよびCaClは、高せん断ミキサーを、加熱水(80±3℃)を含有する容器中にて8000〜10000rpmで用いて分散させ、このプロセス中、PFOBをゆっくり加えた。次に、このエマルションを高圧ホモジナイザー(10000〜25000psi)中で6パスにて加工した。次に、このエマルションを、0.42”のアトマイザーノズルを取り付けた噴霧乾燥機により、規定のアトマイザー気体流速18SCFMで噴霧乾燥させた。乾燥気体流速は72SCFMに設定し、入口温度は135℃、出口温度70℃、エマルション流速は58mL/分であった。
【0226】
MDIの製造については、懸濁剤充填用の薬物添加容器(DAV)を以下の方式で調製した。まず、懸濁粒子量の半分を加え、次に、微結晶性の物質を充填し、最後に、残り半分の懸濁粒子を一番上に加える。10%RH未満の湿度制御環境下で該容器に物質を加えた。次に、DAVを4Lの懸濁容器に接続し、HFA134a噴射剤を流してから、穏やかに混合して、スラリーを形成した。次に、このスラリーを懸濁剤混合容器に戻し、追加のHFA−134aで希釈して、インペラで穏やかに撹拌しながら、目標濃度の最終懸濁剤を形成する。バッチ作製全体を通して、容器内部の温度を21〜23℃で維持した。30分間の再循環後、懸濁剤を、50μlバルブ(Bespak、King’s Lynn、UK)経由で、14mLのフッ化エチレンポリマー(FEP)で被覆したアルミニウム缶(Presspart、Blackburn、UK)に充填した。試料缶は、正確な製剤量を確実にするための缶の総合分析用にランダムに選択した。2つのロットの微粉化されたホルモテロール粒子の光学直径および粒子サイズ分布を、実施例1に記載のように、レーザー回折により定量した。表19は、使用した異なるロットの微粉化された物質についてのd10、d50およびd90の値を記載するものである。d10、d50およびd90は、粒子サイズ測定装置により報告された累積体積分布がそれぞれ10%、50%および90%に達する時点の粒子サイズを表す。
【0227】
この実施例に従って調製した両方の2剤型共懸濁製剤によりもたらされた粒子サイズ分布を、実施例21に従って調製した共懸濁剤組成物によりもたらされた粒子サイズ分布と比較した。この比較の結果を表20に示すが、表中の「FPF FF(%)」および「FPF GP(%)」は、NGIのフィルターを通したステージ3上での特定の活性剤の微細粒子質量を作動装置の質量で割り、100を掛けたものを表す。
【0228】
【表21】

