説明

物質を貯蔵する及び/又はフィルタリングするための装置及び方法

収着媒体との間で物質をロードし及び/又はアンロードするための装置、システム、及び方法である。物質は、物質は、収着材料の平行な層を備える収着媒体の縁部で与えられる。物質を収着媒体の中にロードするために(すなわち、吸収及び/又は吸着を介して)、熱が収着媒体から離して伝達され、ロード電圧が収着媒体に印加され、及び/又は収着媒体に対して圧力が増加される。収着媒体から物質をアンロードするために、収着媒体の中に熱が伝達され、ロード電圧とは反対の極性の電圧が収着媒体に印加され、及び/又は圧力が収着媒体に対して減少される。幾つかの実施形態において、収着媒体は、物質の分子をロードしてもよい表面構造を含む。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願への相互参照
本出願は、2010年2月13日に出願されたFULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCEと題する米国特許仮出願第61/304,403号、2010年2月17日に出願されたELECTROLYTIC CELL AND METHOD OF USE THEREOFと題する米国特許出願第12/707,651号、2010年2月17日に出願されたELECTROLYTIC CELL AND METHOD OF USE THEREOFと題するPCT出願番号PCT/US10/24497号、2010年2月17日に出願されたAPPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSISと題する米国特許出願第12/707,653号、2010年2月17日に出願されたAPPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSISと題するPCT出願番号PCT/US10/24498号、2010年2月17日に出願されたAPPARATUS AND METHOD FOR GAS CAPTURE DURING ELECTROLYSISと題する米国特許出願第12/707,656号、2010年2月17日に出願されたAPPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSISと題するPCT出願番号PCT/US10/24499号、及び2009年8月27日に出願されたELECTROLYZER AND ENERGY INDEPENDENCE TECHNOLOGIESと題する米国特許仮出願第61/237,476号に基づく優先権及びその利益を主張するものである。これらの出願は、参照によりその全体が組み込まれる。
【0002】
本技術は、収着媒体を備える装置による物質の貯蔵及び/又は濾過に関する。
【背景技術】
【0003】
再生可能資源に対する需要が増大しているが、世界は、そのエネルギー要求の多くを、石油を用いることで満たし続けている。石油の副産物燃料車、船、及び飛行機、並びに世界の多くにおいて、これは電気を発生させるために燃やされる。石油は非常に有用な物質であるが、地球が埋蔵するのは限られた量だけであり、石油が地面から引き出されるとき及びその副産物がエネルギーのために燃焼されるときに、地球の生息生物である植物と動物との両方が直接及び間接的に害される。環境を保全し、且つ増大している世界人口のエネルギー要求を満たすために、人々は石油の代わりに代替物質を代用しなければならない。
【0004】
人類が石油を用いることから移り変わる必要があるにもかかわらず、石油と同じくらい安く且つ容易に、石油に対する需要に合致する量で得られる、処理できる、貯蔵できる、及び使用できる代替物はわずかである。したがって、石油は、世界経済において本質的な燃料のままである。石油が世界中で優勢である大きな要因は、その副産物の高い体積あたりのエネルギー密度であり、これは、炭化水素が社会の需要を満たすエネルギー容量で輸送され貯蔵されることを可能にする。ガソリンは、例えば、1キログラムあたり約44.4メガジュール(「MJ/kg」)を含有し、ディーゼル燃料は、約45.4MJ/kgを含有する。双方とも容易に入手可能な、ガソリン及びディーゼルへの代替燃料である、水素及びメタンは、それぞれ約143MJ/kg及び55.6MJ/kgを含有する。しかしながら、水素及びメタンは、室温及び大気圧では気体であり、したがって、ガソリン及びディーゼルのような液体炭化水素よりもずっと密度が低い。その結果、水素ガスは、1リットルあたりほんの約0.01079メガジュール(「MJ/l」)を含有し、メタンガスは、ほんの約0.0378MJ/lを含有し、一方、ガソリンは約32MJ/lを含有し、ディーゼルは約38.6MJ/lを含有する。水素及びメタンのような気体が世界レベルで炭化水素に置き換わる場合、それらは、それらの低いエネルギー密度を体積によって補償する状態で貯蔵できなければならない。
