説明

燃料電池装置

【課題】燃料電池装置の始動方法を提供する。
【解決手段】燃料電池スタック(100)を含む燃料電池装置の始動運転の方法であって、(i)陽極入口バルブ(153)を開いて、燃料を前記燃料電池スタック(110)の陽極部分に入れるステップと、(ii)前記燃料電池スタックの陰極空気流入口(126)と連通する空気圧縮装置(133)を操作して、空気を前記燃料電池スタック(110)の陰極部に入れるステップと、(iii)前記陰極入口(126)及び/または出口(121)の温度を監視するステップと、(iv)いったん、前記陰極入口及び/または出口を通過する流体の温度があらかじめ設定されたレベルを超えると、注水装置を操作して水を前記陰極部に注入するステップとを含んでおり、前記燃料電池スタック(110)の1つ、またはそれより多くのセルにわたって測定された電圧が第1の電圧閾値より低下しないように、前記燃料電池スタック(110)から出力される電流を制限する方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池装置の運転、及び燃料電池装置に関連する装置に関する。排他的ではないが、とりわけ、燃料電池装置の始動運転の方策に関する。
【背景技術】
【0002】
水は、燃料電池装置(a fuel cell system)の運転、例えば、ここで述べられる、陽子交換膜(PEM)の周りにとりつく燃料電池スタック(a fuel cell stack)を含む燃料電池装置の形態においては必須である。陽極流路からPEMを通って導かれる陽子(水素イオン)は、陰極流路にある酸素との化学反応によって、水を生成する。過剰な水は、覆水(flooding)とその結果として生ずる性能低下を避けるために、燃料電池スタックから除去される必要がある。しかしながら、燃料電池の最適な性能を達成するように、ある量の水は、PEMの水和を維持するために、少なくとも陰極流路にある必要がある。この水の管理は、慎重な注入と除去により、燃料電池スタックから過剰な熱を除去するために有益なメカニズムももたらす。
【0003】
性能を最適化するため、そのような燃料電池装置では、水は、スタックの陰極流路への注入を通じて慎重に使用され得る。そのような注水をする燃料電池装置は、分離冷却溝(separate cooling channels)を使用する他の形式の燃料電池と比較すると、大きさと複雑さとを減少させる潜在的な利点がある。水は、特許文献1に例示されるように、水分配マニホルド(water distribution manifolds)を通して陰極流路に直接的に注入される。
【0004】
注水装置は、PEMの汚濁とその結果として生ずるスタック性能の劣化を避けるために、陰極流路に戻す水が高純度であることが重要である。しかしながら、この高純度の要求は、水の氷点を低下させる添加物を使用することができないことを意味する。とりわけ、自動車のアプリケーションにおいて、典型的な要求には、氷結下からの始動が含まれている。燃料電池が実際に使用されうる環境を再現すると、これは、典型的には−20℃もの低温である。高純度の水が(1バールの圧力において)0℃の氷点を有しているから、燃料電池装置に残された水は、十分な時間を経れば、燃料電池の停止(shut-down)後に氷結する。
【0005】
燃料電池装置、とりわけ陰極流路内の氷は、スタックの正常運転の妨げ、あるいは運転自体の妨げとさえなりうる。もし、陰極流路の一部でも氷により閉ざされたら、陰極に空気を通すことができず、燃料電池は、氷点より高く自己加熱することができない。そのため、スタック全体を加熱する他の方法が必要となり、これは、燃料電池が電力供給を開始して自己加熱する前に、外部電力の消費を必要とする。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】英国特許出願公開第2409763号明細書
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の課題は、上述した問題のうち、1つ、またはそれより多くを解決することである。
【課題を解決するための手段】
【0008】
第1の態様に係る発明は、燃料電池スタックを含む燃料電池装置の始動運転の方法を提供する。前記方法は、以下のステップを含む。
【0009】
(i)陽極入口バルブ(anode inlet valve)を開いて、燃料を前記燃料電池スタックの陽極部分(a cathode volume)に入れる。
(ii)前記燃料電池スタックの陰極空気流入口と連通する(fluid communication)空気圧縮装置(air compressor)を操作して、空気を前記燃料電池スタックの陰極部(a anode volume)に入れる。
(iii)陰極入口及び/または出口の温度を監視する。
(iv)いったん、前記陰極入口及び/または出口を通過する流体の温度があらかじめ設定されたレベル(a preset level)を超えると、注水装置を操作して水を前記陰極部に注入する。
【0010】
ここで、前記燃料電池スタックの1つ、またはそれより多くのセルにわたって測定された電圧が第1の電圧閾値より低下しないように、前記燃料電池スタックから出力される電流を制限する。
【0011】
第2の態様に係る発明は、複数の燃料電池を含む燃料電池スタックを提供する。前記燃料電池スタックの各端部は、集電板(a current collector plate)と端板(an end plate)の間に配置された加熱板(a heater plate)を有している。各加熱板は、それぞれの端板から熱的に絶縁されている。
【0012】
第3の態様に係る発明は、燃料電池スタックと電気制御装置(an electrical control unit)とを含む燃料電池装置を提供する。前記電気制御装置は、以下の(i)〜(iv)を行うように構成されている。
【0013】
(i)陽極インレットバルブ(anode inlet valve)を開いて、燃料を前記燃料電池スタックの陽極部分(a cathode volume)に入れる。
(ii)前記燃料電池スタックの陰極空気流入口と連通する(fluid communication)空気圧縮装置(air compressor)を操作して、空気を前記燃料電池スタックの陰極部(a cathode volume)に入れる。
(iii)前記陰極入口及び/または出口の温度を監視する。
(iv)いったん、前記陰極入口及び/または出口を通過する流体の温度があらかじめ設定されたレベル(a preset level)を超えると、注水装置を操作して水を前記陰極部に注入する。
【0014】
ここで、前記電気制御装置は、前記燃料電池スタックからの出力電流を、前記燃料電池スタックのうち、1つ、またはそれより多くのセルにわたって測定された電圧が第1の電圧閾値より低下しないように制限する。
【0015】
第4の態様に係る発明は、燃料電池スタックと電気制御装置とを含む燃料電池装置を提供する。前記電気制御装置は、前記燃料電池スタック内の複数のセルからの電圧出力の標準偏差に基づいて、前記燃料電池装置の運転を最適化するように、前記燃料電池スタックの運転パラメータ(operating parameters)の調整を行う構成を備える。
【0016】
第5の態様に係る発明は、燃料電池スタックと電気制御装置とを含む燃料電池装置の最適化運転の方法を提供する。
【0017】
この方法は、前記燃料電池スタックの複数のセルからの電圧出力を前記電気制御装置に通知することと、前記複数のセルからの前記電圧出力の標準偏差に基づいて、前記燃料電池装置の運転を最適化することとを含んでいる。
【0018】
ここで、前記電気制御装置は、前記燃料電池装置の運転を最適化するように、前記燃料電池スタックの運転パラメータ(operating parameters)を調整する。
【発明の効果】
【0019】
以上述べたように、本発明によれば、上述した問題のうち、1つ、またはそれより多くを解決することができる。
【図面の簡単な説明】
【0020】
【図1】燃料電池装置全体内の多種のコンポーネントの概略図である。
【図2】燃料電池装置の電気制御装置の適例の概略図である。
【図3】燃料電池スタックの適例の概略側面図である。
【図4a】燃料電池スタックの加熱板の適例の斜視図である。
【図4b】燃料電池スタックの加熱板の適例の斜視図である。
【図5】燃料電池スタックの適例の概略部分断面図である。
【図6】始動手順の適例の概略フロー図である。
【図7】燃料電池装置から測定された様々なパラメータを示す一連のカーブである。
【発明を実施するための形態】
【0021】
発明は、上記の添付図面を参照して、例示によってのみ述べられる。
【0022】
図1は、燃料電池スタック110と他の付随するコンポーネントとを含む燃料電池装置100の適例の概略図である。燃料電池スタック110は、これを通る陰極流路を有しており、その陰極流路は空気流入口124を含んでおり、空気流入口124は、空気流入路(an air inlet line)123へと至り、陰極空気流入口126においてスタックの中へと導かれる。燃料電池スタック110内の内部陰極部(an internal cathode volume)(図示せず)を通った後、陰極流路は、燃料電池スタック110を出て陰極出口流路(the cathode exit line)121に入り、陰極排出路122と排出閉塞バルブ120を通る。通常運転の間、排出閉塞バルブ120は、部分的に、または全体的に開放される。熱交換器130、それに付随する冷却ファン139、水分離器131などの様々なコンポーネントが、陰極流路の陰極出口流路121及び排出路122に接続されるか、もしくはそれらの一部をなしている。また、温度センサTX1,TX2,TX3,TX5と圧力センサPX2,PX3もあり、陰極流路の流入路123及び出口流路121を監視するように適当な場所において接続されている。