【0229】
【表22】

【0230】
この実施例に従って調製した2剤型共懸濁剤組成物のエアロゾル性能を評価し、実施例21に従って調製した共懸濁剤組成物と比較すると共に、エアロゾル性能を、実施例1に記載のようにUSP<601>に従って定量した。そのような比較の結果を図32〜図34に示す。これらの図を参照することにより容易に理解されるように、2剤型共懸濁剤の供給において使用した結晶性のホルモテロール物質が細かいものであったか粗いものであったかどうかにかかわらず、2剤型共懸濁剤組成物のFFおよびGPの粒子サイズ分布は、FFが噴霧乾燥による懸濁粒子に組み込まれた実施例21に従って調製した共懸濁剤組成物により達成された同分布と実質的に同じであった。
【0231】
加えて、この実施例に記載されているとおりの2剤型共懸濁剤組成物によりもたらされたGPおよびFFの送達用量均一性を、実施例1に記載のようにUSP<601>に従って調べ定量した。この調査の結果を図35に示す。2剤型共懸濁製剤は、全ての作動分が、平均の±25%以内の想定用量を送達したことから、GPおよびFFの両方について望ましいDDU特徴をもたらした。
【0232】
[実施例24]
フロ酸モメタゾン(MF)またはブデソニド(BD)のいずれかを含む懸濁粒子を用いて2剤型共懸濁剤組成物を調製し、この組成物を組み込んでいるMDIを調製した。3剤型共懸濁剤組成物は、結晶性のグリコピロレート(GP)活性剤粒子およびフマル酸ホルモテロール(FF)活性剤粒子の組合せを含んでおり、MFまたはBDのいずれかを含む懸濁粒子と共懸濁させた。各APIは、微粉化された、結晶性の物質として供給された。
【0233】
BDまたはMFのいずれかを50%(w/w)含有する懸濁粒子を次のように製造した。400mLの湯(75℃)中に2.8gのDSPC(1,2−ジステアロイル−sn−グリセロ−3−ホスホコリン)および0.26gの塩化カルシウムを含有する分散系の高せん断ミキサーを用いた高せん断ホモジナイゼーションを実施しながら、56.6gのPFOBをゆっくり加えた。微粉化されたMFまたはBD(DSPCに対し1:1の重量比で)を、その結果得られる粗いエマルションに加え、これを、高圧ホモジナイザー(モデルC3、Avestin、Ottawa、CA)を3〜5パスにわたり最大170MPaの圧力で用いてさらにホモジナイズした。このエマルションを、以下の噴霧乾燥条件:入口温度90〜95℃、出口温度95〜72℃、エマルション供給速度2〜8mL/分、合計乾燥窒素流525〜850L/分を用いて噴霧乾燥させた。その結果得られる粉末の粒子サイズ分布をレーザー回折により定量したところ、懸濁粒子の50体積%は1.8μm未満であり、該分布のスパンは1.6μmであった。
【0234】
懸濁粒子を含有する50%(w/w)のMFまたはBDのいずれかを含有するMDI缶を、それぞれMFおよびBDの1作動当たり50μgまたは100μgを目標として調製した。定量噴霧式吸入器は、懸濁粒子(場合によっては追加的な懸濁粒子も)を含有する目標質量の活性剤を、体積14mLのフッ化エチレンポリマー(FEP)被覆したアルミニウム缶(Presspart、Blackburn、UK)中に計り入れて合計懸濁剤濃度を5.5mg/mLに到達させることにより調製した。この缶を50μlバルブ(Bespak、King’s Lynn、UK)でクリンプシールし、バルブ軸を通した過圧により10mLのHFA134a(1,1,1,2−テトラフルオロエタン)(Ineos Fluor、Lyndhurst、UK)を充填した。噴射剤の注入後、缶を15秒間超音波処理して、リストアクション振盪機で30分間撹拌した。缶に、0.3mmの開口部のあるポリプロピレン製作動装置(Bespak、King’s Lynn、UK)を取り付けた。
【0235】
上記MDIのエアロゾル粒子サイズ分布を実施例1に記載のようにUSP<601>に従って定量したので、結果を表21に示す。懸濁粒子を含有するMFまたはBDを含有する類似の一連の缶を、GPおよびFFの活性剤粒子と組み合わせて作製した。十分な微粉化されたGPおよびFF API物質を、GPおよびFFについてそれぞれ作動当たり36μgおよび作動当たり6μgの目標送達用量をもたらすのに十分な量で当該缶に加えた。いくつかの場合では、実施例1に記載のとおりに調製した追加的な懸濁粒子を、合計懸濁剤濃度が5.5mg/mlに達するように加えた。
【0236】
上記3剤型共懸濁剤MDIのエアロゾル粒子サイズ分布を実施例1に記載のようにUSP<601>に従って定量したので、結果を表22に示す。表21および表22における結果の比較から、単一成分型懸濁剤中のコルチコステロイドの空気力学的質量平均径(mass mean aerodynamic diameter)は、対応する3剤型の組合せ組成物において得られる該値と等価であることが実証される。2つの異なる活性剤の組合せを含有する該共懸濁剤組成物に当てはまるとおり、本記載に従って調製される3剤型共懸濁剤組成物は、併用効果を回避した。加えて、微結晶性の活性剤の微細粒子分率は、MFまたはBDの1作動当たり用量が実質的に異なっても、単独療法型または3剤型の組合せ組成物中のコルチコステロイドの種類にほとんど無関係である。
【0237】
【表23】

