説明

燃料直噴エンジン

【課題】 円周方向に配置された複数のキャビティ区分を備え、かつ逆スキッシュ流の大きさが円周方向に不均一な燃料直噴エンジンにおいて、キャビティにおける燃料および空気の混合状態を可及的に均一化する。
【解決手段】 円周方向に離間した複数の第1、第2キャビティ区分25A,25Bにそれぞれ第1、第2燃料噴射軸LfA,LfBに沿って燃料を噴射する。逆スキッシュ流が大きい第1キャビティ区分25Aは、第1キャビティ深さDc1および第1衝突点深さDp1を大きくし、かつ第1燃料反射軸LrAの第1燃料反射角β1を小さくする。一方、逆スキッシュ流が小さい第2キャビティ区分25Bは、第2キャビティ深さDc2および第2衝突点深さDp2を小さくし、かつ第2燃料反射軸LrBの第2燃料反射角β2を大きくする。これにより、第1キャビティ区分25Aから燃料が吹きこぼれたり、第2キャビティ区分25Bの底部に燃料が滞留したりするのを防止することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、円周方向に配置された複数のキャビティ区分を備え、かつ逆スキッシュ流の大きさが円周方向に不均一な燃料直噴エンジンに関する。
【背景技術】
【0002】
ピストンの平坦な頂面の中央部にキャビティを凹設し、ピストン中心軸上に配置したフュエルインジェクタから放射状に延びる複数の燃料噴射軸に沿ってキャビティの内面に燃料を噴射する燃料直噴ディーゼルエンジンにおいて、フュエルインジェクタから噴射された燃料が衝突するキャビティの内壁面に複数の溝(凹部)を形成し、フュエルインジェクタから噴射された燃料が前記溝に衝突するまでの燃料の噴射距離を増加させることで、燃料および空気の混合を促進するものが、下記特許文献1により公知である。
【特許文献1】実開昭58−2323号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
ところで上記特許文献1に記載されたものは、ピストンの頂面が平坦に形成されているため、ピストンが上死点から下降するときにキャビティの内部からピストンの外周部に向かう逆スキッシュ流の大きさが円周方向に均一になる。従って、キャビティの複数の溝の形状や、それらの溝とそこに燃料を噴射する燃料噴射軸との関係を一定にしても、燃料および空気の混合状態をキャビティ内の円周方向に均一化することが可能であった。
【0004】
しかしながら、例えばペントルーフ型のピストンを備えた燃料直噴エンジンでは逆スキッシュ流の大きさが円周方向に不均一になるため、キャビティを円周方向に配置された複数のキャビティ区分に区画し、各キャビティ区分を指向する燃料噴射軸に沿って燃料を噴射する場合、円周方向に不均一な逆スキッシュ流の大きさを考慮しないと、逆スキッシュ流の大きい部分でキャビティ区分から燃料が吹きこぼれたり、逆スキッシュ流の小さい部分でキャビティ区分の底部に燃料が滞留したりして、燃料および空気の混合状態をキャビティ内の円周方向に均一化することができない可能性がある。
【0005】
本発明は前述の事情に鑑みてなされたもので、円周方向に配置された複数のキャビティ区分を備え、かつ逆スキッシュ流の大きさが円周方向に不均一な燃料直噴エンジンにおいて、キャビティにおける燃料および空気の混合状態を可及的に均一化することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するために、請求項1に記載された発明によれば、頂面の高さが円周方向に変化するピストンと、前記ピストンの頂面の中央部に凹設されたキャビティと、前記キャビティの側壁からピストン中心軸に向かって突出する複数の凸部と、隣接する前記凸部間に形成されてピストン中心軸を囲むように配置された複数のキャビティ区分と、前記複数のキャビティ区分を指向する燃料噴射軸に沿って燃料を噴射するフュエルインジェクタとを備え、逆スキッシュ流の大きさが円周方向に変化する燃料直噴エンジンにおいて、逆スキッシュ流が相対的に大きい位置に配置された前記キャビティ区分を第1キャビティ区分とし、逆スキッシュ流が相対的に小さい位置に配置された前記キャビティ区分を第2キャビティ区分としたとき、逆スキッシュ流の大きさに応じて、前記第1、第2キャビティ区分の形状および/または前記第1、第2キャビティ区分とそれらを指向する第1、第2燃料噴射軸との位置関係を相互に異ならせたことを特徴とする燃料直噴エンジンが提案される。
【0007】
また請求項2に記載された発明によれば、請求項1の構成に加えて、前記第1キャビティ区分の周壁面と前記第1燃料噴射軸に沿って噴射された燃料との衝突点を第1衝突点とし、前記第2キャビティ区分の周壁面と前記第2燃料噴射軸に沿って噴射された燃料との衝突点を第2衝突点としたとき、前記第1衝突点の前記第1キャビティ区分の開口端からの第1衝突点深さを、前記第2衝突点の前記第2キャビティ区分の開口端からの第2衝突点深さよりも大きくしたことを特徴とする燃料直噴エンジン。
【0008】
また請求項3に記載された発明によれば、請求項1または請求項2の構成に加えて、前記第1燃料噴射軸に沿って噴射された燃料が前記第1衝突点に衝突した後の燃料噴霧の軸線を第1燃料反射軸とし、前記第2燃料噴射軸に沿って噴射された燃料が前記第2衝突点に衝突した後の燃料噴霧の軸線を第2燃料反射軸としたとき、前記第1、第2燃料反射軸はそれぞれ前記第1、第2キャビティ区分の開口端側を指向するとともに、前記第1燃料反射軸とピストン中心軸に垂直な平面との成す第1燃料反射角を、前記第2燃料反射軸とピストン中心軸に垂直な平面との成す第2燃料反射角よりも小さくしたことを特徴とする燃料直噴エンジンが提案される。