【0023】
本明細書中の「陰極システム」という表現は、燃料電池スタック内の陰極部(the cathode volume)に付随する燃料電池装置100の当該部分を網羅することを意図している。これらは、様々な入口、出口、液体と気体の両方のための再循環路及び排出路などの、陰極部と連通する(fluid communication)コンポーネントだけではなく、入口、出口、内部流路、水分配構造などの燃料電池の様々な内部コンポーネントを含む。「陰極流路」の用語は、空気流入口124から空気圧縮装置133、流入路123、燃料電池スタック110の陰極部、陰極出口流路121を通る流体流路を含む陰極システムの一組を網羅することを意図している。「陽極システム」及び「陽極流路」の用語は、陽極部分(anode volume)に付随する燃料電池装置100の様々なコンポーネントを参照して、同様に解釈される。
【0024】
空気圧縮装置133は、陰極空気流入路123に接続され、圧縮された空気を陰極流路に供給する。空気流入口熱交換器134、流量計(a flow meter)135、1つ、またはそれより多くのエアフィルタ136,137、空気加熱器138などの他のコンポーネントが、空気流入口124と燃料電池スタック110の間の陰極流入路123に存在してもよい。空気流入口熱交換器134は、冷却路141、三方向バルブ142、温度センサTX7と組み合わされて用いられ、燃料電池装置100の運転中に、冷却路141からの冷却剤とともに、空気圧縮装置133からの空気を予備加熱する。冷却路141は、空気流入口熱交換器134を通り抜け、圧縮装置133の後段の空気流から熱を抜き出すように構成された独立の冷却回路を形成している。冷却路141は、装置100の始動中に陰極空気流入路123中の入口側空気流から熱が奪われることを避けるために、好ましくは、燃料電池スタック110が通常運転温度に到達した後に運転されるのがよい。路141の冷却剤は、バルブ142の使用を通じて迂回させることができ、冷却剤を熱交換器134に送出するか否かを制御することができる。冷却路141は、陰極システムへ供給される水から独立しているから、高純度の水の要求は同じではない。したがって、冷却路141において使用される冷却剤は、使用される冷却剤の氷点を下げるためのグリコールなどの添加物を含んでもよい。
【0025】
燃料は、水素ガスの形態において典型的には、減圧バルブ151と、通常は閉塞されるソレノイド作動バルブの形態が好適な作動バルブ152とを介して、燃料電池装置に入る。燃料供給源150は、水素ガスの形態では、典型的には燃料電池装置から離れて配置される。例えば、車両の後部に面する加圧タンクの形態である。さらなるソレノイド作動バルブ153と減圧バルブ154が、燃料源150と燃料電池スタック110の陽極入口156の間の陽極流路の燃料流入路155において、燃料電池スタック110のより近くに設けられていてもよい。したがって、2つの別々のバルブのセットが、陽極入口156に連結して設けられている。1つのセット151,152はタンクの近くにあり、他方のセット153,154は燃料電池スタック110のより近くにあり、これらの間には中間加圧燃料流路119がある。減圧バルブ154は、乾燥した燃料ガスの圧力を、燃料電池スタック110への導入に適したレベルに制限する。減圧バルブ154は、予め設定された圧力設定を適用した受動装置であることが好ましいが、能動的に制御された装置であってもよい。燃料加熱器145は、選択的に設けられ、例えば、図1に示されるように、バルブ153の手前の加圧燃料流路119にあってもよいし、もしくは、これに代えて、減圧バルブ154の前段、または後段の燃料流入路155にあってもよい。
【0026】
さらなる作動バルブ161が、陽極出口流路165にある。各作動バルブ152,153,161は、要求に従ってバルブの霜取りを行うために局所的な加熱要素を設けてもよいが、ソレノイドを通る電流によるバルブ152,153,161の作動によって、ある程度の加熱は得られる。作動バルブ152,153,161は、それぞれ、フェイルセーフ(fail-safe)となるように構成されていると好適である。すなわち、バルブは、ソレノイドを電流が流れることによって作動したときのみに開放される。
【0027】
陽極流路内の燃料の圧力を監視して、低減するために、圧力センサPX1、及び/または圧力軽減バルブ157を設けてもよい。圧力軽減バルブ157は、陽極流路内の圧力が安全な運転レベルを超えたときに、開放にセットされて、圧力軽減排出路158を通じて陽極流路から燃料を排出すると好適である。
【0028】
さらなる手動操作可能なバルブ162が陽極出口流路165にあってもよい。このバルブ162は、例えば、陽極流路の減圧を確保する動作中に使用される。燃料電池スタック110の陽極流路内の水集合体(water build-up)は、例えば、陰極側からPEMを通した水分の拡散の結果として生ずる。その結果、排出路164に存在する水を分離するために、陽極排水分離器163を陽極排出路164に設けてもよい。この水は、排出されるか、選択的に再循環させることもできる。燃料電池スタック110の運転中、バルブ161は、典型的には閉じられたままであり、陽極流路から水集合体を排出するために断続的に開放されるのみである。
【0029】
陰極注水口127は燃料電池スタック110に設けられており、注水口127は陰極注水路125と接続されている。陰極注水路125は、その長さの一部、または全部にわたって加熱されるようにしてもよく、保水容器140(a water containment vessel)と陰極注水口127の間を結ぶ。路125の特定部分を加熱する加熱器129を設けて、注水路125を通って陰極注水口127に向かう水を加熱してもよい。運転中の路125中の背圧を監視するために、さらなる圧力センサPX4を陰極注水路125に設けてもよい。
【0030】
陰極出口流路121からの水は、水帰還路128を通して、保水容器140に向かって水ポンプ132を用いてくみ出される。水ポンプ132は、選択的に加熱器143を備えてもよい。過剰な水は、オーバーフロー流路(overflow line)144を通って保水容器140外へと、燃料電池装置100から排水される。
【0031】
陽極出口側ソレノイドバルブ161は、燃料電池スタック110から排出される飽和気体と液体の流れを制限するように構成されている。陽極入口側ソレノイドバルブ153のように、陽極出口側ソレノイドバルブ161は、電気的に制御され、開放と閉塞の何れであってもよいが、好ましくは非作動時は閉塞されるのがよい。バルブ161は、液体、または飽和気体の流れに曝されるため、装置100の停止時、バルブの周りに水滴がつく。したがって、装置が、サブゼロ周囲条件(sub-zero ambient conditions)に曝されると、バルブ161は、凍結して閉塞することがある。単にバルブを作動させても、通常、氷の破壊には不十分であり、このため、励起コイルによる内部加熱の使用とともに、加熱構成要素166による外部加熱の組み合わせが必要となることがある。
【0032】
加熱器166は、陽極出口側水分離器163と同じように、陽極出口側ソレノイドバルブ161にも熱を加えるように構成するとよい。加熱器166は、正の温度係数(PTC:Positive Temperature Coefficient)の加熱構成要素を含み、適切な温度範囲に制限されるのがよい。陽極出口流路の水分離器163は、燃料電池スタック110の陽極出口159から排出される混合気体及び液体の流れから、水を分離するように構成されている。好ましくは、陽極出口流路の水分離器163は、陽極排水路167を通る水が、排水中に泡形状の飽和気体を含まないように構成するとよい。これにより、陽極の排水中に潜在的な爆発性混入物が生ずるリスクを最小化するためである。残った燃料気体は、陽極入口156に再循環するとよい。
【0033】
図1に示された陽極システムの構成は、燃料電池スタック110内の漏れを検出することにも使用される。陽極出口側ソレノイドバルブ161とバイパスバルブ165を閉塞状態に維持しつつ、陽極入口側ソレノイドバルブ153を開放すると、所定量の気体が燃料電池スタック110の陽極部分に流れ込む。そして、陽極入口側ソレノイドバルブ153を閉塞し、陽極入口156の圧力は、圧力センサPX1の手段により時間にわたって監視される。時間関数として圧力を、PEMを通る陽子の伝導による燃料の損失を見越して事前測定したカーブと比べれば、燃料電池セルスタック内、または陽極流路内の付随するコンポーネント内の漏れの結果として存在する如何なる追加損失も診断することができる。
【0034】
