説明

流体導入用の側面開口部を有するマイクロ流体チップ

マイクロ流体チップ(10)は、主面(30)と側面(40)を有する基板と、前記基板内にあり、流体を輸送するように適合されているマイクロ流体チャネル(50、60)とを含む。マイクロ流体チャネルは、流体を前記マイクロ流体チャネルに導入することを可能にする、前記基板の側面への側面開口部を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロ流体チップに関する。
【背景技術】
【0002】
本出願人のアジレント・テクノロジーズ社によるアジレント2100 バイオアナライザーにおいてのような微細構造技術の応用形態において、流体は、基板に形成された微小チャネル(ゲル材料で満たされ得る)を介して運ばれ得る。係る微細構造技術の応用形態の例としてのキャピラリー電気泳動装置の場合、電気力を用いて流体チャネル(流路)を介した流体の成分の輸送を可能にするために、電界が流体チャネルに生成される。係る電気力または電界は、マイクロ流体チップに結合されたキャリア要素により画定されたウェルに充填され得る流体に、キャピラリー電気泳動装置のコンタクトピンを浸漬して、係るコンタクトピンに電圧を印加することにより生成され得る。
【0003】
同じ出願人のアジレント・テクノロジーズ社による国際公開第00/78454号、ドイツ特許出願公開第19928412号、及び米国特許第6,814,846号は、様々なマイクロ流体チップ及び応用形態を示す。他のマイクロ流体デバイス及び応用形態は、例えば、国際公開第98/49548号、米国特許第6,280,589号、又は国際公開第96/04547号に開示される。
【0004】
大抵のマイクロ流体の用途において、マイクロ流体チップはキャリア(キャディ(入れ物、容器)とも呼ばれることが多い)と結合され、それによりキャリアがマイクロ流体チップの上面にウェル(例えば、10〜50マイクロリットルの容積を有する)を形成し、該ウェルにより流体をマイクロ流体チャネル内に供給する、及び/又は電極または供給圧力をウェルに適用してチャネルを介して流体を押し進めることが可能になる。
【0005】
開示
本発明の目的は、マイクロ流体チップに流体を導入することを改善することである。この目的は、独立請求項(単数または複数)により解決される。さらなる実施形態は、従属項(単数または複数)により示される。
【0006】
一実施形態において、マイクロ流体チップは、主面および側面を備える基板を有する。基板は、流体を輸送するように適合された少なくとも1つのマイクロ流体チャネルを含む。マイクロ流体チャネルは、基板の側面への側面開口を有し、従って、マイクロ流体チャネルへ流体を導入することが可能になる。
【0007】
マイクロ流体チップの側面に流体を供給するための開口を持ってくることにより、マイクロ流体チップの全く異なるレイアウトが達成され得る。従って、本発明の実施形態は、例えば、粉末ブラスト、超音波ドリル加工等を用いることにより、マイクロ流体チップの少なくとも一部を貫いてドリル加工することを通常必要とする、チップの主面上の開口を避けることを可能にする。特に、ガラスのチップを使用する場合、ガラスを貫いてドリル加工される穴の係る削減または回避は、ガラスのチップを製造するための労力とコストを大幅に低減することができる。
【0008】
更に、チップの側面へチップ開口を導くことにより、チップサイズが低減され得る。その理由は、マイクロ流体チップの主面上に上部ウェルを適用することが通常、技術的に実現可能な態様でウェルを設けるために或る程度の面積を必要とするからである。従って、マイクロ流体チャネルが、互いにより接近して実装されることができ、より短いチャネル経路長も達成され得る。
【0009】
マイクロ流体チップが、2つの層(例えば、ガラス板)から成り、マイクロ流体チャネル(単数または複数)が一方の層に形成されており、他方の層がチャネル(単数または複数)を閉じるための上部層を提供する場合、側面開口部を設けることは、製造中に2つの板を位置合わせするための労力も低減する。その理由は、上側の板が、チャネル(単数または複数)と位置合わせされる必要がある任意の構造要素(スルーホール等)を必ずしも必要としないからである。