【0009】
また請求項4に記載された発明によれば、請求項1〜請求項3の何れか1項の構成に加えて、第1キャビティ区分の開口端と底面との距離である第1キャビティ深さを、第2キャビティ区分の開口端と底面との距離である第2キャビティ深さよりも大きくしたことを特徴とする燃料直噴エンジンが提案される。
【0010】
また請求項5に記載された発明によれば、請求項1〜請求項4の何れか1項の構成に加えて、ピストン中心軸方向に見たとき、前記第1、第2衝突点において前記第1、第2キャビティ区分の周壁面と前記第1、第2燃料噴射軸とが成す燃料衝突角を鈍角に設定したことを特徴とする燃料直噴エンジンが提案される。
【0011】
また請求項6に記載された発明によれば、請求項1〜請求項5の何れか1項の構成に加えて、スキッシュエリアが円周方向に変化し、前記スキッシュエリアが大きい位置ほど逆スキッシュ流が大きくなり、前記第1キャビティ区分を前記スキッシュエリアが相対的に大きい位置に配置し、前記第2キャビティ区分を前記スキッシュエリアが相対的に小さい位置に配置したことを特徴とする燃料直噴エンジンが提案される。
【0012】
また請求項7に記載された発明によれば、請求項1〜請求項5の何れか1項の構成に加えて、スキッシュエリアの幅が円周方向に変化し、前記幅が大きい位置ほど逆スキッシュ流が大きくなり、前記第1キャビティ区分を前記幅が相対的に大きい位置に配置し、前記第2キャビティ区分を前記幅が相対的に小さい位置に配置したことを特徴とする燃料直噴エンジンが提案される。
【0013】
また請求項8に記載された発明によれば、請求項1〜請求項5の何れか1項の構成に加えて、スキッシュエリアの稜線長さが円周方向に変化し、前記稜線長さが大きい位置ほど逆スキッシュ流が大きくなり、前記第1キャビティ区分を前記稜線長さが相対的に大きい位置に配置し、前記第2キャビティ区分を前記稜線長さが相対的に小さい位置に配置したことを特徴とする燃料直噴エンジンが提案される。
【0014】
また請求項9に記載された発明によれば、請求項1〜請求項5の何れか1項の構成に加えて、スキッシュクリアランスが円周方向に変化し、前記スキッシュクリアランスが小さい位置ほど逆スキッシュ流が大きくなり、前記第1キャビティ区分を前記スキッシュクリアランスが相対的に小さい位置に配置し、前記第2キャビティ区分を前記スキッシュクリアランスが相対的に大きい位置に配置したことを特徴とする燃料直噴エンジンが提案される。
【0015】
また請求項10に記載された発明によれば、ピストンピンと平行な方向に延びる頂部を挟んで傾斜する二つの傾斜面を含むペントルーフ型の頂面を有するピストンと、前記ピストンの頂面の中央部に凹設されたキャビティと、前記キャビティの側壁からピストン中心軸に向かって突出する複数の凸部と、隣接する前記凸部間に形成されてピストン中心軸を囲むように配置された複数のキャビティ区分と、前記複数のキャビティ区分を指向する燃料噴射軸に沿って燃料を噴射するフュエルインジェクタとを備える燃料直噴エンジンにおいて、前記頂部の方向から相対的に遠い位置に配置された前記キャビティ区分を第1キャビティ区分とし、前記頂部の方向から相対的に近い位置に配置された前記キャビティ区分を第2キャビティ区分としたとき、前記頂部からの距離に応じて、前記第1、第2キャビティ区分の形状および/または前記第1、第2キャビティ区分とそれらを指向する第1、第2燃料噴射軸との位置関係を相互に異ならせたことを特徴とする燃料直噴エンジンが提案される。
【0016】
また請求項11に記載された発明によれば、請求項10の構成に加えて、前記第1キャビティ区分の周壁面と前記第1燃料噴射軸に沿って噴射された燃料との衝突点を第1衝突点とし、前記第2キャビティ区分の周壁面と前記第2燃料噴射軸に沿って噴射された燃料との衝突点を第2衝突点としたとき、前記第1衝突点の前記第1キャビティ区分の開口端からの第1衝突点深さを、前記第2衝突点の前記第2キャビティ区分の開口端からの第2衝突点深さよりも大きくしたことを特徴とする燃料直噴エンジンが提案される。
【0017】
また請求項12に記載された発明によれば、請求項10または請求項11の構成に加えて、前記第1燃料噴射軸に沿って噴射された燃料が前記第1衝突点に衝突した後の燃料噴霧の軸線を第1燃料反射軸とし、前記第2燃料噴射軸に沿って噴射された燃料が前記第2衝突点に衝突した後の燃料噴霧の軸線を第2燃料反射軸としたとき、前記第1、第2燃料反射軸はそれぞれ前記第1、第2キャビティ区分の開口端側を指向するとともに、前記第1燃料反射軸とピストン中心軸に垂直な平面との成す第1燃料反射角を、前記第2燃料反射軸とピストン中心軸に垂直な平面との成す第2燃料反射角よりも小さくしたことを特徴とする燃料直噴エンジンが提案される。
【0018】
また請求項13に記載された発明によれば、請求項10〜請求項12の何れか1項の構成に加えて、第1キャビティ区分の開口端と底面との距離である第1キャビティ深さを、第2キャビティ区分の開口端と底面との距離である第2キャビティ深さよりも大きくしたことを特徴とする燃料直噴エンジンが提案される。
【0019】
また請求項14に記載された発明によれば、請求項10〜請求項13の何れか1項の構成に加えて、ピストン中心軸方向に見たとき、前記第1、第2衝突点において前記第1、第2キャビティ区分の周壁面と前記第1、第2燃料噴射軸とが成す燃料衝突角を鈍角に設定したことを特徴とする燃料直噴エンジンが提案される。
【0020】