【0238】
【表24】

【0239】
[実施例25]
3剤型共懸濁剤組成物を含む定量噴霧式吸入器を本記載に従って調製した。この組成物は、グリコピロレート(GP)活性剤粒子と、フマル酸ホルモテロール(FF)活性剤粒子とフロ酸モメタゾン(MF)活性剤粒子との組合せを含んでおり、それぞれが、微粉化された結晶性のAPI物質として供給されていた。
【0240】
3剤型共懸濁剤MDIを、半自動の懸濁剤充填により製造した。この3剤型共懸濁剤は、3つの異なる種の活性剤粒子、すなわち、MF(コルチコステロイド)、GP(LAMA)およびFF(LABA)を形成する3つの微結晶性の活性医薬原料の組合せから成っていた。これらの3つの異なる種の活性剤粒子を、HFA134a噴射剤中で懸濁粒子と共懸濁させた。3剤型共懸濁剤を以下の送達用量目標:1作動当たり50μのMF、1作動当たり36μgのGPおよび1作動当たり4.8μgのFFに製剤化した。この3剤型共懸濁剤に加え、MFのみを含む単剤療法型共懸濁剤を作製した。この単剤療法型MF共懸濁剤は、噴射剤中に共懸濁したMF活性剤粒子を、この実施例に記載されているとおりの懸濁粒子と共に含んでおり、目標送達用量である1作動当たり50μgのMFをもたらすように製剤化した。
【0241】
懸濁粒子を、噴霧乾燥したエマルションにより以下の条件:供給原料濃度は80mg/mL、組成は93.44%がDSPC(1,2−ジステアロイル−sn−グリセロ−3−ホスホコリン)および6.56%が無水塩化カルシウム(2:1のDSPC:CaClモル/モル比率と等価)で製造した。エマルション調製の間、DSPCおよびCaClは、高せん断ミキサーを、加熱水(80±3℃)を含有する容器中にて8000〜10000rpmで用いて分散させ、このプロセス中、PFOBをゆっくり加えた。次に、このエマルションを高圧ホモジナイザー(10000〜25000psi)中で5パスにて加工した。次に、このエマルションを、0.42”のアトマイザーノズルを取り付けた噴霧乾燥機により、規定のアトマイザー気体流速18SCFMで噴霧乾燥させた。乾燥気体流速は72SCFMに設定し、入口温度は135℃、出口温度70℃、エマルション流速は58mL/分であった。
【0242】
MDIの製造については、懸濁剤充填用に薬物添加容器(DAV)を以下の方式で使用した。まず、懸濁粒子量の半分を加え、次に、微結晶性の物質を充填し、最後に、残り半分の懸濁粒子を一番上に加える。10%RH未満の湿度制御環境下で該容器に物質を加えた。次に、DAVを4Lの懸濁容器に接続し、HFA134a噴射剤を流してから、磁気撹拌棒で混合した。バッチ作製全体を通して、容器内部の温度を21〜23℃で維持した。30分間のバッチ再循環後、50μLのEPDMバルブ経由で懸濁剤混合物を缶に充填した。試料缶は、正確な製剤量を確実にするための缶の総合分析用にランダムに選択した。次に、新しく製造した3剤型共懸濁剤MDIバッチを1週間隔離場所に置いてから、最初の製品性能分析を行った。フロ酸モメタゾンのみのMDIは、同じ方式での懸濁剤充填により製造した。体積14mLのフッ化エチレンポリマー(FEP)被覆したアルミニウム缶(Presspart、Blackburn、UK)。この缶を50μlバルブ(Bespak、King’s Lynn、UK)でクリンプシールし、バルブ軸を通した過圧により10mLのHFA134a(1,1,1,2−テトラフルオロエタン)(Ineos Fluor、Lyndhurst、UK)を充填した。缶に、0.3mmの開口部のあるポリプロピレン製作動装置(Bespak、King’s Lynn、UK)を取り付けた。
【0243】
全ての微結晶性APIの一次粒子サイズ分布を、実施例1に記載のようにレーザー回折により定量したので、結果を表23に示す。懸濁剤MDIの作動時の全ての成分の空気力学的粒子サイズ分布および空気力学的質量平均径を、実施例1に記載のようにUSP<601>に従って薬物特異的なカスケードインパクションにより定量したので、これを表24に示す。
【0244】
【表25】