【0010】
また、本発明の実施形態は、例えば、マイクロ流体チップに流体を供給するためのキャリアにより、マイクロ流体チップの上面が覆われるように、キャリアがマイクロ流体チップの上面に積み重ねられている従来技術においてのような大半の実施形態とは対照的に、両側からマイクロ流体チップにアクセスする(例えば、検出の目的で)ことも可能にする。これにより、例えば、検出システム、ヒータ等をマイクロ流体チップ又はそのチャネルに直接的に設けることを可能にする。
【0011】
一実施形態において、マイクロ流体チップは、側面開口部に結合された流体供給部を含み、流体供給部は、流体をマイクロ流体チャネルに供給するために設けられる。上述したような係る側面流体供給部は、当該技術において知られているような、上面(マイクロ流体チップの主面のような)からの流体供給を回避することを可能にする。
【0012】
好適な実施形態において、流体供給部は、流体を受け取り且つ側面開口部に供給するための流体を収容できるためのウェルを含む。係るウェルは、当該技術において知られているような任意の種類のウェル構造とすることができるが、マイクロ流体チップの上面からその側面に移動されている。係るウェルは、PE(ポリエチレン)、ABS(アクリロニトリル/ブタジエン/スチロール)、POM(ポリオキシメチレン)、PMMA(ポリメタクリル酸メチル)等のような、プラスチック材料により形成され得る。ウェルは、マイクロ流体チップ内に、又はマイクロ流体チップと同じ材料により形成され得るが、最初はチップ材料と異なる材料が、ウェルとして使用され得る。例えば、ガラス材料のチップの場合、ウェルはプラスチック材料により形成され得る。
【0013】
一実施形態において、ウェルは、流れる流体により、又は流れる流体を支持するものにより提供される。係る実施形態において、側面開口部は、流体が流れる(即ち、流体が移動する又は移動状態にある)導管に結合され得る。
【0014】
開口部および/またはチップにウェルを結合するために、接着剤、成型結合(form-coupling)、及び/又は圧力結合が適用され得る。
【0015】
シール又はシーリング蓋が、基板に対してウェルを流体封止するために設けられ得る。
【0016】
一実施形態において、基板はキャリアにより、又はキャリアの中へ受容され、その場合、1つ又は複数のウェルがキャリアに、又はキャリアにより形成される。
【0017】
一実施形態において、流体供給部は、マイクロ流体チップから物理的に分離することができるキャピラリーを含む。キャピラリーはキャリアに受容されるか、又は側面開口部にキャピラリーを結合する他の構造体に受容され得る。キャピラリーを開口部に結合するために、接着剤が塗布され得る。次いで、キャピラリーは、例えば、チップに流体を供給するために流体リザーバに結合できる。
【0018】
一実施形態において、流体供給部は、マイクロ流体チップから物理的に分離することができる液滴用構造体を含む。液滴用構造体は、液滴を受け取り、例えば、付着力および/または毛細管力により、係る液滴を側面開口部に対して保持するように設けられている。一実施形態において、液滴用構造体は、側面開口部に対して液滴を案内する、側面開口部に結合されたアパーチャを有する。流体ディスペンサーが、液滴用構造体に液滴を分配するために設けられ得る。液滴用構造体から残っている流体または過剰な流体を除去するために、又は液滴用構造体を洗うために、圧力および/または真空が印加され得る。
【0019】
マイクロ流体チップを基準とした用語「側面」は、マイクロ流体チップの主面の外側端部まで延びる係る面を指すものとして理解されることができ、側面の面積は、主面の面積よりも非常に小さく、一般に主面の面積の何分の一かに過ぎない。側面は一般に主面に垂直(少なくとも、特定の許容誤差の範囲内)であるが、特定の傾斜を設けることも可能であり、即ち、係る傾斜は特定の製造プロセスから生じることができる。
【0020】