また請求項15に記載された発明によれば、請求項10〜請求項14の何れか1項の構成に加えて、スキッシュエリアが円周方向に変化し、前記スキッシュエリアが大きい位置ほど逆スキッシュ流が大きくなり、前記第1キャビティ区分を前記スキッシュエリアが相対的に大きい位置に配置し、前記第2キャビティ区分を前記スキッシュエリアが相対的に小さい位置に配置したことを特徴とする燃料直噴エンジンが提案される。
【0021】
また請求項16に記載された発明によれば、請求項10〜請求項14の何れか1項の構成に加えて、スキッシュエリアの幅が円周方向に変化し、前記幅が大きい位置ほど逆スキッシュ流が大きくなり、前記第1キャビティ区分を前記幅が相対的に大きい位置に配置し、前記第2キャビティ区分を前記幅が相対的に小さい位置に配置したことを特徴とする燃料直噴エンジンが提案される。
【0022】
また請求項17に記載された発明によれば、請求項10〜請求項14の何れか1項の構成に加えて、スキッシュエリアの稜線長さが円周方向に変化し、前記稜線長さが大きい位置ほど逆スキッシュ流が大きくなり、前記第1キャビティ区分を前記稜線長さが相対的に大きい位置に配置し、前記第2キャビティ区分を前記稜線長さが相対的に小さい位置に配置したことを特徴とする燃料直噴エンジンが提案される。
【0023】
また請求項18に記載された発明によれば、請求項10〜請求項14の何れか1項の構成に加えて、スキッシュクリアランスが円周方向に変化し、前記スキッシュクリアランスが小さい位置ほど逆スキッシュ流が大きくなり、前記第1キャビティ区分を前記スキッシュクリアランスが相対的に小さい位置に配置し、前記第2キャビティ区分を前記スキッシュクリアランスが相対的に大きい位置に配置したことを特徴とする燃料直噴エンジンが提案される。
【発明の効果】
【0024】
請求項1または請求項10の構成によれば、ピストンの頂面の高さが円周方向に変化するために、あるいはピストンがペントルーフ型の頂面を有するために、逆スキッシュ流の大きさが円周方向に変化する燃料直噴エンジンにおいて、ピストンのキャビティをピストン中心軸を囲むように配置された複数のキャビティ区分に区画し、各キャビティ区分を指向する複数の燃料噴射軸に沿って燃料を噴射するので、キャビティ区分の壁面に沿って流れる燃料が増加して初期燃焼が小さくなって後期燃焼を大きくなることで、熱発生率のピーク値を低減することができるだけでなく、隣接する燃料噴射軸間に残存する未利用空気を減少させて燃焼状態を改善することができる。しかも逆スキッシュ流が相対的に大きい位置に配置された第1キャビティ区分と、逆スキッシュ流が相対的に小さい位置に配置された第2キャビティ区分との形状を相互に異ならせ、あるいは第1、第2キャビティ区分とそれらを指向する第1、第2燃料噴射軸との位置関係を相互に異ならせたので、逆スキッシュ流の大きい部分でキャビティ区分から燃料が吹きこぼれたり、逆スキッシュ流の小さい部分でキャビティ区分の底部に燃料が滞留したりするのを防止し、キャビティの円周方向全域で空気および燃料の混合状態を均一化することができる。
【0025】
また請求項2または請求項11の構成によれば、第1キャビティ区分の周壁面と第1燃料噴射軸に沿って噴射された燃料との衝突点である第1衝突点の第1キャビティ区分の開口端からの第1衝突点深さを、第2キャビティ区分の周壁面と第2燃料噴射軸に沿って噴射された燃料との衝突点である第2衝突点の第2キャビティ区分の開口端からの第2衝突点深さよりも大きくしたので、逆スキッシュ流が大きい第1キャビティ区分では第1衝突点を深くして燃料の吹きこぼれを防止し、逆スキッシュ流が小さい第2キャビティ区分では第2衝突点を浅くして燃料の滞留を防止することができる。
【0026】
また請求項3または請求項12の構成によれば、第1燃料噴射軸に沿って噴射された燃料が第1衝突点に衝突した後に第1キャビティ区分の開口端側を指向する燃料噴霧の軸線である第1燃料反射軸とピストン中心軸に垂直な平面との成す第1燃料反射角を、第2燃料噴射軸に沿って噴射された燃料が第2衝突点に衝突した後に第2キャビティ区分の開口端側を指向する燃料噴霧の軸線である第2燃料反射軸とピストン中心軸に垂直な平面との成す第2燃料反射角よりも小さくしたので、逆スキッシュ流が大きい第1キャビティ区分では第1燃料反射軸の上向き度合いを小さくして燃料の吹きこぼれを防止し、逆スキッシュ流が小さい第2キャビティ区分では第2燃料反射軸の上向き度合いを大きくして燃料の滞留を防止することができる。
【0027】
また請求項4または請求項13の構成によれば、第1キャビティ区分の開口端と底面との距離である第1キャビティ深さを、第2キャビティ区分の開口端と底面との距離である第2キャビティ深さよりも大きくしたので、逆スキッシュ流が大きい第1キャビティ区分では燃料が第1キャビティ区分の底部に溜まり易くして燃料の吹きこぼれを防止し、逆スキッシュ流が小さい第2キャビティ区分では燃料が第2キャビティ区分の底部に溜まり難くして燃料の滞留を防止することができる。
【0028】
また請求項5または請求項14の構成によれば、ピストン中心軸方向に見たときに第1、第2衝突点において第1、第2キャビティ区分の周壁面と第1、第2燃料噴射軸とが成す燃料衝突角を鈍角に設定したので、第1、第2衝突点に衝突した燃料は第1、第2キャビティ区分の周壁面に沿う旋回流となり、燃料と空気との接触面積を減少させて熱発生率のピーク値を低減しながら、隣接する燃料噴射軸間に未利用空気が発生するのを防止して燃焼状態を改善することができる。
【0029】