【0245】
【表26】

【0246】
この実施例に従って調製した3剤型共懸濁剤により達成された送達用量均一性およびエアロゾル性能を、実施例1に記載したようにUSP<601>に従って評価した。図36は、MFのみを含有する2つの缶、および、この実施例に従って調製したMF、GPおよびFFを含有する2つの缶から達成されるGP、FFおよびMFのDDUを例証するものである。MF単剤療法型構成物から送達されるMFのDDUは、3剤型共懸濁剤組成物で達成されるDDUと等価である。この実施例の3剤型共懸濁剤組成物からのFFおよびGPについて達成されたエアロゾル粒子サイズ分布を、実施例15に従って調製された、2つの活性剤(FFおよびGP)を含有する共懸濁剤から達成された該分布と比較した。FFおよびGPの空気力学的粒子サイズ分布は、2つの活性剤または3つの活性剤いずれを含有する組成物から送達されるかによらず、それぞれ図37および38に示すように等価であるので、本記載に従って調製した3剤型共懸濁剤組成物は、併用効果を回避した。
【0247】
[実施例26]
本記載による例示的な3剤型共懸濁剤組成物を作製し、該組成物を組み込んだ定量噴霧式吸入器を調製した。該3剤型共懸濁剤は、グリコピロレート(GP)または臭化チオトロピウム(TB)を、フマル酸ホルモテロール(FF)活性剤とフロ酸モメタゾン(MF)活性剤との組合せで含んでおり、各APIは、微粉化された結晶性の物質として使用した。
【0248】
3つの活性医薬原料(API)、すなわちコルチコステロイド、LAMAおよびLABAを含有する2つの別々の懸濁剤MDIバッチを調製した。このAPIは、本明細書に記載のとおりに調製された懸濁粒子と共懸濁させた活性剤粒子として機能した微結晶性の物質として供給された。この実施例に記載のように調製した3剤型共懸濁剤組成物は、活性剤粒子および懸濁粒子をHFA134a噴射剤に加えることにより調製した。
【0249】
グリコピロレートを含有する3剤型共懸濁剤(3剤型GFM)を、1作動当たり40μgのMF、1作動当たり13μgのGPおよび1作動当たり4.8μgのFFを送達するように製剤化した。活性剤粒子を、80mg/mLの供給濃度で噴霧乾燥させた93.46%のDSPC(1,2−ジステアロイル−sn−グリセロ−3−ホスホコリン)と6.54%の無水塩化カルシウムとから成るエマルションを使用して製造した懸濁粒子と共懸濁させた。懸濁粒子のDSPC:CaClモル比は2:1であった。この懸濁粒子を、製剤目標が6mg/mlの懸濁粒子濃度になるように、噴射剤中で活性剤粒子と合わせた。微結晶性の活性剤粒子の一次粒子サイズ(実施例1に記載のようにSympatecレーザー回折測定により定量)を、以下の表25に示す。
【0250】
無水臭化チオトロピウム(TB)を使用して、臭化チオトロピウムを含有する3剤型共懸濁剤(3剤型TFM)を調製した。このTFM3剤型共懸濁剤を、1作動当たり50μgのMF、1作動当たり9μgのTBおよび1作動当たり4.8μgのFFを送達するように製剤化した。3剤型GFM共懸濁剤に関して記載したように懸濁粒子を調製し、活性剤粒子を、目標とする懸濁粒子濃度6mg/mlで懸濁粒子と共懸濁させた。微結晶性の活性剤粒子の一次粒子サイズ(実施例1に記載のようにSympatecレーザー回折測定により定量)を、以下の表26に示す。
【0251】
この実施例に記載の3剤型共懸濁剤組成物について、エアロゾル粒子サイズ分布、微細粒子分率、および空気力学的質量中央径を、実施例1に記載のようにUSP<601>に従って定量した。表27には、3剤型GFMおよび3剤型TFMについてのMMADおよびFPFの成績を記載し、3剤型GFM共懸濁剤および3剤型TFM共懸濁剤により達成される望ましいエアロゾル特性を図39に示す(3剤型GFMおよび3剤型TFMにより得られるGPおよびTBの空気力学的粒子サイズ分布をそれぞれ示す)。3剤型の製剤において達成された個々の微結晶性の活性剤の微細粒子分率は、活性剤粒子のサイズの違いにかかわらず非常によく似ており、このことから、本発明において記載する組成物の利益が実証される。
【0252】
【表27】