マイクロ流体チャネルは一般に主面の領域に平行に延在するが、チャネルは傾斜してもよく、即ち、傾斜して、それどころか垂直(即ち、主面の領域のベクトルに平行な方向)に延在する部分を有することもできる。好適な実施形態において、マイクロ流体チャネルは、主面の領域に主として平行(又は主面の領域ベクトルに垂直)に延在し、それは、主面に平行に延在する係る部分のチャネル長の割合が、主面に垂直に延在するチャネルの係る部分よりも非常に大きいことを意味する。
【0021】
好適な実施形態において、マイクロ流体チップは、複数のマイクロ流体チャネルを含み、各マイクロ流体チャネルは、基板の側面のうちの1つに側面開口部を有する。
【0022】
基板は、2つ又はそれより多い層により具現化され、マイクロ流体チャネル(単数または複数)は、例えば、層のうちの一方に、又は2つの隣接する層により、又はそれらの組合せにより形成されている。また、基板は、3層構造により具現化されることもでき、当該技術において知られているように、チャネルは、例えば、中間層により形成される。
【0023】
基板は、ガラス材料、PS(ポリスチロール)、PC(ポリカーボネート)等のようなプラスチック材料、イットリウムディオキシド又は任意の他の適切なセラミック材料のようなセラミック材料、又は当該技術で知られているような任意の他の適切な材料からなることができる。
【0024】
好適には、基板は実質的に平坦に形づくられ、その主面は最も大きい面積を有する面であり、一般に基板の上面または下面である。マイクロ流体チャネルの典型的なチャネルの幅は、1〜1000マイクロメータ、特に30〜500マイクロメータの範囲内とすることができる。典型的なチャネルの高さは、1〜100マイクロメータ、特に10〜30マイクロメータの範囲内とすることができる。
【0025】
マイクロ流体チップは好適には、電気泳動分離、クロマトグラフ分離、又は双方を行うように適合される。また、係る流体分離に基づいた、又は係る流体分離を用いる他の機能性も、流体プロセスの一部として、チップに、又は別個のデバイス又はシステムに具現化され得る。マイクロ流体チップは一般に、流体の移動相に溶かされたサンプル流体の様々な成分を分離するための分離経路を含む。
【0026】
マイクロ流体チップは、流体がマイクロ流体チャネルに輸送されるための駆動装置を有するマイクロ流体システムに適用され得る。係る駆動装置は、圧力源および/または電源(例えば、電気泳動分離を駆動するための)とすることができるか、又は圧力源および/または電源を含む。検出器は、例えば、分離プロセスの前後で、マイクロ流体チャネルの流体またはその一部を検出するために設けられ得る。
【0027】
本発明の実施形態は、1つ又は複数の適切なソフトウェアプログラムで部分的または完全に具現化され得るか、又はサポートされることができ、係るソフトウェアプログラムは、任意の種類のデータ媒体に格納され得るか、又は任意の種類のデータ媒体により提供されることができ、任意の適切なデータ処理ユニットで、又は任意の適切なデータ処理ユニットにより実行され得る。
【0028】
本発明の他の目的、及び本発明の実施形態の付随する多くの利点は、添付図面(単数または複数)に関連して、実施形態に関する以下のより詳細な説明を参照することにより、容易に理解され、且つより十分に理解されることになるであろう。実質的に又は機能的に等しい又は類似する要素は、同じ参照符号(単数または複数)により示される。
【図面の簡単な説明】
【0029】
【図1】本発明の実施形態によるマイクロ流体チップ10を示す図である。
【図2】ウェルの形態で側面流体供給部を有するマイクロ流体チップの実施形態を示す図である。
【図3】側面開口部に対する流体供給部がキャピラリー300により提供される、マイクロ流体チップの別の例示的な実施形態を示す図である。
【図4】液滴用構造体400を用いる流体供給部に関する別の例示的な実施形態を示す図である。
【図6】キャリア200の別の実施形態を示す図である。
【図7】キャリア200とチップ10との間の毛細管力に起因した隣接するウェル間の流体のクリーピングを低減または回避するための解決策を示す図である。
【図8】マイクロ流体チップ10の別の実施形態を示す図である。
【図9】矢印により示されるような流れる媒体が流れ込むウェル900を有する実施形態を示す図である。