熱はバルブの動作中に発生するから、採用する方策としては、これを、サブゼロ運転中(sub-zero operation)に考慮に入れるとよい。装置がサブゼロ条件において始動したとき、バルブが瞬時に開放されると仮定するのは非現実的であるが、バルブを開放するために必要な時間は、やはり最小化されるべきである。陽極入口流路155上の圧力変換器PX1は、陽極出口側バルブ161の開放と閉塞の監視すに使用することができる。そして、いったん、変換器PX1がバルブ161が正常に作動していることを示すと、これに従い、運転方策を内部暖房から通常運転に切り替えることができる。陽極出口側バルブ161は、通常、閉塞されているから、バルブ161が開放されれば、圧力変換器は圧力低下を示す。バルブが氷塊のために開放できなければ、これは、動作させたバルブ161の圧力低下がないことから検出できる。その結果として、動作させたバルブ161の圧力低下を検知するまで、そのバルブ161をさらに加熱するように、運転方策を構成することができる。
【0035】
陽極流路内の燃料の圧力を減少させるために、圧力低減バルブ157を設けてもよい。圧力低減バルブ157は、陽極流路内の圧力が安全な運転レベルを超えたときに、開放にセットされ、圧力低減排出路158を通して、燃料を陽極流路から排出するとよい。安全な運転レベルは、基準化圧力変換器(a calibrated pressure transducer)を用いて、燃料電池スタック110の定格圧力に従い、オフライン(off-line)にセットしてもよい。
【0036】
さらなる手動操作可能なバルブ162が陽極出口流路165にあってもよい。このバルブ162は、例えば、陽極流路の減圧を確保する動作中に使用される。燃料電池スタック110の陽極流路内の水集合体(water build-up)は、例えば、陰極側からPEMを通した水分の拡散の結果として生ずる。その結果、排出路164に存在する水を分離するために、陽極排水分離器163を陽極排出路164に設けてもよい。この水は、排出されるか、選択的に再循環させることもできる。燃料電池スタック110の運転中、バルブ161は、典型的には閉じられたままであり、陽極流路から水集合体を排出するために断続的に開放されるのみである。
【0037】
陰極注水口127は燃料電池スタック110に設けられており、注水口127は陰極注水路125と接続されている。陰極注水路125は、その長さの一部、または全部にわたって加熱されるようにしてもよく、保水容器140(a water containment vessel)と陰極注水口127の間を結ぶ。路125の特定部分を加熱する加熱器129を設けて、陰極注水口127に向かう注水路125を通る水を加熱してもよい。運転中の路125中の背圧を監視するために、さらなる圧力センサPX4を陰極注水路125に設けてもよい。
【0038】
陰極出口流路121からの水は、水帰還路128を通して、保水容器140に向かって水ポンプ132を用いてくみ出される。水ポンプ132は、選択的に加熱器143を備えてもよい。過剰な水は、オーバーフロー流路(overflow line)144を通って保水容器140外へと、燃料電池装置100から排水される。保水容器のさらなる詳細は、本願と同一出願日である保留中の英国出願「燃料電池装置」("Fuel cell system")に開示されている。
【0039】
図2は、図1の燃料電池スタック110に付随する電気制御装置の適例の概略図である。電力出力部201,202は、電気的負荷260に接続されている。電気的負荷260は、他の電力コンポーネントとともにモータを含んでいる自動車システムの様々なコンポーネントを表している。負荷260を通る入力電流が始動中に増加するに従い、外部の電力源(バッテリ、または、静的な適用にあっては主な出力電力)から出力される電流は減少して、負荷260の必要な電流を維持することができる。燃料電池スタック110各セルの電圧は、各両極板(bipolar plate)への電気的接続を介して、スタックから出力される。電圧は、複数の電圧ライン220に出力される。各セルから示される電圧は、多重化装置(a multiplexer)205を介してマイクロコントローラ210に入力される。
【0040】
燃料電池スタック110の各セルの電圧出力は、個々の燃料電池の両極板の設計に組み込まれたサイドタブ(a side tab)との接続を介して測定することができる。サイドタブは、雄型コネクタであり、このため、雌型押下フィットコネクタ(female push fit connector)、例えば、自動車のアプリケーションにおいて通常に使用されるスペード型コネクタを使用することができる。この接続方式は、高レベルの振動に適している。各セルの電圧は、多重化装置205内の差動増幅器の直列回路の使用を通じ、規定ゼロ(a defined zero)に対して決定される。多重化された電圧の通知は、マイクロコントローラ210に入力される。
【0041】
マイクロコントローラ210は、燃料電池スタック110の各セルの電圧にアクセスし、2本の出力ライン211,212を駆動するように構成されたデジタルリレーの動作を制御する構成を備えている。デジタルリレーは、マイクロコントローラ210内に組み込まれてもよく、燃料電池スタック110の1つ、またはそれより多くのセルの電圧が、電圧ライン220に与えられたとき、セットされた所定の電圧閾値より小さくなったか否かを示すように制御される。フェールセーフの目的(例えば、誤接続の場合)のために、マイクロコントローラ210は、燃料電池スタックの全セルが各閾値電圧レベルを超えさえすれば、出力ラインのそれぞれを高電圧(high)にセットするように構成されている。したがって、高電圧に保持された両ライン211,212は、スタックの運転の「健康」状態(a 'healthy' state)を表している。マイクロコントローラ210は、異なる電圧閾値においてトリガが与えれるようにデジタルリレーをセットする構成を備えている。第1の電圧閾値は故障状態を示し、第2の電圧閾値は警告状態を示す。典型的に、第2の電圧閾値は、第1の電圧閾値より高い。これらの電圧閾値は、ソフトウェアインターフェースを介してマイクロコントローラ210にセットされる。したがって、出力ライン211,212のデジタル情報は、第1及び第2の電圧閾値にそれぞれ対応し、燃料電池の電気制御装置200による使用によって、出力接続路201,202を通じて出力される電流を制限し、燃料電池スタック110の健康状態と耐久力を動的に改善するために空気流の速度などのパラメータを調整することができる。典型的な第1及び第2の電圧閾値は、それぞれ、約0.4(V)と、約0.6(V)であるが、これらの値は、熱バランスやスタックの許容負荷を含む様々な要素に依存して変化し得る。
【0042】
セル電圧の閾値情報の使用は、燃料電池の安全運転を確保する有益な手段である。なぜなら、多くの復旧可能な故障を、低電圧出力を有する1つ、またはそれより多くのセルにより典型的に示すことができるからである。好ましくは、最低性能のセルの電圧レベルを用いて、出力ライン211,212のレベルを決定するとよい。
【0043】
警告状態(a warning condition)のイベントにおいては、出力ライン212が低電圧(low)を示すと、燃料電池スタック110の制御パラメータは徐々に調節され、また、出力ライン212が高電圧(high)を示すと、警告の停止まで燃料電池の電流負荷が制限される。故障状態の場合においては、出力ライン211が低電圧(low)を示すと、例えば、燃料電池スタック110と電気的負荷260の間に実装された電気コネクタ(図示せず)を接続解除することにより、負荷260を燃料電池スタック110から一時的に切り離してもよい。いったん、故障状態が除去されて、出力ライン211を高電圧(high)にセットしたマイクロコントローラから通知されれば、その後に負荷260を再接続することができる。
【0044】
マイクロコントローラ210は、セル電圧が予め設定された閾値レベルより小さいか否かを決定するハードウェアの比較器に置き換えてもよい。したがって、ソフトウェアの基準が排除され、これによって技術のロバスト性が向上する。これは、全体の装置200の保証と応答速度を考慮すると、とりわけ有益である。
【0045】
デジタルリレーの動作に加えて、マイクロコントローラ210は、セル電圧データ情報をCAN(制御エリアネットワーク:Controller Area Network)240に出力するように構成することもできる。CANによると、電圧ライン220からの燃料電池スタック110の電圧の変化グラフ(profile)を、外部コンピュータ250などの適当なハードウェア及び/または燃料電池電気制御装置(ECU:Electrical Control Unit)230を介して監視し、及び/またはログを取ることができる。ECUは、燃料電池装置の運転の最適化に関する様々な機能を実装することができ、一方、外部のコンピュータは、CAN上で利用可能となった情報を介して、燃料電池装置の詳細な診断や試験に用いることができる。
【0046】