【0005】
水素及び他のガスをより高い体積あたりのエネルギー密度で貯蔵するための多くの方法が開発されている。第1の手法は、ガスを超高圧で貯蔵することである。この方法は、パイプラインを通してガスを輸送することを含む多くの用途に有用であるが、ガスを圧縮することに多大なエネルギーが費やされるため、ほとんどの典型的な用途に対して実行不可能である。また、高圧に耐えることができるタンクは、圧縮ガスによって燃料供給される可能性があるほとんどの車両、飛行機、又は他の機械にとって重すぎる。別の手法は、ガスを液体又はスラッシュとして貯蔵することである。この手法は、莫大な貯蔵費用を含む多くの欠点に悩まされる。例えば、最も実行可能な石油代替物のうちの1つである水素のように、多くのガスは、非常に低い温度で沸点に達し、これはそれらが極低温で貯蔵されなければならないことを意味し、ガスを液体又はスラッシュに冷却し且つこれを冷却された状態に保つことには多大な量のエネルギーが費やされるであろう。
【0006】
水素及び他のガスはまた、吸収された物質として又は金属水素化物として、より高い体積あたりのエネルギー密度で貯蔵される場合がある。残念なことに、多くの金属水素化物は、レアアースメタルを含み、且つ貯蔵のために用いられる重金属に起因して炭化水素よりも低い質量あたりのエネルギー密度を有する。加えて、活性炭粒、炭化ティッシュ(carbonized tissue)、ゼオライト、及び水素化物粒子のような水素を受け入れる材料は、熱伝導性に乏しく、これらの材料がガスを吸収するために冷却される場合の速度と、これらの材料がガスを放出するために加熱される場合の速度との両方が制限されることを意味する。これらの材料はまた、劣化する又は粉塵及び破片を生じる場合があり、これは、放出されるガスを汚染し、貯蔵システムの送出管、取付具、弁、及びフィルタを詰まらせる場合がある。
【0007】
そのうえ、石油とその副産物を石油が精製される又はその副産物が消費される場所に輸送することに多大なエネルギーが費やされ、一方では、農場廃棄物のような燃料に変換することができる大量の再生可能資源が廃棄される。加えて、炭化水素が燃やされるときに、それらの副産物は一般に捨てられる。これらの副産物は地球の大気を暖めている。歴史的に、炭化水素の副産物を後で生産的に利用するために貯蔵する、処理する、又はフィルタするのはこれまで難しかった。例えば、車両製造業者は、排気がそれだけ大きな体積を占めるので、燃焼機関からの排気を貯蔵するのは実際的ではないと考えるかもしれない。同様に、炭化水素の副産物から粒子状物質を除去するフィルタが存在するが、第2の化合物から第1の化合物をフィルタする又は限られた量のスペースで副産物を別の化合物と反応させて有用な化合物をもたらすことは難しい。結果として、炭化水素の副産物は、空気中に放出され、潜在的に実りあるエネルギー源を無駄にし、地球を汚染している。
【図面の簡単な説明】
【0008】
【図1】本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器の略側断面図である。
【図2A】本技術の実施形態に従って構成される表面構造を含む収着媒体の平行な層の拡大略側断面図である。
【図2B】本技術の実施形態に従って構成される表面構造を含む収着媒体の平行な層の拡大略側断面図である。
【図2C】本技術の実施形態に従って構成される表面構造を含む収着媒体の平行な層の拡大略側断面図である。
【図2D】本技術の実施形態に従って構成される表面構造を含む収着媒体の平行な層の拡大略側断面図である。
【図3】本技術の実施形態に係る収着媒体の中に物質をロードするためのプロセスの流れ図である。
【図4】本技術の実施形態に係る収着媒体から物質をアンロードするためのプロセスの流れ図である。
【図5】本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器の側面図である。
【図6A】本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器の略側断面図である。
【図6B】本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器の領域の拡大略側断面図である。