【0030】
図1において、マイクロ流体チップ10は、2つの主面30Aと30B、及び4つの側面40A、40B、40C、及び40Dを備える基板20を有する。図1の例示的な実施形態におけるマイクロ流体チップ10は、実質的に平坦に形づくられ、その結果、各主面(例えば、30A)の面積は、各側面(例えば、40A)の面積よりもかなり大きい。
【0031】
図1の例において、基板20は、2つのマイクロ流体チャネル50と60を含み、マイクロ流体チャネルのそれぞれは流体を導くように適合されている。図1の例において、2つのマイクロ流体チャネル50と60は、互いに交差しており、電気泳動分離に使用されることができ、それにより、例えば、チャネル50は供給経路として使用され、チャネル60は分離経路として使用される。係る実施形態において、流体は、チャネル50に沿って輸送されることができ、特定のタイミングの時に、チャネル50と60の交差部分に現在配置された一部(所謂、流体プラグ)のみが分離経路60に引き入れられ、交差部分から引き出された流体プラグの様々な成分は、チャネル60の分離経路に沿って移動する間に分離される。係る技術は、当該技術において良く知られており、例えば、本明細書の導入部分で言及されたような従来技術において、詳細に説明されている。
【0032】
図1のマイクロ流体チップ10は、基板20の側面40への4つの側面開口部70A、70B、70C、及び70Dを有する。側面開口部70の少なくとも1つは、基板20の少なくとも1つのマイクロ流体チャネル内へ流体を導入するように設けられる。チャネル50が供給経路であり、チャネル60が分離経路を表す上記のような例において、側面開口部70Bがチャネル50内へ流体を導入するために設けられ、任意の側面開口部70A〜70Dは、チャネル50と60を介して流体を押し進めるために流体駆動装置に結合することを可能にするために設けられ得る。係る流体駆動装置は、チャネル50と60に沿って流体の荷電粒子を移動させるための電界を生成することを可能にする、それぞれの開口部70A〜70Dに結合する電極(図1には図示せず)とすることができる。
【0033】
図1の例におけるチャネル50と60は、電気泳動の技術で良く知られたようなゲル状物質で充填される。
【0034】
図2Aの実施形態において、マイクロ流体チップ10(図2Aに示されるように、図1の例として具現化され得る)がキャリア200の中へ配置される。キャリア200は、マイクロ流体チップ10が配置されるその内側に幾つかの側面形成部210を有し、その結果、マイクロ流体チップ10がウェル200の中へ挿入される場合に、基板の外壁と一緒になった形成部210は、ウェル220(図2Bを参照)を形成する。
【0035】
図2Bは、線A−Aに沿った断面図において、ウェル220の例示的な実施形態を示す。キャリア200はマイクロ流体チップ10に取り付けられ、キャリア200の形成部210がウェル220を形成する。マイクロ流体チャネル(ここでは、チャネル50)は開口部70Bを介してウェル220に通じており、その結果、ウェル220の中に収容された流体がチャネル50内へ導入される、又は導入され得る。
【0036】
図2Bの例において、電極230は、ウェル220の中へ導入され、従って、マイクロ流体チャネルを介して流体を移動させるためにウェル220に電位を印加することが可能になる。図2Bの例からも看取され得るように、ウェル220は、チャネル50の開口部がウェル220の底のレベルよりも幾分高くなるように、形づくられ得る。これは、ウェル220の底のレベルまで「沈む」ことを除いて、より大きな粒子をチャネル50に引き入れることを回避するために使用され得る。
【0037】
キャリア200は、例えば、チップ10とキャリア200の隣接する表面間に接着剤240を用いることにより、チップ10に取り付けられ得るか、又はその逆もまた同じである。しかしながら、ウェル200にチップ10を結合する任意の他の方法も同様に適用されることができ、例えば、シーリング、プレス嵌め、又は成形嵌め(form fitting)を用いる。
【0038】