セル電圧の変化グラフ(profile)は、既知の変化グラフとの比較を通じて、異なる条件下での時間にわたる燃料電池の効率及び性能の改善に用いられる。例えば、燃料電池スタックの電圧分布が、スタック110の端部でより低く、スタック110の中心部で高くなっていると、これは、典型的には、燃料電池スタック110が冷えきっているか、もしくは過剰な冷却を受けていることを示す。逆の状況、すなわち、スタック110の中心に向かって電圧レベルが低下していると、燃料電池スタック110が熱い、もしくは冷却が弱いことを示す。前者の状態は、冷却レベルを低下させること、及び/またはスタック110の端部を加熱することにより改善される。一方、後者の状態は、冷却レベルを増加させること、及び/またはスタック110の端部への加熱レベルを低下させることにより改善される。ECUは、燃料電池スタック110の電圧レベルを、設定された時間間隔をおいて、典型的には100(ms)ごとに監視するように構成してもよい。燃料電池の振る舞いを診断して最適化するためには、電圧レベルの監視をより長い時間間隔、典型的には分または時間の単位の時間間隔にわたって行ってもよく、そして、燃料電池スタックの当面の運転効率よりも、むしろ、その寿命の最大化に目標を絞ってもよい。
【0047】
陰極入口及び/または出口の温度は、ECU230などの燃料電池装置の制御部により監視するとよい。この監視には、例えば温度センサTX2,TX3の手段により陰極入口及び/または出口の流れを実際に温度測定することが含まれる。陽極出口の温度も、例えば陽極出口流路165上の温度センサの手段により監視してもよい。これに代えて、または、これに加えて、陰極入口及び/または出口の温度は、燃料電池スタック110の既知の予め決定された温度的振る舞い(thermal behavior)のモデルと連係する他の燃料電池パラメータの測定によって間接的に監視してもよい。そのパラメータは、例えば、時間と時間にわたる出力電流であってもよい。燃料電池の既知の温度的振る舞いを考慮に入れれば、燃料電池制御装置230によって、燃料電池スタック110を通る陰極流路が、どのポイントにおいて注水開始の最低必要温度に達するかを、間接的に決定することができる。温度的振る舞いのモデルは、例えば、ある温度範囲についての周囲の環境への放熱速度と、ある出力電流の範囲についての燃料電池スタックの加熱効果などのパラメータを含んでもよい。時間にわたる出力電流の測定を、端板加熱器330a,330bなどのコンポーネントによる追加的加熱効果とともに集積し、一方で、その時間にわたるスタック110からの放熱を考慮すると、陰極流路内の温度を見積もることができる。
【0048】
したがって、一般的な見地からして、陰極入口及び/または出口の温度の監視には、陰極入口及び/または出口の流れの温度の温度測定が含まれてもよい。陰極入口及び/または出口の温度の監視には、時間にわたる燃料電池スタックからの出力電流の測定を用いて、陰極入口及び/または出口の流れの見積もり計算が含まれてもよい。後者のアプローチは、予め決定された燃料電池スタック110の温度モデルを考慮するとよい。
【0049】
セル電圧情報は、燃料電池の健康状態(health)と全体のシステム効率の最大化をはかる最適化アルゴリズムの使用を通じて、さらに使用される。最適化アルゴリズムは、システムのメカニズムの知識を必要とすべきではなく、適切な尺度の最終値に基づく解決を提供するように構成されるべきである。単純化した形態では、最適化により以下のコスト関数(cost function)を減じ、または、好適には最小化することをはかってもよい。
【0050】


ここで、σは複数のセルの電圧出力の標準偏差であり、Pは寄生負荷であり、σとβは定数である。これに代えて、最適化アルゴリズムは、セルの電圧出力の標準偏差を用いてもよく、これを減じて、または最小化してスタック110の出力の最適化をはかってもよい。
【0051】
上述したコストは、典型的には、電圧ライン220上のセル電圧の分布を含む燃料電池装置のデータの寸見(a snapshot)により、規定間隔をおいて計算される。所定の範囲内においては、燃料電池スタックの個々のセル電圧の標準偏差は、システムの空気の化学量論定比(stoichiometry)に依存する。本明細書では、定比とは、陽極部分に供給された燃料の総量と化学反応するために必要な総量と比較したときの、燃料電池スタック110の陰極部内の利用可能な酸素のモル量であるとする。酸素と水素の定比バランスは、全体の化学反応により示される。
【0052】

上記の式に従った定比バランスのため、水素ガスのモルは酸素ガスのモルの2倍の数量が必要となる。したがって、陰極の定比である2は、陽極システムに入る水素Hのモルと同数のモルの酸素Oが陰極システムを通り抜けることを示している。典型的には、少なくとも2の定比は、通常は閉塞した陰極システム(normally-closed cathode system)の化学反応効率を維持するために必要とされる。開放された陰極システム(opened cathode system)においては、定比が50にもなり、すなわち、これは、存在する水素ガスのモルの25倍の利用可能な酸素ガスのモルがあることを示している。酸素リッチ(oxygen rich)な平衡(balance)に向かう定比の増加は、典型的には、燃料電池スタックの総合性能の増加、及び燃料電池の電圧標準偏差の低下という結果になる。しかしながら、この利用可能な酸素含有量の増加を達成するために、使用される空気配送の方法(典型的には空気圧縮装置133)による寄生負荷の増加が必要とされる。このため、上記のコスト関数は、寄生負荷と燃料電池スタックの電圧出力分散の間の適切な平衡を達成するために、好適に調和される。
【0053】
燃料電池スタックの寄生負荷は、運転中の燃料電池装置100の1つ、またはそれより多くのコンポーネントの消費電力の測定によって表してもよい。したがって、寄生負荷の測定量は、空気圧縮装置133、(複数の)加熱板330(以下に詳述する)、陰極及び陽極の入口の流れの温度を上昇させる加熱器138,145のうちの1つ、またはそれより多くに供給される電流の測定から決定される。寄生負荷の主要な測定量は、空気圧縮装置133への補助出力電力(auxiliary electric power drawn)の測定により表してもよい。なぜなら、空気圧縮装置133は、燃料電池スタック110中の気体の定比バランスを制御するからである。そのような測定量は、例えば、空気圧縮装置133、及び/または、ポンプ、バルブ、センサ、アクチュエータ、制御装置などの他の電気作動装置への出力電流を測定することによって得られる。空気圧縮装置133は、高電圧の供給源により動作させてもよく、この場合、この供給源への出力電流の測定によって必要な値が得られる。
【0054】
初期条件から始動すると、典型的には、最適化ルーチンが、例えば毎分ごとの設定された時間間隔をおいて陰極の(空気の)定比セットポイントを更新する。これにより、装置は、周辺圧力の変化(例えば標高)、温度、スタックの健康状態(例えばスタックの経年劣化)などの異なる周囲条件に従って、徐々に最適化される。
【0055】
サブゼロ周囲条件からの燃料電池装置100の始動を補助するために、以下の特徴の一部、または全部が必要である。
【0056】
i)加熱水素の出口バルブ161(浄化バルブ)と水分離/収水器163(図1に示されている)
ii)陰極及び陽極の入口の流れの温度を上げるための加熱器138,145
iii)図3、図4a及び図4bを参照してさらなる詳細を後述する、燃料電池内の収電器の温度を上げる加熱器330
iv)保水器140(図1)のような、燃料電池スタックへ導入に利用できる液相水の源
v)注水路125と排水路128(図1)を含む、液相水を運ぶ流路の追跡加熱(trace heating)
vi)燃料電池注水口127の周囲の加熱
【0057】
始動手順の適例は、以下に詳述する通りであってもよい。まず、空気圧縮装置133が起動されて、燃料電池スタックの陰極空気流入口126に一定の流速を与えるようにセットされる。200(cm)の能動領域を有する燃料電池スタックは、80(A)か、それより大きな電流セットポイントに従って、必要な流れに達するように設定されるとよい。これに続いて、水路125,128、水素出口バルブ161、燃料電池スタック収電器320a,320b(図3との関係で述べられる)、及び水分離機131と保水器140の間にある掃気ポンプ132の加熱が行われる。陰極と陽極の入口流路123,155上の加熱器は、陰極空気流入口126と陽極の燃料入口156とにおける気体流の温度が好ましくは5℃と10℃の間となるように起動される。サブゼロ周囲条件から始動するとき、各流れの温度は最大10℃に制限される。これは、燃料電池スタックの頂上(the top)(気体が典型的に導入される場所)の水が急激に解凍されて、そして、まだ氷点より低い温度である燃料電池スタックの低部セクションで凍結しないことを確保するためである。そのため、気体は、燃料電池スタックが、注水口127を介してスタックに注入された水を凍結させないように、少なくとも部分的には、陰極及び陽極の流路をある程度加熱することに用いられる。
【0058】
それから、陽極入口バルブ153と浄化バルブ(purge valve)161を作動させる。この始動状態において、浄化バルブ161を繰り返して作動させることで浄化バルブの積極的な動作を引き起こすことにより、バルブ161内の自己加熱を促進し、その繰り返し作動により起こる振動を通じて、バルブの瞬時開放の妨げとなる如何なる小さな氷塊(build up of ice)も解凍し、除去する。