【図6C】本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器の領域の拡大略側断面図である。
【図7】本技術の実施形態に従って構成される物質をフィルタリングするための装置の略側断面図である。
【図8】本技術の実施形態に従って構成される物質をフィルタリングするための装置の等角図である。
【図9】本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器及び関連するシステムの略側断面図である。
【発明を実施するための形態】
【0009】
本出願は、2004年11月9日に出願されたMULTIFUEL STORAGE,METERING AND IGNITION SYSTEMと題する米国特許仮出願第60/626,021号(代理人整理番号69545−8013US)、2009年2月17日に出願されたFULL SPECTRUM ENERGYと題する米国特許仮出願第61/153,253号(代理人整理番号69545−8001US)、及び2010年7月21日に出願されたMETHOD AND SYSTEM OF THERMOCHEMICAL REGENERATION TO PROVIDE OXYGENATED FUEL,FOR EXAMPLE,WITH FUEL−COOLED FUEL INJECTORSと題する米国特許出願第12/804,509号(代理人整理番号69545−8037US)の主題のその全体を参照により組み込む。本出願は、2010年8月16日に本出願と同時に出願された以下のタイトルの米国特許出願、すなわち、METHODS AND APPARATUSES FOR DETECTION OF PROPERTIES OF FLUID CONVEYANCE SYSTEMS(代理人整理番号69545−8003US)、COMPREHENSIVE COST MODELING OF AUTOGENOUS SYSTEMS AND PROCESSES FOR THE PRODUCTION OF ENERGY,MATERIAL RESOURCES AND NUTRIENT REGIMES(代理人整理番号69545−8025US)、ELECTROLYTIC CELL AND METHOD OF USE THEREOF(代理人整理番号69545−8026US)、SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED PRODUCTION OF RENEWABLE ENERGY,MATERIALS RESOURCES,AND NUTRIENT REGIMES(代理人整理番号69545−8040US)、SYSTEMS AND METHODS FOR SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE ENERGY(代理人整理番号69545−8041US)、SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE MATERIAL RESOURCES(代理人整理番号69545−8042US)、METHOD AND SYSTEM FOR INCREASING THE EFFICIENCY OF SUPPLEMENTED OCEAN THERMAL ENERGY CONVERSION (SOTEC)(代理人整理番号69545−8044US)、GAS HYDRATE CONVERSION SYSTEM FOR HARVESTING HYDROCARBON HYDRATE DEPOSITS(代理人整理番号69545−8045US)、ENERGY SYSTEM FOR DWELLING SUPPORT(代理人整理番号69545−8047US)、ENERGY CONVERSION ASSEMBLIES AND ASSOCIATED METHODS OF USE AND MANUFACTURE(代理人整理番号69545−8048US)、及びINTERNALLY REINFORCED STRUCTURAL COMPOSITES AND ASSOCIATED METHODS OF MANUFACTURING(69545−8049US)の各々の主題のその全体を参照により組み込む。
【0010】