図3において、キャピラリー300は、マイクロ流体チップ10の側面開口部70Bに直接的に結合されている。キャピラリー300は、マイクロ流体チップ10に対するキャピラリー300の結合に対して十分な機械的安定性を提供するために、保持具310により機械的に支持され得る。キャピラリー300は、図3の例示的な実施形態に示されるように、例えば、キャピラリー300と保持具310の隣接する表面間に接着剤320を使用することにより、保持具310と結合され得る。キャピラリーの反対側330は流体容器(図面には示されない)に結合されることができ、従って、マイクロ流体チップ10のマイクロ流体チャネル内に流体を供給することが可能になる。また、キャピラリー300は曲げられることもでき、従って、例えば、垂直の開口部を有する流体容器に結合することが可能になる。
【0039】
図4において、液滴用構造体400が、例えば、ピペット420又は任意の他の適切な装置から液滴(参照符号410として示される)を受け取り、側面開口部70Bに対して液滴410を(少なくとも一時的に)保持するために設けられる。図4の実施形態において、液滴410は、付着力により側面開口部70Bに対して保持される。図4の実施形態においてのような液滴用構造体400は、側面開口部70Bを有するチャネル50が通じている、(チャネル50に対して)垂直なスルーホール430を含む。スルーホール430内で側面開口部70に接近して液滴410を保持するためのスルーホール430の寸法は、当該技術において良く知られており、本明細書で詳細に説明される必要はない。
【0040】
スルーホール430から過剰な流体を除去する、又はスルーホール430を清浄にする又は洗うために、導管構造体440が、例えば、シールリング450を用いて、スルーホール430に結合され得る。スルーホール430の上部開口部に圧力を印加するか、又は例えば、構造体440の開口部460に低い圧力(真空)を印加することにより、スルーホール430内の流体は除去されることができ、新たな液滴410が順次に加えられ得る。
【0041】
図6Aの例において、マイクロ流体チップ10は、図2に関連して前述されたように、キャリア200の中へ挿入される。しかしながら、図2の実施形態におけるキャリア200は実質的に環状の形状をしているが、図6Aのキャリア200は、キャリア200を開閉することを可能にするヒンジ630により蝶着された半体610と620からなる。閉鎖機構640が、ヒンジ630に対して反対側の、半体610と620の端部に設けられ得る。閉鎖構造体640は、2つの半体610と620を閉鎖することを可能にするために、当該技術において知られているような(例えば、成形嵌め又は圧力嵌めを用いる)任意の構造を使用することができる。閉鎖構造体640は、キャリア200を可逆的に開閉するために設けられ得るが、一度だけキャリア200を閉じるように設けられてもよい。一実施形態において、図6Aに示されるように、キャリア200は2つの半体650と660により提供され、半体620と610はキャリアの外側の部品である。半体610と620は、キャリアをマイクロ流体チップ10と堅固にクランプ留めする又は固定するために、締め付けリング又は固定リングを提供する。
【0042】
図6Bは、線A−Aに沿った断面図をより詳細に示す。図6Bから看取され得るように、締め付け半体610は、マイクロ流体チップ10に取り付けられるキャリア半体660をクランプ留めして堅固に保持し、かくしてウェル220を形成する。シール蓋670が、流体密封の態様でキャリア200をチップ10と結合するために設けられ得る。係るシール蓋670は、シリコーン又は当該技術において知られているような任意の他の適切な材料から作成され得る。図6Aに示されているように、シール蓋670は、チップ10を取り囲んでいるが、個々のセクションにより提供されてもよい。
【0043】