【0059】
陰極入口及び出口の温度が少なくとも5℃を上回るまでは。燃料電池スタックは、陰極の注水を介して冷却/加湿を行うことなく運転される。これは、陰極注水口を通じた注水によって、確実に、燃料電池スタック110の陰極部内に氷が形成ないようにするためである。
【0060】
燃料電池のECUは、スタック110からの出力される電流の制御を行う。出力される電流に対する上限値がセットされ、そして、燃料電池のECUは、何の電流が燃料電池から出力されるべきかを指示する。この電流の制限は、0と電流の上限値の間であって、ECUによりセットされる。この電流の制限は、燃料電池の定格電流(the rated current)以下とするべきである。より早い始動のために、燃料電池のECU230は、デジタルライン211,212にセットされた値により許容されるのと同じくらい高く、燃料電池スタック110からの出力電流をセットできる。燃料電池のECU230は、継続的に燃料電池スタック110の健康状態(health)を監視し、それに従って負荷260を適用し、除去する。負荷260は、一般的には、時間に対して一定の割合で適用され、除去される。これは、つまり、電圧の警告閾値(a voltage warning threshold)超えが発生すると、警告閾値超えがないときの電流増加の比率より高い比率で電流を減少させるように、通常は行われる。燃料電池電流は、電流が、目標制御ラインに従い、かつ、燃料電池スタック110の定格電流に到達するまで増加するように、増加する。しかしながら、燃料電池のECU230は、ライン212の警告レベル、つまり、2つの電圧閾値の通知のうちの高いほうを主に用い、1つ、またはそれより多くのセルの電圧が警告(すなわち、第2の)電圧閾値を下回れば、燃料電池スタック110からの出力電流を制限する。基本的な前提として、燃料電池からの出力電流は、警告が通知されるまで、予め定めた目標制御ラインと同調して増加させ続ける。予め定めた電流増加の比率は、スタックサイズなどの燃料電池スタックの固有の特性に従ってセットしてもよい。そして、その比率は、例えば、スタックからの出力電流の規模、または温度測定に従って変化するように予め定めてもよい。電流が増加する最大比率は、好ましくは予め定めた値、典型的には、スタックの大きさに依存して1(A/sec)と3(A/sec)の間とするとよい。この最大比率は、燃料電池装置がコールドスタート(cold start)からフル出力パワーに到達するまでの最速時間を決定する。もし、例えば外部装置から受ける電流セットポイントの要求がこの最大比率より小さければ、燃料電池装置はその低い値に従う。そして、警告が通知された後、電流は警告が消えるまで減少する。このため、制御では、必ず、燃料電池がセルの警告を引き起こすことなく扱うことのできる最大電流を適用する。このアプローチの利点は、燃料電池により生成される熱が、増加した電流により増加し、このため、電流が大きいと解凍時間が早くなることである。この初期の加熱処理は、如何なる冷却/加湿水の注入よりも前に実行されるとよい。
【0061】
一般的見地からして、燃料電池スタック110からの出力電流は、燃料電池スタックにわたるセル電圧の合計が第3の電圧を下回らないように制限される。第3の電圧は、第2の(警告)電圧閾値に燃料電池スタック110内のセル数を乗じた数値より大きい。しかしながら、個々のセルの何れか電圧が警告電圧閾値を下回っても、電流は、電圧がその閾値を再び上回るまで制限される。
【0062】
コールド状態(cold)から始動すると、スタックの電圧の合計は、予め設定した一定値で制限してもよい。この値は、セル数に、各セルの予め設定された制限電圧を乗じたものである。個々のセルの典型的な電圧は約0.65(V)であり、したがって、20セルのスタックの制限電圧は13(V)となる。スタック電圧の合計は制限されるが、もし、個々のセルが、例えば0.4(V)、または定格電圧(the rated voltage)の約62(%)の警告電圧閾値を下回れば、出力電流は、セル電圧がさらに低下しないように、さらに制限される。
【0063】
予め設定した傾斜比率(ramp rate)の電流増加が、全体のスタック電圧を用いた制限よりも適用される。しかしながら、予め設定した電圧は、スタックの始動温度と他の条件の自動訂正に用いることができる。
【0064】
実際には、数学的関数をスタック電流のセットポイントとして用いることができる。これは、スタック電圧、スタックの温度、周辺温度、始動からの経過時間、セル電圧の標準偏差を含む要素のうちの1つ、またはそれより多くを考慮に入れることができる。
【0065】
いったん、陰極入口156と出口159の温度が5℃を超えると、外部の冷却/加湿水を、陰極注水口127を介して燃料電池スタック110に加えてもよい。また、このポイントでは、燃料電池の電流制御を通常運転に利用される他の方法に戻し、燃料電池スタック110の加熱器の電源をオフにしてもよい。
【0066】
図3は、燃料電池スタック110の適例の概略側面図である。スタックは、個々の燃料電池310のスタック310を含み、セルのスタック310の対向する端部には収電板320a,320bがある。加熱板330a,330bは、燃料電池スタック110の対向する端部に面して設けられている。加熱板330a,330bのそれぞれは、各収電板320a,320bと各端板350a,350bの間に配置されている。各加熱板320a,320bは、各端板350a,350bから温度的、かつ電気的に絶縁されている。その絶縁手段は、各加熱板330a,330bと各端板350a,350bの間に配置されたさらなる絶縁板であると好ましい。
【0067】
加熱板330a,330bの主目的は、端部のセル311を、セルのスタック310の中心部の残りのセルと同一比率で加熱することである。加熱板330は、また、水投入時に凍結しないように、マニホルド(the manifolds)への水供給溝を暖める。
【0068】
各加熱板330は、図4aと図4bに示されるように、2つの電熱回路から構成される。回路は、例えば銅線路(cupper tracks)の形態であり、好ましくは板330に埋設されて、これにより、隣接する収電板から絶縁されている。図4aは、加熱板330の適例の一面の斜視図を示し、一方、図4bは、同じ加熱板330の反対面の斜視図を示す。板330は、一般的には、プリント回路基板430上に形成された電気伝導加熱素子410,420の形態をとる2つの埋設路を含む。加熱素子410,420は、燃料電池スタック110内の下層にある燃料電池の能動領域に対応する領域の上で、加熱板を横切る蛇行路を形成する。明確化のため、図4aでは、埋設路410,420は視認可能であるが、実際には、電気的な絶縁被覆層、及び/またはさらなる回路により覆われることにより視認可能ではないかもしれない。加熱板330は、蓄電バッテリなどの電源を介して、外部から電源供給される。これには、加熱板330の端部にあるスペード接続端子(spade connections)の形態の側部タブ411,412,413,414を介した、正負の端子接続が用いられる。これらのタブ411,412,413,414は、ワイヤ接続の便宜上、近くに位置しているが、エアギャップ415、416により離されるとよい。エアギャップ415、416の作用によって、解凍の過程で形成された復水による電気ショートの発生を防止し得る。
【0069】
収電器の加熱機能に加えて、加熱板330は、(冷却と加湿のために)燃料電池スタック110に注入された水を、単一の注水口450から、燃料電池スタック110の長さに沿った複数の流路(galleries)に対応するポート(ports)460に移す作用も有する。複数の流路は、個々のセルに水を配送するように構成されている。入口450とポート460の間の水分配路470は、それぞれが実質的に同じ長さとなるように設計されており、このため、減圧とその結果たる各路に沿った流速は同一である。水は、典型的に、燃料電池スタック110の一端のみにおいて注入されるので、水分配の特性は、加熱板330a,330bのうちの1つに必要とされるだけである。各加熱板330は、さらなるポート470を含んでおり、空気と水素が個々のセルを通り抜けられるようにする。
【0070】
さらに図5には、図3の燃料電池スタック110の概略部分断面図が描かれている。水供給路510は、端板350を通じて水を流入させることができ、水は矢印520の示す向きに向かう。水供給路510は、路510を通り抜ける水の凍結を妨げる加熱素子を含むとよい。水は、端板、絶縁層340を通り抜けて、加熱板330の注水口を過ぎ、水分配路470に沿い、ポート460(図4b)を通り、分配流路(the distribution galleries)に沿って個々のセル310への分配される。収電板320は、付属ケーブル530を通して、スタック110からの電流を負荷260(図2)へと運ぶ。端板35内に水分配路470を有することの利点は、別の水分配板を必要とせず、燃料電池スタックの必要とするコンポーネントを1つ減ずることである。さらなる利点は、溝が事前に加熱されて、水がスタックに入ると凍結することを回避できることにある。
【0071】