また請求項6または請求項15の構成によれば、スキッシュエリアが円周方向に変化するために逆スキッシュ流の大きさが円周方向に変化しても、逆スキッシュ流が大きい方向(即ちスキッシュエリアが大きい方向)に第1キャビティ区分を配置し、逆スキッシュ流が小さい方向(即ちスキッシュエリアが小さい方向)に第2キャビティ区分を配置したので、逆スキッシュ流の大きい部分で第1キャビティ区分から燃料が吹きこぼれたり、逆スキッシュ流の小さい部分で第2キャビティ区分の底部に燃料が滞留したりするのを防止することができる。
【0030】
また請求項7または請求項16の構成によれば、スキッシュエリアの幅が円周方向に変化するために逆スキッシュ流の大きさが円周方向に変化しても、逆スキッシュ流が大きい方向(即ちスキッシュエリアの幅が大きい方向)に第1キャビティ区分を配置し、逆スキッシュ流が小さい方向(即ちスキッシュエリアの幅が小さい方向)に第2キャビティ区分を配置ので、逆スキッシュ流の大きい部分で第1キャビティ区分から燃料が吹きこぼれたり、逆スキッシュ流の小さい部分で第2キャビティ区分の底部に燃料が滞留したりするのを防止することができる。
【0031】
また請求項8または請求項17の構成によれば、スキッシュエリアの稜線長さが円周方向に変化するために逆スキッシュ流の大きさが円周方向に変化しても、逆スキッシュ流が大きい方向(即ちスキッシュエリアの稜線長さが大きい方向)に第1キャビティ区分を配置し、逆スキッシュ流が小さい方向(即ちスキッシュエリアの稜線長さが小さい方向)に第2キャビティ区分を配置したので、逆スキッシュ流の大きい部分で第1キャビティ区分から燃料が吹きこぼれたり、逆スキッシュ流の小さい部分で第2キャビティ区分の底部に燃料が滞留したりするのを防止することができる。
【0032】
また請求項9または請求項18の構成によれば、スキッシュクリアランスが円周方向に変化するために逆スキッシュ流の大きさが円周方向に変化しても、逆スキッシュ流が大きい方向(即ちスキッシュクリアランスが小さい方向)に第1キャビティ区分を配置し、逆スキッシュ流が小さい方向(即ちスキッシュクリアランスが大きい方向)に第2キャビティ区分を配置したので、逆スキッシュ流の大きい部分で第1キャビティ区分から燃料が吹きこぼれたり、逆スキッシュ流の小さい部分で第2キャビティ区分の底部に燃料が滞留したりするのを防止することができる。
【発明を実施するための最良の形態】
【0033】
以下、本発明の実施の形態を添付の図面に基づいて説明する。
【0034】
図1〜図9は本発明の実施の形態を示すもので、図1はディーゼルエンジンの要部縦断面図、図2は図1の2−2線矢視図、図3は図1の3−3線矢視図、図4はピストンの上部斜視図、図5はピストン中心軸方向に見たキャビティの展開図、図6は図3の6−6線断面図、図7は図3の7−7線断面図、図8は図5の8Aー8A線展開図および8Bー8B線展開図、図9は本発明および従来例の熱発生率を比較する図である。
【0035】
図1〜図4に示すように、燃料直噴型のディーゼルエンジンは、シリンダブロック11に形成されたシリンダ12に摺動自在に嵌合するピストン13を備えており、ピストン13はピストンピン14およびコネクティングロッド15を介して図示せぬクランクシャフトに接続される。シリンダブロック11の上面に結合されるシリンダヘッド16の下面に、ピストン13の頂面に対向する2個の吸気バルブ孔17,17と、2個の排気バルブ孔18,18とが開口しており、吸気バルブ孔17,17に吸気ポ−ト19が連通し、排気バルブ孔18,18に排気ポート20が連通する。吸気バルブ孔17,17は吸気バルブ21,21で開閉され、排気バルブ孔18,18は排気バルブ22,22で開閉される。ピストン中心軸Lp上に位置するようにフュエルインジェクタ23が設けられるとともに、フュエルインジェクタ23に隣接するようにグロープラグ24が設けられる。
【0036】
図1および図4から明らかなように、ピストン13の頂面と、そこに対向するシリンダヘッド16の下面とは平坦ではなく断面三角形のペントルーフ状に傾斜しており、この形状により、吸気ポ−ト19および排気ポート20の湾曲度を小さくするとともに吸気バルブ孔17,17および排気バルブ孔18,18の直径を確保し、吸気効率および排気効率を高めることができる。
【0037】
ピストン13の頂面には、ピストン中心軸Lpを中心とするキャビティ25が凹設される。キャビティ25の径方向外側には、ピストンピン14と平行に直線状に延びる頂部13a,13aから吸気側および排気側に向かって下向きに傾斜する一対の傾斜面13b,13bと、傾斜面13b,13bの下端近傍に形成されてピストン中心軸Lpに直交する一対の平坦面13c,13cと、頂部13a,13aの両端を平坦に切り欠いた一対の切欠き部13d,13dとが形成される。
【0038】
図5から明らかなように、キャビティ25の外周部からピストン中心軸Lpに向けて60°間隔で6個の凸部13e…が突出しており、6個の凸部13e…の間にピストン中心軸Lp側が開放した6個の円形のキャビティ区分25A…;25B,25Bが形成される。これにより、キャビティ25は6枚の花弁を有する花のような形状となる。60°間隔でピストン中心軸Lpまわりに配置される6個のキャビティ区分25A…;25B,25Bのうち、2個の第2キャビティ区分25B,25Bは概ねピストンピン14の方向に配置され、4個の第1キャビティ区分25A…は概ねピストンピン14の方向に対して60°の角度で交差する方向に配置される。
【0039】