物質を貯蔵する及び/又はフィルタリングするためのシステム、装置、及び方法が説明される。収着媒体は、或る距離又は様々な距離だけ離間される収着材料の平行な層を備える。物質は、収着媒体の縁部で与えられる。収着媒体の縁部は、収着媒体の層の間の区域へのアクセスを提供する。収着媒体の中への物質の分子のロード(すなわち吸収及び/又は吸着)を容易にするために及び/又はロードを引き起こすために、熱が収着媒体から離して伝達されてもよい。同様に、収着媒体が物質の分子をロードするのを容易にするために及び/又はロードを引き起こすために、収着媒体に第1の極性の電圧が印加されてもよい。同じように、収着媒体が物質の分子をロードするのを容易にするために及び/又はロードを引き起こすために、収着媒体によって経験される圧力が増加されてもよい。幾つかの実施形態において、収着媒体はまた、物質をロードする表面構造を備える。幾つかの実施形態において、触媒は、収着媒体に物質をロードするのを容易にする。物質は、収着媒体に熱を伝達すること、第1の極性とは反対の極性の電圧を収着媒体に印加すること、及び/又は収着媒体によって経験される圧力を低下させることによって、収着媒体からアンロードすることができる。
【0011】
幾つかの実施形態において、収着媒体は、容器の中に封入される。幾つかの実施形態において、収着媒体は管に構成される。幾つかの実施形態において、収着媒体は物質のすべての分子をロードし、一方、他の実施形態において、収着媒体は、物質の特定化合物の分子(単数又は複数)のみをロードする。幾つかの実施形態において、収着媒体は物質をフィルタする。幾つかの実施形態において、収着媒体は物質を貯蔵する。幾つかの実施形態において、収着媒体にロードされる物質と別の物質との間の化学反応に触媒作用を及ぼすために、収着媒体の少なくとも一部に触媒が適用される。
【0012】
システム、装置、及び方法が種々の実施形態に関してここで説明されるであろう。以下の説明は、システム、装置、及び方法のこれらの実施形態の十分な理解のための具体的な詳細、及びそれを可能にする説明を提供する。しかしながら、これらの詳細なしにシステムが実施されてもよいことを当業者は理解するであろう。他の場合には、システムの実施形態の説明を不必要に不明瞭にすることを避けるために、周知の構造及び機能は詳細には図示又は説明されていない。
【0013】
以下で提示される説明で用いられる用語は、システムの或る具体的な実施形態の詳細な説明と組み合わせて用いられていても、その最も広い妥当な様式で解釈されることを意図される。或る用語は、以下で強調される場合もあるが、任意の制約された様式で解釈されることを意図された任意の用語は、この詳細な説明のセクションで明白に及び具体的に定義されるであろう。
【0014】
図1は、本技術の実施形態に係る物質を貯蔵する及び/又はフィルタリングするための容器2の略側断面図である。容器2は、第1のポート10を通してガスのような物質を受け入れ、物質は、容器2内の収着媒体6を通して走る多孔通路4を通過する。第1の弁13と第2の弁18は、容器2に出入りする物質の量を制御するために様々な度合いに開かれ又は閉じられてもよい。物質は、多孔通路4の穿孔を通して収着媒体6の第1の縁部15に与えられ、収着媒体6は、収着材料の層上に及び層の間の区域に物質をロードする(すなわち、吸収する及び/又は吸着する)収着材料の平行な円盤形の層を備え、収着媒体の中にロードされる物質の体積を減少させる。その結果、容器2は、物質が大気温度及び圧力で出る密度よりもかなり高い密度で物質を貯蔵するように構成することができる。容器2は、収着媒体6から放出された後の物質を追い出す(expel)のに用いることができる第2のポート11を含む。幾つかの実施形態において、容器2は、物質の特定の化合物のみが収着媒体6によってロードされ、且つ物質の残りの化合物がロードされることなく容器2を通過するように構成される。その結果、容器2はまた、物質をフィルタするようにも構成することができる。
【0015】
A.収着媒体と表面構造
容器2の収着媒体6は、物質の分子がその上に及びその間に吸着され及び吸収される、収着材料の平行な層を備える。平行な層に適した材料は、グラフェン、グラファイト、窒化ホウ素、セラミックス、金属、又はポリマーを含み、これらの材料の種々の組合せ及び順列を含む。以下で解説するように、幾つかの実施形態において、材料は、収着媒体6からの物質のロード又はアンロードを容易にするために熱が各層を通して伝達され及び各層から除去されることを可能にする、熱伝達のための高い利用可能性を有する。同様に、幾つかの実施形態において、材料は導電性であり、物質のロード又はアンロードを容易にするために平行な層のうちの層の両端に電圧が印加される。グラフェンは、それが導電性であり、熱伝達のための高い利用可能性を有することから、収着媒体6に適した材料の例である。幾つかの実施形態において、各々の平行な層は、1原子のみの厚さであり、一方、他の実施形態において、層のうちの幾つか又はすべては、1原子よりも大きい厚さである。幾つかの実施形態において、収着媒体6の層の熱伝導性及び電気伝導性は、層の厚さを変化させることによって調節される。