【0253】
【表28】

【0254】
【表29】


【特許請求の範囲】
【請求項1】
定量噴霧式吸入器から送達できる共懸濁剤であって、前記安定な共懸濁剤は
薬学的に許容できる噴射剤を含む懸濁媒体と、
複数の活性剤粒子と、
複数の呼吸可能な懸濁粒子とを含み、
前記複数の活性剤粒子が、懸濁媒体中の活性剤粒子と懸濁剤粒子との浮力差にもかかわらず複数の懸濁粒子と会合する
共懸濁剤。
【請求項2】
前記活性剤粒子の少なくとも90体積%が7μm以下の光学直径を呈する、請求項1に記載の共懸濁剤。
【請求項3】
前記活性剤粒子の少なくとも50体積%が5μm以下の光学直径を呈する、請求項1に記載の共懸濁剤。
【請求項4】
前記活性剤粒子が、結晶形態の活性剤の粒子を含む、請求項1から3のいずれかに記載の共懸濁剤。
【請求項5】
前記活性剤粒子が、非晶質形態の活性剤の粒子を含む、請求項1から3のいずれかに記載の共懸濁剤。
【請求項6】
前記活性剤が、前記懸濁媒体中の活性剤の全質量の1%相当の量、前記懸濁媒体中の活性剤の全質量の0.5%相当の量、前記懸濁媒体中の活性剤の全質量の0.05%相当の量、および前記懸濁媒体中の活性剤の全質量の0.025%相当の量から選択される溶解をもたらす測定可能な溶解性を呈する、請求項1から5のいずれかに記載の共懸濁剤。
【請求項7】
前記懸濁媒体に溶解する前記活性剤の全質量が、前記懸濁媒体中の活性剤の全質量の5%未満である、請求項1から5のいずれかに記載の共懸濁剤。
【請求項8】
前記複数の活性剤粒子が、2つ以上の異なる活性剤を含む、請求項1から7のいずれかに記載の共懸濁剤。
【請求項9】
前記活性剤粒子が、短時間作用性のβ作動剤(ビトルテロール、カルブテロール、フェノテロール、ヘキソプレナリン、イソプレナリン(イソプロテレノール)、レボサルブタモール、オルシプレナリン(メタプロテレノール)、ピルブテロール、プロカテロール、リミテロール、サルブタモール(アルブテロール)、テルブタリン、ツロブテロール、レプロテロールおよびエピネフリンなど)、長時間作用性のβ作動剤(バンブテロール、クレンブテロール、ホルモテロールおよびサルメテロールなど)、超長時間作用性のβ作動剤(カルモテロール、ミルベテロール、インダカテロール、および、サリゲニンまたはインドールを含有しアダマンチル誘導性のβ作動剤など)、コルチコステロイド(ベクロメタゾン、ブデソニド、シクレソニド、フルニソリド、フルチカゾン、メチルプレドニゾロン、モメタゾン、プレドニゾンおよびトリアムシノロンなど)、抗炎症薬(プロピオン酸フルチカゾン、二プロピオン酸ベクロメタゾン、フルニソリド、ブデソニド、トリペダン、コルチゾン、プレドニゾン、プレドニゾロン、デキサメタゾン、ベタメタゾンまたはトリアムシノロンアセトニドなど)、鎮咳剤(ノスカピンなど)、気管支拡張剤(エフェドリン、アドレナリン、フェノテロール、ホルモテロール、イソプレナリン、メタプロテレノール、サルブタモール、アルブテロール、サルメテロール、テルブタリンなど)、抗コリン作用薬(グリコピロレート、デキシピロニウム、スコポラミン、トロピカミド、ピレンゼピン、ジメンヒドリネート、チオトロピウム、ダロトロピウム、アクリジニウム、トロスピウム、イプラトロピウム、アトロピン、ベンズトロピンまたはオキシトロピウムなど)(その任意の薬学的に許容できる塩、エステル、異性体または溶媒和物を包含する)から選択される活性剤を含む、請求項1から8のいずれかに記載の共懸濁剤。
【請求項10】
前記活性剤粒子中に2つ以上の活性剤が含まれ、前記2つ以上の活性剤が、ホルモテロールとブデソニドとの組合せ、グリコピロレートとホルモテロールとの組合せ、シクレソニドとホルモテロールとの組合せ、サルメテロールとフルチカゾンとの組合せ、グリコピロレートとホルモテロールとブデソニドとの組合せ、およびグリコピロレートとホルモテロールとモメタゾンとの組合せ(その任意の薬学的に許容できる塩、エステル、異性体または溶媒和物を包含する)から選択される、請求項1から9のいずれかに記載の共懸濁剤。
【請求項11】
前記活性剤が、強力な活性剤および高度に強力な活性剤から選択される、請求項1から10のいずれかに記載の共懸濁剤。
【請求項12】
活性剤の目標送達用量が、1用量当たり約100μg〜約100mg、1用量当たり約100μg〜約10mg、および1用量当たり約100μg〜1mgから選択される、請求項1から11のいずれかに記載の共懸濁剤。