ピストン中心軸Lpに沿って配置されたフュエルインジェクタ23は、ピストン中心軸Lp上の仮想的な点である燃料噴射点Oinjを中心として円周方向に60°間隔で離間する6つの方向に燃料を噴射する。6本の燃料噴射軸LfA…,LfB,LfBのうちの2本の第2燃料噴射軸LfB,LfBは、ピストン中心軸Lp方向に見てピストンピン14と重なっており、他の4本の第1燃料噴射軸LfA…は、ピストンピン14の方向に対して60°の角度で交差している。従って、2本の第2燃料噴射軸LfB,LfBは2個の第2キャビティ区分25B,25Bの内部にそれぞれ燃料を噴射し、4本の第1燃料噴射軸LfA…は4個の第1キャビティ区分25A…の内部にそれぞれ燃料を噴射する。
【0040】
またピストン中心軸Lpに直交する方向に見て、6本の第1、第2燃料噴射軸LfA…,LfB,LfBは斜め下向きに傾斜しており、その下向きの度合いは第1燃料噴射軸LfA…については大きく、第2燃料噴射軸LfB,LfB,については小さくなっている(図6および図7参照)。
【0041】
尚、フュエルインジェクタ23が実際に燃料を噴射する噴射点はピストン中心軸Lpから径方向外側に僅かにずれているが、前記燃料噴射点Oinjは前記第1、第2燃料噴射軸LfA…,LfB,LfBがピストン中心軸Lpと交差する点として定義される。
【0042】
ところで、圧縮行程でピストン13が上死点に接近すると、ピストン13のキャビティ25を囲む頂面とシリンダヘッド16の下面との間に形成される環状のスキッシュエリアSA(図6および図7参照)の容積が減少することで、スキッシュエリアSAからキャビティ25に向かって径方向内向きに流れるスキッシュ流が発生する。またピストン13が上死点から下降を開始するとスキッシュエリアSAの容積が増加することで、キャビティ25からスキッシュエリアSAに向かって径方向外向きに流れる逆スキッシュ流が発生する。ピストン13の円周方向の各位置において、スキッシュ流と逆スキッシュ流とは方向が逆で略同じ大きさになるが、本実施の形態では、ピストン13がペントルーフ状の頂面を備えていることで、スキッシュ流および逆スキッシュ流の大きさは円周方向に不均一になる。
【0043】
逆スキッシュ流の大きさはスキッシュエリアSAの形状に左右され、本実施の形態ではピストンピン14に沿う方向の断面で逆スキッシュ流が最も小さくなり、ピストンピン14に直交する方向の断面で逆スキッシュ流が最も大きくなる。よって第2燃料噴射軸LfB,LfBを含むピストンピン14に沿う断面(図6参照)での逆スキッシュ流よりも、第1燃料噴射軸LfA…を含むピストンピン14に対して60°で交差する方向の断面(図7参照)での逆スキッシュ流の方が大きくなる。
【0044】
その理由は、図3から明らかなように、ピストンピン14に沿う方向の断面ではスキッシュエリアSAの幅WがW2と小さくなり、ピストンピン14に対して60°で交差する方向の断面ではスキッシュエリアSAの幅WがW1と大きくなるからである。
【0045】
このように、逆スキッシュ流の大きさは基本的にスキッシュエリアSAの径方向の幅Wに依存するが、スキッシュエリアSAの径方向の稜線長さに依存するとも言える。スキッシュエリアSAの径方向の稜線長さとは、断面となって示されるスキッシュエリアSAに沿う屈曲した折れ線の長さであり、その稜線長さが小さいほど逆スキッシュ流が小さくなり、その稜線長さが大きいほど逆スキッシュ流が大きくなる。
【0046】
更に、逆スキッシュ流の大きさは、ピストン13の上死点におけるスキッシュエリアSAの厚さであるスキッシュクリアランスにも依存し、スキッシュクリアランスが小さいと逆スキッシュ流が大きくなり、スキッシュクリアランスが大きいと逆スキッシュ流が小さくなる。本実施の形態ではピストンピン14に沿う方向の断面(図6参照)ではスキッシュクリアランスCがC2と大きくなって逆スキッシュ流が小さくなり、ピストンピン14に対して60°で交差する方向の断面(図7参照)ではスキッシュクリアランスCがC1と小さくなって逆スキッシュ流が大きくなる。
【0047】
以上説明したように、スキッシュエリアSAの形状に応じて逆スキッシュ流の大きさが円周方向に不均一になると、フュエルインジェクタ23がキャビティ25の内部に均一に燃料を噴射しても、逆スキッシュ流が大きい部分では燃料がキャビティ25の開口端25bから吸い出されたり、逆に逆スキッシュ流が小さい部分では燃料がキャビティ25の底部に滞留したりし、キャビティ25の内部での燃料および空気の混合状態が不均一になって燃焼状態が悪化したり、排気有害物質が増加したり、煤が発生したりする可能性がある。
【0048】
そこで本実施の形態では、第1、第2キャビティ区分25A…;25B,25Bの形状と、第1、第2キャビティ区分25A…;25B,25Bおよび第1、第2燃料噴射軸LfA…,LfB,LfBの位置関係とを工夫することで、キャビティ25の内部における燃料の燃焼状態を改善している。
【0049】
先ず、図5において、キャビティ25をピストン中心軸Lp方向に見たとき、円形を成す第1、第2キャビティ区分25A…;25B,25Bの中心O…は、第1、第2燃料噴射軸LfA…,LfB,LfBに対して反時計方向にずれており、その第1、第2燃料衝突点P1…,P2,P2におけるキャビティ区分25A…;25B,25Bの周壁面25a…の接線と第1、第2燃料噴射軸LfA…,LfB,LfBとが成す燃料衝突角αは、鈍角に設定される。
【0050】
図6および図7から明らかなように、ピストンピン14の方向(ピストン13の頂部13a,13aの方向)から遠いために逆スキッシュ流が大きい位置にある4個の第1キャビティ区分25A…の底壁の、キャビティ25の開口端25bから測った第1キャビティ深さDc1は、ピストンピン14の方向に近いために逆スキッシュ流が小さい位置にある2個の第2キャビティ区分25B,25Bの底壁の、キャビティ25の開口端25bから測った第2キャビティ深さDc2よりも大きくなっている(Dc1>Dc2)。