【0016】
収着媒体6は、多くの技術のうちのいずれかを用いて平行な層に製造し及び構成することができる。幾つかの実施形態において、収着媒体の平行な層は、単結晶から剥離される。例えば、幾つかの実施形態において、単結晶グラファイトが円盤のような所望の形状に成長され及び/又は機械加工され、原子と同じくらい薄い層が結晶から剥離される。剥離される前にグラファイト結晶を通した穴が開けられてもよく、結晶が剥離されている間、多孔通路4のような中央基体が結晶を定位置に保持してもよい。参照により本明細書に組み込まれる米国特許第6,503,584号及び米国特許仮出願第61/304,403号は、1原子と同じくらい薄い収着材料の層をもたらすために単結晶を剥離するのに適したシステム及び方法を説明する。マイカ、ゼオライトを形成する鉱物、及び窒化ホウ素のような化合物を含む多くの他の材料が類似の技術を用いて剥離されてもよい。
【0017】
収着媒体6の層はまた、化合物を脱水素化することによって形成することができる。例えば、炭化水素を解離させて炭素と水素を生じさせるために、メタンのような炭化水素にエネルギーを適用することができる。例えば、収着媒体の層にとって十分な炭素を生じるのに充分な時間だけメタンに電気を適用することができる。結果として得られる炭素を基体上に堆積し又は所望の形状に形作ることができる。これらのグラフェン堆積物は、互いに平行な基体上に構成されてもよい収着媒体の層に自己組織化(self−organize)するであろう。
【0018】
収着媒体6の平行な層は、収着媒体6の層の表面上及び収着媒体6の層の間の区域への物質の分子のロードを可能にする距離だけ互いから離間される。図2Aは、本技術の実施形態に係る収着媒体6の領域200の拡大略側断面図を示す。収着媒体6の平行な層22の表面上に種々の表面構造20が適用される。これらの表面構造20は、ナノチューブ20a、ナノスクロール(nano−scroll)20b、並びに多孔質ティッシュ、剥離されたティッシュ、炭化ティッシュ、ロッド20c、及び花状構造20dのような種々の他の高い表面ナノ構造を含むことができる。幾つかの実施形態において、表面構造は、収着媒体がより多くの物質をロードすることを可能にする。幾つかの実施形態において、表面構造は、収着媒体が物質の特定の化合物をロードすることを可能にする。幾つかの実施形態において、表面構造は、収着媒体が物質の分子をより迅速にロードし及び/又はアンロードできるようにする。幾つかの実施形態において、特定のタイプの表面構造が、別の表面構造よりも好ましい。例えば、幾つかの実施形態において、ナノスクロールは、ナノチューブよりも好ましい場合がある。ナノスクロールは物質の複数の分子を同時にロードでき及びアンロードできる場合があるが、一方、ナノチューブは一度に一分子だけをロードでき又はアンロードできる場合があるので、ナノスクロールは、ナノチューブが可能であるよりも迅速に物質の分子をロードでき及びアンロードできる場合がある。幾つかの実施形態において、第1のタイプの表面構造は第1の化合物をロードし、第2のタイプの表面構造は第2の化合物をロードする。幾つかの実施形態において、表面構造20は、導電性である及び/又は熱伝達のための高い利用可能性を有する材料からなる。幾つかの実施形態において、表面構造は炭素からなる。
【0019】
表面構造は、多くの異なる技術を用いて収着媒体6の層上に構成することができる。上記で参照される同時係属出願は、表面構造20を平行な層22の表面上に構成するための多くの方法を開示する。幾つかの実施形態において、表面構造は、それらが適用される層の格子構造によってエピタキシャルに配向される。幾つかの実施形態において、表面構造は、隣接する層が層の隣に構成される前に、収着材料の層上に被覆される。幾つかの実施形態において、化合物は、表面構造20を形成するために収着媒体6の層上で脱水素化される。幾つかの実施形態において、表面構造は、収着媒体6の平行な層の間でそれらを所望の距離だけ分離するスペーサとして働く。
【0020】