【請求項13】
活性剤の目標送達用量が、1用量当たり最大約80μg、1用量当たり最大約40μg、1用量当たり最大約20μg、または1用量当たり約10μg〜約100μgから選択される、請求項1から11のいずれかに記載の共懸濁剤。
【請求項14】
活性剤の目標送達用量が、1用量当たり約0.1〜約2μg、1用量当たり約0.1〜約1μg、および1用量当たり約0.1〜約0.5μgから選択される、請求項1から11のいずれかに記載の共懸濁剤。
【請求項15】
前記懸濁粒子が、約10μm〜約500nm、約5μm〜約750nm、および1μm〜約3μmから選択されるMMADを呈する、請求項1から14に記載の共懸濁剤。
【請求項16】
前記懸濁粒子が、約0.2μm〜約50μm、約0.5μm〜約15μm、約1.5μm〜約10μm、および約2μm〜約5μmから選択される光学直径体積中央値を呈する、請求項1から15のいずれかに記載の共懸濁剤。
【請求項17】
前記懸濁粒子が、約30mg/mLまでおよび最大約25mg/mLから選択される濃度で前記懸濁媒体中に含まれる、請求項1から16のいずれかに記載の共懸濁剤。
【請求項18】
前記懸濁粒子が、約1mg/ml〜約15mg/ml、約3mg/ml〜約10mg/ml、約1.5mg/ml〜約10mg/mlから選択される濃度で前記懸濁媒体中に含まれる、請求項17に記載の共懸濁剤。
【請求項19】
前記活性剤粒子がグリコピロレートを含み、前記懸濁粒子が、約6mg/mL、約3mg/mL〜約10mg/mL、および約1mg/mL〜約15mg/mLから選択される濃度で前記懸濁媒体中に含まれる、請求項17に記載の共懸濁剤。
【請求項20】
前記活性剤粒子がホルモテロールを含み、前記懸濁粒子が、約3mg/mL、約1.5mg/mL〜約5mg/mL、および約0.5mg/mL〜約7.5mg/mLから選択される濃度で前記懸濁媒体中に含まれる、請求項17に記載の共懸濁剤。
【請求項21】
前記活性剤粒子がホルモテロールを含み、前記懸濁粒子が、約6mg/mL、約3mg/mL〜約10mg/mL、および約1mg/mL〜約15mg/mLから選択される濃度で前記懸濁媒体中に含まれる、請求項17に記載の共懸濁剤。
【請求項22】
前記活性剤粒子がサルメテロールを含み、前記懸濁粒子が、約5mg/mL、約3mg/mL〜約10mg/mL、および約1mg/mL〜約15mg/mLから選択される濃度で前記懸濁媒体中に含まれる、請求項17に記載の共懸濁剤。
【請求項23】
前記活性剤粒子がブデソニドを含み、前記懸濁粒子が、約8mg/mL、約5mg/mL〜約20mg/mL、および約0.5mg/mL〜約30mg/mLから選択される濃度で前記懸濁媒体中に含まれる、請求項17に記載の共懸濁剤。
【請求項24】
前記活性剤粒子がフルチカゾンを含み、前記懸濁粒子が、約6mg/mL、約3mg/mL〜約10mg/mL、および約1mg/mL〜約15mg/mLから選択される濃度で前記懸濁媒体中に含まれる、請求項17に記載の共懸濁剤。
【請求項25】
前記懸濁粒子の全質量が前記活性剤粒子の全質量を超える、請求項1から24のいずれかに記載の共懸濁剤。
【請求項26】
前記懸濁粒子の全質量対前記活性剤粒子の全質量の比率が、約1.5超、最大約5、最大約10、最大約15、最大約20、最大約30、最大約50、最大約75、最大約100、最大約150および最大約200から選択される、請求項25に記載の共懸濁剤。
【請求項27】
前記活性剤粒子中に含まれる前記活性剤のうち少なくとも1つが高度に強力な活性剤であり、前記懸濁粒子の全質量対前記活性剤粒子の全質量の比率が、約5〜約175、約10〜約150、約15〜約125、および約25〜約75から選択される、請求項25に記載の共懸濁剤。
【請求項28】
前記活性剤粒子が、グリコピロレート、フルチカゾン、モメタゾンおよびブデソニドのうち1つまたは複数を含み、前記懸濁粒子の全質量対前記活性剤粒子の全質量の比率が、約1〜約20、約5〜約15、および約10から選択される、請求項25に記載の共懸濁剤。
【請求項29】
前記活性剤粒子が、フルチカゾン、モメタゾンおよびブデソニドのうち1つまたは複数を含み、前記懸濁粒子の全質量対前記活性剤粒子の全質量の比率が、約1〜約15、約1.5〜約10、および約2.5〜約5から選択される、請求項25に記載の共懸濁剤。
【請求項30】