【0051】
ピストンピン14の方向から遠いために逆スキッシュ流が大きい位置にある4個の第1キャビティ区分25A…の第1燃料衝突点P1の、キャビティ25の開口端25bから測った第1衝突点深さDp1は、ピストンピン14の方向に近いために逆スキッシュ流が小さい位置にある2個の第2キャビティ区分25B,25Bの第2燃料衝突点P2の、キャビティ25の開口端25bから測った第2衝突点深さDp2よりも大きくなっている(Dp1>Dp2)。
【0052】
図8(A)から明らかなように、逆スキッシュ流が大きい第1キャビティ区分25Aの周壁部25aの下端の第1衝突点P1に、第1燃料噴射軸LfAに沿って斜め下向きに衝突した燃料は、第1燃料反射軸LrAに沿って斜め上向きに反射する。同様に逆スキッシュ流が小さい第2キャビティ区分25Bの周壁部25aの下端の第2衝突点P2に、第2燃料噴射軸LfBに沿って斜め下向きに衝突した燃料は、第2燃料反射軸LrBに沿って斜め上向きに反射する。第1燃料反射軸LrAおよび第2燃料反射軸LrBが、ピストン中心軸Lpに直交する平面に対する上向きの角度として定義される第1燃料反射角β1および第2燃料反射角β2は、第1燃料反射角β1が第2燃料反射角β2よりも小さくなるように(β1<β2)、第1、第2衝突点P1,P2の付近の第1、第2キャビティ区分25A…;25B,25Bの壁面の形状が設定される。
【0053】
次に、上記構成を備えた本発明の実施の形態の作用を説明する。
【0054】
逆スキッシュ流の大きさはキャビティ25の円周方向に不均一であり、ピストンピン14の方向に対して遠い第1燃料噴射軸LfA…に沿う方向では、スキッシュエリアSAの幅が大きく、稜線の長さが大きく、スキッシュクリアランスCが小さいことで逆スキッシュ流が大きくなり、第1燃料噴射軸LfA…に沿って第1キャビティ区分25A…に噴射された燃料は外部に吸い出され易くなる。一方、ピストンピン14の方向に対して近い第2燃料噴射軸LfB,LfBに沿う方向では、スキッシュエリアSAの幅が小さく、稜線の長さが小さく、スキッシュクリアランスCが大きいことで逆スキッシュ流が小さくなり、第2燃料噴射軸LfB,LfBに沿って第2キャビティ区分25B,25Bに噴射された燃料は底部に対流し易くなる。
【0055】
本実施の形態では、燃料がキャビティ25の外部に吸い出され易い第1キャビティ区分25A…では、第1キャビティ区分25A…の第1キャビティ深さDc1を大きくし、第1キャビティ区分25A…の第1燃料衝突点P1の第1衝突点深さDp1を大きくし、かつ第1燃料衝突点P1において燃料が上向きに反射する第1燃料反射角β1を小さくすることで、第1キャビティ区分25A…から燃料がキャビティ25の外部に吸い出され難くすることができる。
【0056】
また燃料がキャビティ25の底部に滞留し易い第2キャビティ区分25B,25Bでは、第2キャビティ区分25B,25Bの第2キャビティ深さDc2を小さくし、第2キャビティ区分25B,25Bの第2燃料衝突点P2の第2衝突点深さDp2を小さくし、かつ第2燃料衝突点P2において燃料が上向きに反射する第2燃料反射角β2を大きくすることで、第2キャビティ区分25B,25Bから燃料がキャビティ25の底部に滞留し難くすることができる。
【0057】
以上のように、噴射された燃料がキャビティ25の底部に滞留する傾向と、逆スキッシュ流が燃料をキャビティ25から吸い出す傾向とを相殺させ、キャビティ25内の全域で燃料を均一に拡散させて外部への流出を防止し、混合気の燃焼状態を改善して排気有害物質や煤の発生を抑制することができる。
【0058】
また図5に示すように、第1、第2燃料噴射軸LfA…,LfB,LfBが第1、第2キャビティ区分25A…;25B,25Bの周壁面25a…の接線に対して成す燃料衝突角αが鈍角に設定されているため、第1、第2衝突点P1,P2において反射した燃料は第1、第2キャビティ区分25A…;25B,25Bの周壁面25a…に沿って反時計方向に旋回する。その結果、燃料および空気の接触面積が減少するため、図9に示すように、従来例の単純な円形のキャビティに比べて、燃焼過程の前期の燃焼が小さく後期の燃焼が大きくなることで、熱発生率ROHR(熱発生速度)のピークを低減することができる。
【0059】
以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0060】
例えば、実施の形態ではフュエルインジェクタ23が60°間隔で離間する6つの方向に燃料を噴射しているが、燃料の噴射方向は6つの方向に限定されるものではない。
【0061】
また実施の形態では燃料直噴ディーゼルエンジンについて説明したが、本発明はディーゼルエンジン以外の燃料直噴エンジンに対して適用することができる。
【図面の簡単な説明】
【0062】
【図1】ディーゼルエンジンの要部縦断面図
【図2】図1の2−2線矢視図
【図3】図1の3−3線矢視図
【図4】ピストンの上部斜視図
【図5】ピストン中心軸方向に見たキャビティの展開図
【図6】図3の6−6線断面図
【図7】図3の7−7線断面図
【図8】図5の8Aー8A線展開図および8Bー8B線展開図
【図9】本発明および従来例の熱発生率を比較する図
【符号の説明】
【0063】
13 ピストン
13a 凸部
14 ピストンピン
23 フュエルインジェクタ
25 キャビティ
25a 周壁部
25b 開口端
25A 第1キャビティ区分
25B 第2キャビティ区分
C スキッシュクリアランス