図5に示された燃料電池スタック110の構成によると、端板350から絶縁された加熱板330を通じて、セルのスタック310の対向する端部にあるセル311を急速に熱することができる。端板350は、一般的に、各セル310の能動領域にわたって圧縮圧力を均等に加えるための剛体支持構造を備える必要性から、高い熱質量を有している。この高い熱質量は、セル310から熱的に絶縁されていなければ、スタック110の端部の加熱の速度を低下させる傾向を有する。しかしながら、スタック110の個々の両極板は、より低い熱質量を有するように構成され、その結果、始動処理中に急速に加熱することができる。したがって、端板を絶縁することにより、セル310はより急速に加熱され、コールド状態(cold)からの短時間の始動が可能となる。好適には、燃料電池スタック110の端部が中央部と同じ速度で加熱されるように、加熱器330から十分な熱を加えるとよい。典型的には、収電加熱器は、始動中にスタックの端部セルを加熱運転するときに、十分な電力を出力するような大きさにされている。電力が低すぎれば、加熱器は始動中にセルを十分に加熱しないし、電力が高すぎれば、端部セルは過熱となり、それによってスタックの性能が制限される。
【0072】
サブゼロ温度における延長期間からの典型的な始動中、図4と図5に示された全てのコンポーネントは、摂氏0度より低くなるであろう。装置が始動すると、燃料と酸素は燃料電池のスタックセル310に供給される。そして、電流が出力され始め、セル310が加熱し始める。加熱板330は、収電板320がセル310と同じ速度で加熱されるように、始動中に起動される。セル310は、セル端板350と比較して、より熱的に絶縁されるだけでなく、低い熱慣性を有する傾向がある。セル319は、結局、注水が過熱を妨げるために必要な温度まで到達する。典型的な燃料電池において、これは、−20℃から始動するときに、およそ15〜60(秒)の時間内になされる。このポイントにおいて、水は、加熱水供給路パイプ510(図1に、陰極注水路125としても示されている)を介して注入される。パイプ510から個々のセル310への全部の通路には、このポイントにおいて氷がないことが重要である。水が、端板350を通り抜け、加熱板340の上方を通ることにより、内部移動ポート(the internal transfer port)と分配路450,460,470(図4b)内の水の凍結が妨げられる。
【0073】
上述した加熱板330の利点は、以下の1つ、またはそれより多くを含む。
i)板330a,330bが燃料電池スタック110の収電器の急速な電気加熱を可能とする。
ii)凝縮した水滴による電気ショートを防止するように電気供給部と接続される。
iii)均等な長さの分配路470の使用により、単一の注入口から適当な分配流路への冷却水の均等な分配が可能となる。
iv)陽極及び陰極の入口及び出口の流体が加熱板330a,330bを通り抜けることができる。
v)燃料電池の端部における遅延した温度低下が、結果として、スタックの温度特性のバランス改善となる。
vi)加熱板330がない場合よりも注水を早め、スタック110の中央部におけるセルの過熱を防止できる。
【0074】
図6には、本発明に係る燃料電池装置の始動運転中の続く手順の適例の概略フロー図が描かれている。第1のステップ610は、例えば電力(例えばバッテリ蓄電装置)を電気制御装置230(図2)に与えることによる始動運転である。そして、ECUは、ステップ611において、陽極入口バルブ153(図1)を操作する。ここで、選択的にバルブ153上の統合された加熱器を作動させてもよく、それとともに、あるいは、それに代えて、上述したようなバルブのソレノイドを作動させることによりバルブ153を操作する。ECUは、例えば、陽極入口156において、またはその近くにおいて、圧力センサPX1(図1)の測定値を監視することにより、陽極バルブが開放されているか否かを決定することができる(ステップ162)。
【0075】
いったん、陽極バルブが開放されると、空気圧縮装置133は起動される(ステップ613)。これに代えて、空気圧縮装置133は、陽極バルブ153の開放に先立って起動されてもよい。そして、ステップ614において、初期電流限界値が燃料電池スタック110にセットされる。初期電流限界値は、0、または燃料電池スタック110がコールド状態から安全な運転を開始できるような高いレベルとなり得る。
【0076】
燃料電池スタック110が暖まっている期間中、ECUは、ステップ615,618において、セルからの最小電圧出力Vminが第1及び第2の電圧レベルV,Vより高いか否かに基づいて判断処理を行う。上述したように、これらの判断は、デジタルライン211,212(図2)上の実際の値に基づいてなされ得る。もし、ステップ615において、最小セル電圧レベルが第1電圧閾値レベルVよりも大きくなければ、電流出力は停止される(ステップ616)。そして、電流を再接続する前に、予め設定された時間、典型的には数秒間だけウェイト処理がなされる(ステップ617)。そして、電流限界値を、電流が停止する前のレベルにセットするか、初期電流限界値にリセットしてもよい。もし、最小電圧出力が、Vより小さくなく、警告レベル、つまり第2の電圧閾値レベルVより大きくなければ、電流限界値は、VminがVより大きくなるまで減少する(ステップ619)。
【0077】
そして、電流限界値が、予め設定された量だけ増加する(ステップ620)。電流限界値が増加する比率は、0.5(Amps/秒)か、現在の設定レベルに依存した他の比率のような設定量であってもよい。
【0078】
ステップ621において、陰極流路の入口123及び出口121の流路の各温度測定値Tin,Toutが最小所要温度Tminより大きいか否かの判断がなされる。これらの温度測定値は、例えば温度センサTX2,TX3(図1)から得ることができる。両方の温度測定値がTminより大きければ、ステップ622において注水装置が作動する。もしくは、ステップ621における判断は、陰極出口流路の温度Toutだけに依存してもよい。そして、注水装置は、運転を続け、空気流の温度が最小レベルTminより小さくなるまで、または、小さくなければ、あるいは、燃料電池装置が停止しようとすれば、陰極の空気流の温度に従って変化する。
【0079】
始動中、ステップ623において、電流限界値Iが燃料電池スタック110の定格電流値に達したか否かの判断がなされる。もし、電流限界値が定格電流値Irateedより小さければ、始動プロセスは継続して前のステップ615へと進む。いったん、電流限界値に到達すれば、燃料電池装置は、ステップ624において運転継続モードへと進む。
【0080】
継続運転中、燃料電池装置は、電圧レベルVminと装置100の様々な部分の温度の監視を継続するとよい。また、ECUは、運転を監視し、上述したように、運転の最適化のために装置100の運転パラメータを適用し続ける。
【0081】
図7には、始動中の燃料電池装置のデータの適例が描かれている。ここで、負過電流710は、0から定格電流値、この場合では100(A)に向かって上昇している。その結果、スタック電圧720は、この電流の上昇中に変化している。また、図7には、陰極の排出温度730、端板の水制御温度740、端板の空気温度750、陽極の排出温度760、水ポンプの背圧770、陰極の水の流速780の始動中の各変化に対応するカーブが示されている。
【0082】
図7に描かれた試験は、20セルスタック上で実行されたものである。13ボルトのセットポイントがECU230に使用され、その運転は閉ループ制御モードで行われた。最初、コールド状態(つまり、−20℃において)からスタックを始動し、数アンペアの電流負荷を用いて、13(V)のセットポイントに到達した。スタックが温まると、ECUは、スタック電圧を13(V)に制限しようとし、電流710を上昇させる。第1の期間711の最後において、性能が良くない1つ、またはそれより多くのセルのため、この場合は過熱のために、スタック電圧720が低下している。そして、ECUは、結果として電流を減少させる。第2の期間712の最後において、注水装置が起動する。いったん、水がスタックに注入されると、電圧は上昇する。そして、ECUは、陽極の排出温度が0℃を越すまで、電流710を増加させる。このポイントにおいて、スタックは解凍状態(thawed out)であると考えられ、電流710は、最大負荷ポイントの100(A)まで、さらに急速に増加する。
【0083】
上述した方策では、電流負荷を増加させる傾斜比(the ramp rates)は、予め定められた最大レベルに制限される。特に図7に示された試験においては、確実に、水がスタック内で注入されるなり凍結しないように、陰極の排気が20℃に到達したときにのみ、注水装置を起動した。
【0084】
図7に示された試験において、最初の第1の期間711中、電流負荷710は0から約40(A)まで徐々に増加し、その間、(負荷のアプリケーションの最初の低下後)測定されたスタック電圧720はおおよそ一定に維持される。ECUが、スタック内の1つ、またはそれより多くのセルの電圧が警告閾値レベルより低下したことを検知した後、電流負荷710は、警告電圧閾値を超えるまで、第2の期間712にわたって徐々に低下する。第1及び第2の期間711,712にわたって、陰極の排出温度730の温度は上昇して、第2の期間712中に20℃を上回り、このポイントにおいて、注水装置が起動される。注水開始は、冷却水の速度780の急な増加と、これに続く、陰極の排出温度730の若干の低下により示されている。端板の加熱器330が起動されてスタックが暖まり続けると、端板と空気の温度740,750は、始動期間を通じて、徐々に上昇し続ける。