前記活性剤粒子がサルメテロールを含み、前記懸濁粒子の全質量対前記活性剤粒子の全質量の比率が、約10〜約30、約15〜約25、および約20から選択される、請求項25に記載の共懸濁剤。
【請求項31】
前記活性剤粒子がホルモテロールを含み、前記懸濁粒子の全質量対前記活性剤粒子の全質量の比率が、約10〜約200、約50〜約125、および約75から選択される、請求項25に記載の共懸濁剤。
【請求項32】
前記懸濁粒子が、少なくとも1g、少なくとも10g、少なくとも50gおよび少なくとも100gの加速度から選択される加速度での遠心分離により増幅された浮力を受けたときでも活性剤粒子と会合したままである、請求項1から31のいずれかに記載の共懸濁剤。
【請求項33】
前記懸濁粒子が、脂質、リン脂質、非イオン性界面活性剤、非イオン性ブロックコポリマーなどのポリマー、非イオン性界面活性物質および生体適合性フッ素系界面活性物質などの界面活性物質、炭水化物、アミノ酸、有機塩、ペプチド、タンパク質、アルジトールならびにそれらの組合せから成る群から選択される添加剤を含む、請求項1から32のいずれかに記載の共懸濁剤。
【請求項34】
前記懸濁粒子が、脂質、リン脂質、非イオン性界面活性剤、非イオン性ブロックコポリマーなどのポリマー、非イオン性界面活性物質および生体適合性フッ素系界面活性物質などの界面活性物質、炭水化物、アミノ酸、有機塩、ペプチド、タンパク質、アルジトールならびにそれらの組合せから成る群から選択される添加剤を含む活性剤粒子を含む、請求項1から33のいずれかに記載の共懸濁剤。
【請求項35】
前記複数の懸濁粒子のうち1つまたは複数が活性剤を含む、請求項1から34のいずれかに記載の共懸濁剤。
【請求項36】
前記懸濁媒体が、追加成分を実質的に含まない噴射剤を含む、請求項1から35のいずれかに記載の共懸濁剤。
【請求項37】
前記噴射剤が、HFA噴射剤、PFC噴射剤およびそれらの組合せから選択される噴射剤を含む、請求項36に記載の共懸濁剤。
【請求項38】
前記懸濁媒体が、貧溶媒、可溶化剤、共溶媒、アジュバント、PVPおよびPEGから選択される1つまたは複数の成分と組み合わせて噴射剤を含む、請求項1から35のいずれかに記載の共懸濁剤。
【請求項39】
前記活性剤粒子が、製粉、粉砕、結晶化、再結晶、および超臨界または超臨界近傍の沈殿プロセスから選択される微粉化プロセスにより調製され、前記懸濁粒子が、噴霧乾燥プロセスを用いて調製される、請求項1から38のいずれかに記載の共懸濁剤。
【請求項40】
計量体積を分配するための作動装置を備える出口バルブの付いた缶を具備し、前記缶が請求項1から39のいずれかに記載の共懸濁剤を含有する定量噴霧式吸入器であって、前記缶が空になるまで、±30%またはより良好な送達用量均一性(「DDU」)、±25%またはより良好なDDU、および±20%またはより良好なDDUから選択される、前記共懸濁製剤についてのDDUを呈する定量噴霧式吸入器。
【請求項41】
前記共懸濁剤を最初の微細粒子分率で分配し、前記定量噴霧式吸入器から分配される前記最初の微細粒子分率が、前記缶が空になるまで、前記定量噴霧式吸入器から送達される前記微細粒子分率が前記最初の微細粒子分率の80%以内に維持されるように実質的に維持される、請求項40に記載の定量噴霧式吸入器。
【請求項42】
前記定量噴霧式吸入器から送達される前記微細粒子分率が前記最初の微細粒子分率の90%以内に維持される、請求項41に記載の定量噴霧式吸入器。
【請求項43】
前記定量噴霧式吸入器から送達される前記微細粒子分率が前記最初の微細粒子分率の95%以内に維持される、請求項41に記載の定量噴霧式吸入器。
【請求項44】
前記定量噴霧式吸入器の前記缶内に含有される前記共懸濁製剤が、少なくとも6カ月間保管安定性がある、請求項40から43のいずれかに記載の定量噴霧式吸入器。
【請求項45】
前記缶を6週間の期間にわたり6時間ごとに−5℃と40℃の温度に交互にさらした後、前記缶が空になるまで、±30%またはより良好な送達用量均一性(「DDU」)、±25%またはより良好なDDU、および±20%またはより良好なDDUから選択される前記共懸濁製剤についてのDDUを呈する、請求項40に記載の定量噴霧式吸入器。
【請求項46】
前記微細粒子分率が、前記缶を6週間の期間にわたり6時間ごとに−5℃と40℃の温度に交互にさらした後、前記缶が空になるまで実質的に維持される、請求項41から43のいずれかに記載の定量噴霧式吸入器。
【請求項47】