Dc1 第1キャビティ深さ
Dc2 第2キャビティ深さ
Dp1 第1衝突点深さ
Dp2 第2衝突点深さ
LfA 第1燃料噴射軸
LfB 第2燃料噴射軸
LrA 第1燃料反射軸
LrB 第2燃料反射軸
SA スキッシュエリア
W スキッシュエリアの幅
α 燃料衝突角
β1 第1燃料反射角
β2 第2燃料反射角

【特許請求の範囲】
【請求項1】
頂面の高さが円周方向に変化するピストン(13)と、
前記ピストン(13)の頂面の中央部に凹設されたキャビティ(25)と、
前記キャビティ(25)の側壁からピストン中心軸(Lp)に向かって突出する複数の凸部(13e)と、
隣接する前記凸部(13e)間に形成されてピストン中心軸(Lp)を囲むように配置された複数のキャビティ区分(25A,25B)と、
前記複数のキャビティ区分(25A,25B)を指向する燃料噴射軸(LfA,LfB)に沿って燃料を噴射するフュエルインジェクタ(23)とを備え、
逆スキッシュ流の大きさが円周方向に変化する燃料直噴エンジンにおいて、
逆スキッシュ流が相対的に大きい位置に配置された前記キャビティ区分を第1キャビティ区分(25A)とし、逆スキッシュ流が相対的に小さい位置に配置された前記キャビティ区分を第2キャビティ区分(25B)としたとき、
逆スキッシュ流の大きさに応じて、前記第1、第2キャビティ区分(25A,25B)の形状および/または前記第1、第2キャビティ区分(25A,25B)とそれらを指向する第1、第2燃料噴射軸(LfA,LfB)との位置関係を相互に異ならせたことを特徴とする燃料直噴エンジン。
【請求項2】
前記第1キャビティ区分(25A)の周壁面(25a)と前記第1燃料噴射軸(LfA)に沿って噴射された燃料との衝突点を第1衝突点(P1)とし、前記第2キャビティ区分(25B)の周壁面(25a)と前記第2燃料噴射軸(LfB)に沿って噴射された燃料との衝突点を第2衝突点(P2)としたとき、前記第1衝突点(P1)の前記第1キャビティ区分(25A)の開口端(25b)からの第1衝突点深さ(Dp1)を、前記第2衝突点(P2)の前記第2キャビティ区分(25B)の開口端(25b)からの第2衝突点深さ(Dp2)よりも大きくしたことを特徴とする、請求項1に記載の燃料直噴エンジン。
【請求項3】
前記第1燃料噴射軸(LfA)に沿って噴射された燃料が前記第1衝突点(P1)に衝突した後の燃料噴霧の軸線を第1燃料反射軸(LrA)とし、前記第2燃料噴射軸(LfB)に沿って噴射された燃料が前記第2衝突点(P2)に衝突した後の燃料噴霧の軸線を第2燃料反射軸(LrB)としたとき、前記第1、第2燃料反射軸(LrA,LrB)はそれぞれ前記第1、第2キャビティ区分(25A,25B)の開口端(25b)側を指向するとともに、前記第1燃料反射軸(LrA)とピストン中心軸(Lp)に垂直な平面との成す第1燃料反射角(β1)を、前記第2燃料反射軸(LrB)とピストン中心軸(Lp)に垂直な平面との成す第2燃料反射角(β2)よりも小さくしたことを特徴とする、請求項1または請求項2に記載の燃料直噴エンジン。
【請求項4】
第1キャビティ区分(25A)の開口端(25b)と底面との距離である第1キャビティ深さ(Dc1)を、第2キャビティ区分(25B)の開口端(25b)と底面との距離である第2キャビティ深さ(Dc2)よりも大きくしたことを特徴とする、請求項1〜請求項3の何れか1項に記載の燃料直噴エンジン。
【請求項5】
ピストン中心軸(Lp)方向に見たとき、前記第1、第2衝突点(P1,P2)において前記第1、第2キャビティ区分(25A,25B)の周壁面(25a)と前記第1、第2燃料噴射軸(LfA,LfB)とが成す燃料衝突角(α)を鈍角に設定したことを特徴とする、請求項1〜請求項4の何れか1項に記載の燃料直噴エンジン。
【請求項6】
スキッシュエリア(SA)が円周方向に変化し、前記スキッシュエリア(SA)が大きい位置ほど逆スキッシュ流が大きくなり、
前記第1キャビティ区分(25A)を前記スキッシュエリア(SA)が相対的に大きい位置に配置し、前記第2キャビティ区分(25B)を前記スキッシュエリア(SA)が相対的に小さい位置に配置したことを特徴とする、請求項1〜請求項5の何れか1項に記載の燃料直噴エンジン。
【請求項7】
スキッシュエリア(SA)の幅(W)が円周方向に変化し、前記幅(W)が大きい位置ほど逆スキッシュ流が大きくなり、
前記第1キャビティ区分(25A)を前記幅(W)が相対的に大きい位置に配置し、前記第2キャビティ区分(25B)を前記幅(W)が相対的に小さい位置に配置したことを特徴とする、請求項1〜請求項5の何れか1項に記載の燃料直噴エンジン。
【請求項8】
スキッシュエリア(SA)の稜線長さが円周方向に変化し、前記稜線長さが大きい位置ほど逆スキッシュ流が大きくなり、
前記第1キャビティ区分(25A)を前記稜線長さが相対的に大きい位置に配置し、前記第2キャビティ区分(25B)を前記稜線長さが相対的に小さい位置に配置したことを特徴とする、請求項1〜請求項5の何れか1項に記載の燃料直噴エンジン。
【請求項9】
スキッシュクリアランス(C)が円周方向に変化し、前記スキッシュクリアランス(C)が小さい位置ほど逆スキッシュ流が大きくなり、
前記第1キャビティ区分(25A)を前記スキッシュクリアランス(C)が相対的に小さい位置に配置し、前記第2キャビティ区分(25B)を前記スキッシュクリアランス(C)が相対的に大きい位置に配置したことを特徴とする、請求項1〜請求項5の何れか1項に記載の燃料直噴エンジン。
【請求項10】
ピストンピン(14)と平行な方向に延びる頂部(13a)を挟んで傾斜する二つの傾斜面(13b)を含むペントルーフ型の頂面を有するピストン(13)と、