【0085】
第3の期間713中、電流負荷710は増加し続けるが、スタックのセルの電圧出力により制限された減少比率となる。この期間713の最後に向かって、陽極の排出温度760が急に上昇していることは、スタック内のセルが最適に加熱及び加湿されていることを示す。これに続いて、第4の期間714中、電流負荷はより急速に上昇し、その間、低いセル電圧のために、電流負荷を抑える必要がない。そして、定格電流値である100(A)に到達し、燃料電池装置は、第5の期間715にわたる継続運転を開始する。初期始動後の17(分)と18(分)の間、燃料電池装置の停止716において、電流負荷710はカットされ、注水装置は停止される。後者は、水ポンプの背圧770の急な下降により示されている。スタック電圧720は、電流負荷710がなくて急に上昇し、そして、燃料電池110の残った燃料の消費とともに、徐々に下降してなくなる。
【0086】
他の実施形態は、添付の請求項により定められる発明の範囲内にあるものとする。


【特許請求の範囲】
【請求項1】
燃料電池スタックを含む燃料電池装置の始動運転の方法であって、
(i)陽極入口バルブを開いて、燃料を前記燃料電池スタックの陽極部分に入れるステップと、
(ii)前記燃料電池スタックの陰極空気流入口と連通する空気圧縮装置を操作して、空気を前記燃料電池スタックの陰極部に入れるステップと、
(iii)前記陰極入口及び/または出口の温度を監視するステップと、
(iv)いったん、前記陰極入口及び/または出口を通過する流体の温度があらかじめ設定されたレベルを超えると、注水装置を操作して水を前記陰極部に注入するステップとを含んでおり、
前記燃料電池スタックの1つ、またはそれより多くのセルにわたって測定された電圧が第1の電圧閾値より低下しないように、前記燃料電池スタックから出力される電流を制限する方法。
【請求項2】
請求項1に記載された方法であって、
前記電圧が前記第1の電圧閾値より高い第2の電圧閾値より小さくなるまで、前記電流を増加させる運転方法。
【請求項3】
請求項2に記載された方法であって、
前記電流を、時間に対して予め決定された比率で増加させる運転方法。
【請求項4】
請求項2または3に記載された方法であって、
前記電圧が前記第2の電圧閾値より小さくなった後、前記電圧が前記第2の電圧閾値より大きくなるまで、前記電流を減少させる運転方法。
【請求項5】
請求項4に記載された方法であって、
前記電流を、前記電流が増加する比率より高い比率で減少させる運転方法。
【請求項6】
請求項1乃至5の何れかに記載された方法であって、
前記燃料電池スタックの定格電流に達するまで前記電流を増加させる運転方法。
【請求項7】
請求項1乃至6の何れかに記載された方法であって、
前記燃料電池スタックにわたるセル電圧の合計が第3の電圧閾値より小さくならないように、前記電流を制限する運転方法。
【請求項8】
請求項7に記載された方法であって、
前記第3の電圧閾値は、前記燃料電池スタック内のセル数に前記第2の電圧閾値を乗じた値より大きい運転方法。
【請求項9】
請求項1乃至8の何れかに記載された方法であって、
陰極入口の温度範囲を5℃と10℃の間に維持するように、加熱器を操作する運転方法。
【請求項10】
請求項1乃至9の何れかに記載された方法であって、
前記燃料電池スタックの対向する各端部にある加熱板に電流を流すことにより、熱を前記燃料電池スタックに与え、
前記加熱板の各々は、収電板と前記燃料電池スタックの端板の間に配置され、
前記加熱板の各々は、それぞれの隣接する端板から熱的に絶縁されている、
運転方法。
【請求項11】
請求項10に記載された方法であって、
冷却剤が、前記加熱板の第1面と通じる注水路から、前記加熱板の反対面である第2面上の1つ、またはそれより多くの冷却ポートへと抜けていくように、注水路から前記加熱板内の水分配路を通して冷却剤の供給を行うことを含む運転方法。
【請求項12】
請求項11に記載された方法であって、
前記注水路は、前記燃料電池スタックの前記端板を通り抜けて、前記加熱板の前記第1面へと至る運転方法。
【請求項13】
請求項10または11に記載された方法であって、
前記水分配路は、前記加熱板の前記第2面上に設けられている運転方法。
【請求項14】
請求項1乃至13の何れかに記載された方法であって、
前記注水装置を操作するステップに先立って、前記燃料電池スタックの前記陰極部と連通する注水路を加熱することを含む運転方法。
【請求項15】
請求項1乃至14の何れかに記載された方法であって、
燃料浄化バルブを、その自己加熱を促進するように、繰り返して作動させるステップを含む運転方法。
【請求項16】
請求項1乃至15の何れかに記載された方法であって、
前記空気圧縮装置と前記燃料電池の前記陰極部との間にある空気流入路内の空気を加熱するステップを含む運転方法。
【請求項17】
請求項1乃至16の何れかに記載された方法であって、
前記陰極入口及び出口の両方を通り抜ける流体の温度が5℃を超えるまで、水を注入せずに前記燃料電池スタックを操作する運転方法。
【請求項18】
請求項1に記載された方法であって、
前記燃料電池スタックの複数のセルの各々が示す電圧値が制御装置に与えられ、前記制御装置は前記燃料電池装置の制御パラメータを調整する運転方法。
【請求項19】
請求項18に記載された方法であって、
前記制御装置は、前記複数のセルのうちの1つ、またはそれより多くの前記電圧値を示すようにデジタル出力を行う運転方法。
【請求項20】
請求項19に記載された方法であって、
前記デジタル出力は、
i)1つ、またはそれより多くのセルの電圧が前記第1の電圧閾値より小さいか否かと、
ii)1つ、またはそれより多くのセルの電圧が、前記第1の電圧閾値より高い第2の電圧閾値より小さいか否かと、
を示す運転方法。
【請求項21】
請求項20に記載された方法であって、
前記デジタル出力が、1つ、またはそれより多くのセルの前記電圧が前記第1の電圧閾値より小さいことを示すと、前記燃料電池スタックは電気的負荷から切り離され、
前記電気的負荷は、前記電圧が前記第2の電圧閾値より大きくなると再接続される運転方法。
【請求項22】
請求項18乃至21の何れかに記載された方法であって、
前記制御装置は、前記複数のセルの各々の前記電圧を制御エリアネットワークに通知する運転方法。
【請求項23】
請求項18乃至22の何れかに記載された方法であって、
前記通知された前記複数のセルの各々の前記電圧と、通知された前記燃料電池の寄生負荷とを、前記燃料電池装置の運転の最適化に用いる運転方法。
【請求項24】
請求項23に記載された方法であって、
前記制御装置は、次の式Iの関数の最小化をはかるように、前記燃料電池装置の前記制御パラメータを調整し、

前記式Iにおいて、σは前記複数のセルの前記電圧出力の標準偏差であり、Pは寄生負荷であり、σとβは定数である運転方法。
【請求項25】
請求項23または24に記載された方法であって、
前記燃料電池装置の最適化運転には、
i)前記陰極入口に供給された空気の流速
ii)前記スタックの対向する端部の各々にある加熱板の手段により前記燃料電池スタックに加えられる熱のレベル
iii)前記燃料電池スタックから出力される電流
のうちの1つ、またはそれより多くを変更することが含まれる運転方法。
【請求項26】
複数の燃料電池を含む燃料電池スタックであって、
前記燃料電池スタックの各端部は、集電板と端板の間に配置された加熱板を有し、
各加熱板は、それぞれの端板から熱的に絶縁されている、
燃料電池スタック。
【請求項27】
請求項26に記載された燃料電池スタックであって、
各加熱板は、前記加熱板上の電気伝導路の形態の加熱素子を含む、
燃料電池スタック。
【請求項28】
請求項27に記載された燃料電池スタックであって、
前記電気伝導路は、前記燃料電池スタック内のセルの能動領域に対応する前記加熱板の部位を横切る蛇行路の形態にある、
燃料電池スタック。
【請求項29】
請求項27または28に記載された燃料電池スタックであって、
前記電気伝導路は、前記加熱板の表面下に埋設されている、
燃料電池スタック。
【請求項30】
請求項27または28に記載された燃料電池スタックであって、
前記加熱板は、前記加熱板の端部から延出する一対のスペード端子を含み、
前記端子の各々は互いにエアギャップにより離れている、
燃料電池スタック。
【請求項31】
請求項26乃至30の何れかに記載された燃料電池スタックであって、
前記加熱板は、冷却剤が、前記加熱板の第1面と通じる注水路から、前記加熱板の反対面である第2面上の1つ、またはそれより多くの冷却ポートへと抜けていくように構成された水分配路を含む、
燃料電池スタック。
【請求項32】
請求項31に記載された燃料電池スタックであって、
前記注水路は、前記端板を通り抜けて、前記加熱板の前記第1面へと至る、
燃料電池スタック。
【請求項33】
請求項31または32に記載された燃料電池スタックであって、
前記水分配路は、前記加熱板の前記第2面上に設けられている