安定な共懸濁製剤を含有する定量噴霧式吸入器を調製する方法であって、
缶に、懸濁粒子と少なくとも1つの活性剤を含有する活性剤粒子とを入れるステップ、
1作動ごとに計量された量の前記共懸濁製剤を分配するように構成される作動装置バルブを前記缶の末端に取り付け、前記缶を密封するステップ、および
前記缶に、噴射剤を含む薬学的に許容できる懸濁媒体を詰めるステップを含み、
前記活性剤粒子、懸濁粒子および懸濁媒体が、前記活性剤粒子と懸濁粒子とを入れる前記ステップと前記缶に薬学的に許容できる懸濁媒体を詰める前記ステップとが請求項1から39のいずれかに記載の共懸濁製剤をもたらすように選択される方法。
【請求項48】
安定な共懸濁製剤を含有する定量噴霧式吸入器を調製する方法であって、
缶に、少なくとも1つの活性剤を含有する活性剤粒子と懸濁粒子とを入れるステップ、
1作動ごとに計量された量の前記共懸濁製剤を分配するように構成される作動装置バルブを前記缶の末端に取り付け、前記缶を密封するステップ、および
前記缶に、噴射剤を含む薬学的に許容できる懸濁媒体を詰めるステップを含み、
前記活性剤粒子、懸濁粒子および懸濁媒体が、前記活性剤粒子と懸濁粒子とを入れる前記ステップと前記缶に薬学的に許容できる懸濁媒体を詰める前記ステップとが請求項40から46のいずれかに記載の定量噴霧式吸入器をもたらすように選択される方法。
【請求項49】
活性剤を患者に呼吸器送達する方法であって、
請求項1から39のいずれかに記載の共懸濁製剤を含有する缶を備える定量噴霧式吸入器を供給するステップ、および
前記定量噴霧式吸入器を用いて前記共懸濁剤を前記患者に送達するステップ
を含む方法。
【請求項50】
前記共懸濁製剤を前記患者に送達するステップが、前記缶が空になるまで、±30%またはより良好なDDU、±25%またはより良好なDDU、および±20%またはより良好なDDUから選択されるDDUで前記共懸濁製剤を送達するステップを含む、請求項49に記載の方法。
【請求項51】
活性剤を患者に呼吸器送達する方法であって、
請求項40から46のいずれかに記載の定量噴霧式吸入器を供給するステップ、および
前記定量噴霧式吸入器を用いて前記共懸濁剤を前記患者に送達するステップ
を含む方法。
【請求項52】
炎症性または閉塞性の肺疾患または状態に罹患している患者を治療する方法であって、請求項1から39のいずれかに記載の治療上有効量の共懸濁剤をMDIにより前記患者に投与するステップを含む方法。
【請求項53】
前記疾患または状態が、喘息、COPD、他の薬物療法の結果生じる気道過反応性の増悪、アレルギー性鼻炎、副鼻腔炎、肺血管収縮、炎症、アレルギー、呼吸障害、呼吸窮迫症候群、肺高血圧症、肺血管収縮、ならびに嚢胞性線維症に伴う肺の炎症および閉塞から選択される、請求項52に記載の方法。
【請求項54】
前記治療上有効量の前記共懸濁剤を投与するステップが、
前記共懸濁剤を含有する缶を備える定量噴霧式吸入器を供給するステップ、および
DDUが、前記缶が空になるまで、±30%またはより良好なDDU、±25%またはより良好なDDU、および±20%またはより良好なDDUから選択されるように、前記定量噴霧式吸入器を用いて前記共懸濁剤を前記患者に送達するステップ
を含む、請求項53に記載の方法。



【図1】
image rotate

【図2】
image rotate

【図7】
image rotate

【図8】
image rotate

【図10】
image rotate

【図14】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図9】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図29】
image rotate

【図30】
image rotate


【公表番号】特表2012−528199(P2012−528199A)
【公表日】平成24年11月12日(2012.11.12)
【国際特許分類】
【出願番号】特願2012−513311(P2012−513311)
【出願日】平成22年5月28日(2010.5.28)
【国際出願番号】PCT/US2010/036650
【国際公開番号】WO2010/138862
【国際公開日】平成22年12月2日(2010.12.2)
【出願人】(511288061)パール セラピューティクス,インコーポレイテッド (3)
【Fターム(参考)】