図6Cは、マイクロ流体チップに対してキャリア(ここでは、キャリア半体660)をシールするためのメカニズムを示す別の実施形態を示す。シール蓋680(図6Aと図6Bに示されるようなシール蓋670とは異なる)がウェル220の領域においてキャリア200に取り付けられる。この実施形態において、キャリア200は、ウェル220の周りに形成部690を有する。シール蓋680はキャリア200に、且つ形成部690上に取り付けられ、ひとたびチップ10が図6Cの矢印により示されるようにキャリア200に対して取り付けられれば、チップ10に対してウェル220を流体的にシールする。
【0044】
チップのキャリアアセンブリの他の実施形態では、収縮プロセスを用いてチップ10をキャリア200と組み立てることができる。係る目的のために、キャリア200は加熱されることができ、チップ10が加熱されたキャリア200内へ圧入され、冷めると、キャリアはチップ10上へ収縮する。代案として、キャリア200は、チップ10に直接的に鋳造されるか、又はダイカストで鋳造されてもよい。
【0045】
図7において、(チャネルの向きに対して)垂直な開口部700(スルーホールとすることができる)が、隣接するウェル220Aと220Bとの間に設けられ、キャリア200とチップ10との間の毛細管力に起因した隣接するウェル間の流体の漏れ又はクリーピングを低減または回避する。開口部700はチップ10の方へ開いている。例えば、チップ10とキャリア200の側壁の間の「寄生チャネル」に沿ってウェル220Aからウェル220Bの方へクリーピングする流体は、開口部700に到達するやいなや、毛細管力によるクリーピングを阻止される。開口部がキャリア200とチップ10との間のより広い開口を提供するので、毛細管力は「近道」をして、漏れの流れが停止する。従って、隣接するウェル間の電気泳動の近道が回避され得る。
【0046】
図8は、用語「側面」が完全な切断面を必要としないばかりか、例えば、図8に示されたような段形状の構造体も包含することを示す。この実施形態において、マイクロ流体チップ10は、2つの層810と820からなり、層810は層820の上面に置かれている。チャネル50は、層810又は層820の何れか、或いは双方への欠刻により形成される。図1の実施形態とは対照的に、図8の層820は層810と部分的に重なるので、マイクロ流体チップ10の側面40は段形状を有する。ウェルは前述したことに従ってマイクロ流体チップ10に形成され得る。代案として又は更に、親水性表面830が開口部70に接近して設けられることができ、その結果、開口部70の前に配置された液滴が、親水性表面830で保持される。
【0047】
図9は、矢印により示されるような流れる媒体が流れ込むウェル900を示す。開口部70は、流体が流れているウェル900に結合している。これは、例えば、連続的な流体の監視を行うために、流れる流体のサンプルを吸い込むことを可能にする。

【特許請求の範囲】
【請求項1】
マイクロ流体チップ(10)であって、
主面(30)と側面(40)を有する基板と、
前記基板内にあり、流体を輸送するように適合されているマイクロ流体チャネル(50、60)とを含み、
前記マイクロ流体チャネルが、流体を前記マイクロ流体チャネルに導入することを可能にする、前記基板の側面への側面開口部を有する、マイクロ流体チップ(10)。
【請求項2】
前記側面開口部に結合された流体供給部(220、300)を含み、前記流体供給部が、前記マイクロ流体チャネルに流体を供給するように適合されている、請求項1に記載のマイクロ流体チップ。
【請求項3】
前記流体供給部が、
流体を受け取り、前記側面開口部に供給するためのその流体を収容するように適合されたウェル(220)、
流体容器に結合されるように適合されたキャピラリー(300)、及び
液滴(410)を受け取り、付着力および毛細管力の少なくとも1つのにより、その液滴を前記側面開口部に対して保持するように適合された液滴用構造体(400)のうち少なくとも1つからなる、請求項1又は2に記載のマイクロ流体チップ。
【請求項4】
前記流体供給部がウェルを含み、そのウェルが、
プラスチック材料、好適にはPE、ABS、POM、及びPMMAの少なくとも1つにより形成されたウェル、
前記マイクロ流体チップの材料とは異なる材料により形成されたウェル、
前記マイクロ流体チップの側面に形成されたウェル、
流れる流体を支持するように適合されたウェル、