前記ピストン(13)の頂面の中央部に凹設されたキャビティ(25)と、
前記キャビティ(25)の側壁からピストン中心軸(Lp)に向かって突出する複数の凸部(13e)と、
隣接する前記凸部(13e)間に形成されてピストン中心軸(Lp)を囲むように配置された複数のキャビティ区分(25A,25B)と、
前記複数のキャビティ区分(25A,25B)を指向する燃料噴射軸(LfA,LfB)に沿って燃料を噴射するフュエルインジェクタ(23)と、
を備える燃料直噴エンジンにおいて、
前記頂部(13a)の方向から相対的に遠い位置に配置された前記キャビティ区分を第1キャビティ区分(25A)とし、前記頂部(13a)の方向から相対的に近い位置に配置された前記キャビティ区分を第2キャビティ区分(25B)としたとき、
前記頂部(13a)からの距離に応じて、前記第1、第2キャビティ区分(25A,25B)の形状および/または前記第1、第2キャビティ区分(25A,25B)とそれらを指向する第1、第2燃料噴射軸(LfA,LfB)との位置関係を相互に異ならせたことを特徴とする燃料直噴エンジン。
【請求項11】
前記第1キャビティ区分(25A)の周壁面(25a)と前記第1燃料噴射軸(LfA)に沿って噴射された燃料との衝突点を第1衝突点(P1)とし、前記第2キャビティ区分(25B)の周壁面(25a)と前記第2燃料噴射軸(LfB)に沿って噴射された燃料との衝突点を第2衝突点(P2)としたとき、前記第1衝突点(P1)の前記第1キャビティ区分(25A)の開口端(25b)からの第1衝突点深さ(Dp1)を、前記第2衝突点(P2)の前記第2キャビティ区分(25B)の開口端(25b)からの第2衝突点深さ(Dp2)よりも大きくしたことを特徴とする、請求項10に記載の燃料直噴エンジン。
【請求項12】
前記第1燃料噴射軸(LfA)に沿って噴射された燃料が前記第1衝突点(P1)に衝突した後の燃料噴霧の軸線を第1燃料反射軸(LrA)とし、前記第2燃料噴射軸(LfB)に沿って噴射された燃料が前記第2衝突点(P2)に衝突した後の燃料噴霧の軸線を第2燃料反射軸(LrB)としたとき、前記第1、第2燃料反射軸(LrA,LrB)はそれぞれ前記第1、第2キャビティ区分(25A,25B)の開口端(25b)側を指向するとともに、前記第1燃料反射軸(LrA)とピストン中心軸(Lp)に垂直な平面との成す第1燃料反射角(β1)を、前記第2燃料反射軸(LrB)とピストン中心軸(Lp)に垂直な平面との成す第2燃料反射角(β2)よりも小さくしたことを特徴とする、請求項10または請求項11に記載の燃料直噴エンジン。
【請求項13】
第1キャビティ区分(25A)の開口端(25b)と底面との距離である第1キャビティ深さ(Dc1)を、第2キャビティ区分(25B)の開口端(25b)と底面との距離である第2キャビティ深さ(Dc2)よりも大きくしたことを特徴とする、請求項10〜請求項12の何れか1項に記載の燃料直噴エンジン。
【請求項14】
ピストン中心軸(Lp)方向に見たとき、前記第1、第2衝突点(P1,P2)において前記第1、第2キャビティ区分(25A,25B)の周壁面(25a)と前記第1、第2燃料噴射軸(LfA,LfB)とが成す燃料衝突角(α)を鈍角に設定したことを特徴とする、請求項10〜請求項13の何れか1項に記載の燃料直噴エンジン。
【請求項15】
スキッシュエリア(SA)が円周方向に変化し、前記スキッシュエリア(SA)が大きい位置ほど逆スキッシュ流が大きくなり、
前記第1キャビティ区分(25A)を前記スキッシュエリア(SA)が相対的に大きい位置に配置し、前記第2キャビティ区分(25B)を前記スキッシュエリア(SA)が相対的に小さい位置に配置したことを特徴とする、請求項10〜請求項14の何れか1項に記載の燃料直噴エンジン。
【請求項16】
スキッシュエリア(SA)の幅(W)が円周方向に変化し、前記幅(W)が大きい位置ほど逆スキッシュ流が大きくなり、
前記第1キャビティ区分(25A)を前記幅(W)が相対的に大きい位置に配置し、前記第2キャビティ区分(25B)を前記幅(W)が相対的に小さい位置に配置したことを特徴とする、請求項10〜請求項14の何れか1項に記載の燃料直噴エンジン。
【請求項17】
スキッシュエリア(SA)の稜線長さが円周方向に変化し、前記稜線長さが大きい位置ほど逆スキッシュ流が大きくなり、
前記第1キャビティ区分(25A)を前記稜線長さが相対的に大きい位置に配置し、前記第2キャビティ区分(25B)を前記稜線長さが相対的に小さい位置に配置したことを特徴とする、請求項10〜請求項14の何れか1項に記載の燃料直噴エンジン。
【請求項18】
スキッシュクリアランス(C)が円周方向に変化し、前記スキッシュクリアランス(C)が小さい位置ほど逆スキッシュ流が大きくなり、
前記第1キャビティ区分(25A)を前記スキッシュクリアランス(C)が相対的に小さい位置に配置し、前記第2キャビティ区分(25B)を前記スキッシュクリアランス(C)が相対的に大きい位置に配置したことを特徴とする、請求項10〜請求項14の何れか1項に記載の燃料直噴エンジン。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−144540(P2010−144540A)
【公開日】平成22年7月1日(2010.7.1)
【国際特許分類】
【出願番号】特願2008−320140(P2008−320140)
【出願日】平成20年12月16日(2008.12.16)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】