燃料電池スタック。
【請求項34】
燃料電池スタックと電気制御装置とを含む燃料電池装置であって、
前記電気制御装置は、
(i)陽極入口バルブを開いて、燃料を前記燃料電池スタックの陽極部分に入れ、
(ii)前記燃料電池スタックの陰極空気流入口と連通する空気圧縮装置を操作して、空気を前記燃料電池スタックの陰極部に入れ、
(iii)前記陰極入口及び/または出口の温度を監視し、
(iv)いったん、前記陰極入口及び/または出口を通過する流体の温度があらかじめ設定されたレベルを超えると、注水装置を操作して水を前記陰極部に注入するように構成されており、
前記電気制御装置は、前記燃料電池スタックの1つ、またはそれより多くのセルにわたって測定された電圧が第1の電圧閾値より低下しないように、前記燃料電池スタックから出力される電流を制限する構成を備える、
燃料電池装置。
【請求項35】
請求項34に記載された燃料電池装置であって、
前記電気制御装置は、前記電圧が前記第1の電圧閾値より高い第2の電圧閾値より小さくなるまで、前記電流を増加させるように構成されている、
燃料電池装置。
【請求項36】
請求項35に記載された燃料電池装置であって、
前記電気制御装置は、前記電流を、時間に対して一定の比率で増加させるように構成されている、
燃料電池装置。
【請求項37】
請求項35または36に記載された燃料電池装置であって、
前記電気制御装置は、前記電圧が前記第2の電圧閾値より小さくなった後、前記電圧が前記第2の電圧閾値より大きくなるまで、前記電流を減少させるように構成されている、
燃料電池装置。
【請求項38】
請求項37に記載された燃料電池装置であって、
前記電気制御装置は、前記電流を、前記電流が増加する比率より高い比率で減少させるように構成されている、
燃料電池装置。
【請求項39】
請求項34乃至39の何れかに記載された燃料電池装置であって、
前記電気制御装置は、前記燃料電池スタックの定格電流に達するまで前記電流を増加させるように構成されている、
燃料電池装置。
【請求項40】
請求項34乃至39の何れかに記載された燃料電池装置であって、
前記電気制御装置は、前記燃料電池スタックにわたるセル電圧の合計が第3の電圧閾値より小さくならないように、前記電流を制限するように構成されている、
燃料電池装置。
【請求項41】
請求項40に記載された燃料電池装置であって、
前記第3の電圧閾値は、前記燃料電池スタック内のセル数に前記第2の電圧閾値を乗じた値より大きい、
燃料電池装置。
【請求項42】
請求項35乃至41の何れかに記載された燃料電池装置であって、
前記電気制御装置は、陰極入口の温度を5℃と10℃の間の温度範囲に維持するように加熱器を操作する構成を備えている、
燃料電池装置。
【請求項43】
請求項34に記載された燃料電池装置であって、
前記電気制御装置は、前記燃料電池スタックの複数のセルの各々から通知された電圧を受信して、前記通知された電圧の変化に応じて前記燃料電池装置の制御パラメータを調整するように構成されている、
燃料電池装置。
【請求項44】
請求項43に記載された燃料電池装置であって、
多重化装置を含み、
前記多重化装置は、前記複数のセルの各々から電圧信号を受信し、前記複数のセルのうちの1つ、またはそれより多くの前記電圧を示すように、少なくとも2つのデジタル出力を前記電気制御装置に与えるように構成されている、
燃料電池装置。
【請求項45】
請求項44に記載された燃料電池装置であって、
前記デジタル出力は、
i)1つ、またはそれより多くのセルの電圧が前記第1の電圧閾値より小さいか否か、
ii)1つ、またはそれより多くのセルの電圧が、前記第1の電圧閾値より高い第2の電圧閾値より小さいか否か、
を示すように適合されている、
燃料電池装置。
【請求項46】
請求項45に記載された燃料電池装置であって、
前記電気制御装置は、
前記デジタル出力が、1つ、またはそれより多くのセルの前記電圧が前記第1の電圧閾値より小さいことを示すと、前記燃料電池スタックを電気的負荷から切り離し、
前記電圧が前記第2の電圧閾値より大きくなった後、前記電気的負荷を再接続するように構成されている、
燃料電池装置。
【請求項47】
請求項44または45に記載された燃料電池装置であって、
制御エリアネットワークを含み、
前記制御装置、及び/または前記多重化装置は、前記複数のセルの各々の前記電圧を前記制御エリアネットワークに通知するように構成されている、
燃料電池装置。
【請求項48】
請求項44乃至47の何れかに記載された燃料電池装置であって、
前記電気制御装置は、通知された前記複数のセルの各々の前記電圧と、通知された前記燃料電池の寄生負荷とに基づいて、前記燃料電池装置の運転を最適化するように構成されている、
燃料電池装置。
【請求項49】
請求項48に記載された燃料電池装置であって、
前記電気制御装置は、次の式IIの関数の最小化をはかるように、前記燃料電池装置の前記制御パラメータを調整する構成を備えており、

前記式IIにおいて、σは前記複数のセルの前記電圧出力の標準偏差であり、Pは寄生負荷であり、σとβは定数である、
燃料電池装置。
【請求項50】
請求項48または49に記載された燃料電池装置であって、
前記電気制御装置は、
i)前記陰極入口に供給された空気の流速
ii)前記スタックの対向する端部の各々にある加熱板の手段により前記燃料電池スタックに加えられる熱のレベル
iii)前記燃料電池スタックから出力される電流
のうちの1つ、またはそれより多くを変更することにより前記燃料電池装置の運転を最適化するように構成されている、
燃料電池装置。
【請求項51】
燃料電池スタックと電気制御装置とを含む燃料電池装置であって、
前記電気制御装置は、前記燃料電池スタックの複数のセルからの出力電圧の標準偏差に基づいて、前記燃料電池装置の運転を最適化するように前記燃料電池スタックの運転パラメータを調整する構成を備えている、
燃料電池装置。
【請求項52】
請求項51に記載された燃料電池装置であって、
前記電気制御装置は、通知された前記燃料電池装置の電気的寄生負荷に基づいて、前記燃料電池装置の運転を最適化するように構成されている、
燃料電池装置。
【請求項53】
請求項52に記載された燃料電池装置であって、
前記電気制御装置は、次の式IIIの関数を減少させるように、前記燃料電池装置の前記運転パラメータを調整する構成を備えており、

前記式IIIにおいて、σは前記複数のセルの前記電圧出力の標準偏差であり、Pは寄生負荷であり、σとβは定数である、
燃料電池装置。
【請求項54】
請求項51乃至53の何れかに記載された燃料電池装置であって、
前記運転パラメータは、
i)前記燃料電池スタックの前記陰極入口に供給された空気の流速
ii)前記スタックの対向する端部の各々にある加熱板の手段により前記燃料電池スタックに加えられる熱のレベル
iii)前記燃料電池スタックから出力される電流
のうちの1つ、またはそれより多くを含む、
燃料電池装置。
【請求項55】
燃料電池スタックと電気制御装置とを含む燃料電池装置の最適化運転の方法であって、
前記燃料電池スタックの複数のセルの各々からの電圧出力を前記電気制御装置に通知することと、
前記複数のセルからの前記電圧出力の標準偏差に基づいて、前記燃料電池装置の運転を最適化することとを含んでおり、
前記電気制御装置は、前記燃料電池装置の運転を最適化するように前記燃料電池スタックの運転パラメータを調整する運転方法。
【請求項56】
請求項55に記載された方法であって、
前記電気制御装置は、通知された前記燃料電池装置の電気的寄生負荷に基づいて、前記燃料電池装置の運転を最適化する運転方法。
【請求項57】
請求項56に記載された方法であって、
前記電気制御装置は、次の式IVの関数を減少させるように、前記燃料電池スタックの前記運転パラメータを調整し、

前記式IVにおいて、σは前記複数のセルの前記電圧出力の前記標準偏差であり、Pは前記電気的寄生負荷であり、σとβは定数である運転方法。
【請求項58】
請求項55乃至57の何れかに記載された方法であって、
前記運転パラメータは、
i)前記燃料電池スタックの陰極入口に供給された空気の流速
ii)前記スタックの対向する端部の各々にある加熱板の手段により前記燃料電池スタックに加えられる熱のレベル
iii)前記燃料電池スタックから出力される電流
のうちの1つ、またはそれより多くを含む運転方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4a】
image rotate

【図4b】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2010−541149(P2010−541149A)
【公表日】平成22年12月24日(2010.12.24)
【国際特許分類】
【出願番号】特願2010−526355(P2010−526355)
【出願日】平成20年9月23日(2008.9.23)
【国際出願番号】PCT/GB2008/003225
【国際公開番号】WO2009/040516
【国際公開日】平成21年4月2日(2009.4.2)
【出願人】(504175659)インテリジェント エナジー リミテッド (17)
【氏名又は名称原語表記】INTELLIGENT ENERGY LIMITED
【Fターム(参考)】