ウェルを前記基板に流体封止するためのシール及びシール蓋の少なくとも1つ、及び
キャリアが前記基板を受容するように適合され、ウェルがそのキャリア内に又はそのキャリアにより形成されていることのうちの少なくとも1つからなる、請求項1〜3の何れかに記載のマイクロ流体チップ。
【請求項5】
前記流体供給部がキャピラリーを含み、そのキャピラリーが、
前記マイクロ流体チップから物理的に分離したデバイスであるキャピラリー、及び
キャピラリーを受容して、キャピラリーを前記側面開口部に結合するように適合されたキャリアであって、好適にはキャピラリーが接着剤により前記キャリアに結合されているキャリアのうちの少なくとも1つを含む、請求項3に記載のマイクロ流体チップ。
【請求項6】
前記流体供給部が、前記液滴用構造体を含み、その液滴用構造体が、
前記マイクロ流体チップから物理的に分離したデバイスである液滴用構造体、及び
液滴を前記側面開口部に案内するために前記側面開口部に結合されたアパーチャを有する液滴用構造体のうちの少なくとも1つからなる、請求項3に記載のマイクロ流体チップ。
【請求項7】
前記側面の面積が前記主面の面積の何分の一かに過ぎないこと、
前記側面が前記主面に実質的に垂直であること、
前記マイクロ流体チャネルが前記主面の領域に主として平行に延在すること、
複数のマイクロ流体チャネルのそれぞれが、各マイクロ流体チャネルに流体を導入することを可能にする、前記基板の側面のうちの1つへの側面開口部を有すること、
前記基板がガラス材料、プラスチック材料、セラミック材料からなるリストからの材料の1つからなること、
前記基板が少なくとも2つの層からなり、前記マイクロ流体チャネルが前記層のうちの1つに、又は2つの隣接する層により形成されていること、
前記基板が互いに付着された2つのガラス板からなり、前記マイクロ流体チャネルが前記ガラス板の少なくとも1つに形成されていること、
前記基板が実質的に平坦に形づくられていること、
前記マイクロ流体チップが、互いから少なくとも部分的にずれて、前記側面に段を形成する2つの層からなり、好適には前記側面開口部が前記段の屈曲部に開いていること、及び
前記マイクロ流体チャネルが、1〜1000μm、好適には30〜500μmの範囲内の幅を有し、1〜100μm、好適には10〜30μmの範囲内の高さを有することのうちの少なくとも1つを含む、請求項1〜6の何れかに記載のマイクロ流体チップ。
【請求項8】
前記マイクロ流体チップが、電気泳動流体分離およびクロマトグラフ流体分離の少なくとも1つを行うように適合されていること、及び
前記マイクロ流体チップが、流体の移動相に溶かされたサンプル流体の様々な成分を分離するための分離経路を含むことのうちの少なくとも1つを含む、請求項1〜7の何れかに記載のマイクロ流体チップ。
【請求項9】
請求項1〜8の何れかに記載のマイクロ流体チップを含むマイクロ流体システムであって、
流体を前記マイクロ流体チャネルで輸送するための駆動装置であって、その駆動装置が好適には、圧力源および電源の少なくとも1つを含む、駆動装置と、
前記マイクロ流体チャネルで輸送されている、又は輸送された流体を検出するための検出器とのうちの少なくとも1つを含み、
前記マイクロ流体システムが、前記マイクロ流体チップ上で電気泳動流体分離およびクロマトグラフ流体分離の少なくとも1つを行うように適合されている、マイクロ流体システム。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公表番号】特表2010−517001(P2010−517001A)
【公表日】平成22年5月20日(2010.5.20)
【国際特許分類】
【出願番号】特願2009−545835(P2009−545835)
【出願日】平成19年1月17日(2007.1.17)
【国際出願番号】PCT/EP2007/050448
【国際公開番号】WO2008/086893
【国際公開日】平成20年7月24日(2008.7.24)
【出願人】(399117121)アジレント・テクノロジーズ・インク (710)
【氏名又は名称原語表記】AGILENT TECHNOLOGIES, INC.
【Fターム(参考)】