幾つかの実施形態において、平行な層の間の距離は、平行な層の各々の表面上に物質の1分子の厚さの層をロードするのに十分なだけの大きさである。他の実施形態において、距離は、平行な層の各々の表面上及び層の表面上ではなく平行な層の間の区域における物質の少なくとも1分子の厚さの層上に分子をロードするのに十分に大きい。例えば、物質の分子は、収着媒体6の層22の表面上及び層22の間の区域204にロードされてもよい。幾つかの実施形態において、収着媒体6の平行な層は、90Å離して構成される。収着媒体6の平行な層は、例えば、天然ガスをロードするために90Åだけ分離されてもよい。幾つかの実施形態において、収着媒体6の層は、90Å以上又は90Å未満の距離をおいて構成される。例えば、幾つかの実施形態において、距離は、120Å以上であり、他の実施形態において、距離は60Å未満である。
【0021】
幾つかの実施形態において、収着媒体6の各層の間の距離は同じであり、一方、他の実施形態において、層の間の距離は、平行な層のうちの幾つかの間でのみ変化する又は同じである。例えば、平行な層のうちの幾つかは、メタンのような第1の化合物の分子をロードできるようにする距離で離間されてもよく、平行な層のうちの幾つかは、水素のような第2の化合物の分子をロードできるようにする距離に離間されてもよい。図2Bは、本技術の別の実施形態に係る収着媒体6の領域200の拡大略側断面図を示す。収着媒体6の平行な層22に表面構造20が適用される。平行な層22は、第1の区域210が第2の区域212のサイズとは異なるサイズであり、同じく第2の区域212のサイズは第3の区域214のサイズとは異なるサイズであるように、異なる距離だけ離間される。前述のように、変化される間隔は、種々の区域への異なる分子の優先的なロードを可能にする場合がある。例えば、第1の区域210は、メタンをロードするように構成されてもよく、第2の区域212は、水素をロードするように構成されてもよい。図2Cは、本技術の別の実施形態に係る収着媒体6の領域200の拡大略側断面図を示す。図2Cの実施形態において、収着媒体6の層22は、収着媒体が区域222のような第1のサイズの区域と区域224のような第2のサイズの区域とを備えるように距離を変化させることによって、互いから離間される。
【0022】
幾つかの実施形態において、表面構造20はサイズが変化する。例えば、図2Bにおいて、幾つかのナノチューブ20aは、他のナノチューブ20aよりも長い。幾つかの実施形態において、表面構造のサイズを変化させることで、それらが物質をロードする及びアンロードする場合の速度が変化する。幾つかの実施形態において、表面構造のサイズは、第2の化合物よりも第1の化合物を優先的にロードするために又は収着媒体6の層の間の間隔を変化させるために増加され又は減少される。
【0023】
幾つかの実施形態において、収着媒体の層の間の区域は第1のタイプの表面構造のみを含む。例えば、第3の区域214はナノチューブのみを含む。収着媒体の平行な層の間の区域は、特定化合物を収容するために特定のタイプの表面構造のみを含んでもよい。例えば、ナノチューブがナノスクロールよりも高密度で水素をロードできるので、第3の区域214はナノチューブ20aのみを含んでもよく、水素は第3の区域214にロードされることになる。幾つかの実施形態において、収着媒体の層の間の区域は、特定化合物(単数又は複数)を収容するために2つのタイプの表面構造のみを含む。例えば、ナノスクロールはメタンを高密度でロードでき、ロッドはメタンを高密度でロードすることができないがメタンを高速でロードでき及びアンロードできるので、第2の区域212はナノスクロール20b及びロッド20cのみを含んでもよい。したがって、ナノスクロール20bとロッド20cは、特定の用途において互いの弱さを補う可能性がある。幾つかの実施形態において、収着媒体の層上に構成される表面構造のすべては1つのタイプのものであってもよい。例えば、収着媒体は、特定の用途のためにナノチューブのみを含んでもよい。
【0024】
幾つかの実施形態において、表面構造20は収着媒体の層22と垂直に配向される。他の実施形態において、表面構造20のうちの少なくとも幾つかは、収着媒体の層22と垂直に配向されず、代わりに異なる角度に配向される。図2Cにおいて、表面構造20は、層22から90度以上異なる角度に配向される。表面構造は、表面構造の表面積を増加させ、表面構造によって分子がロードされる速度を増加させ、表面構造のロード密度を増加させ、特定の化合物の分子を優先的にロードする、又は別の理由のために特定の角度に配向されてもよい。
【0025】
幾つかの実施形態において、表面構造は、それが取り付けられる収着媒体6の層の材料とは異なる材料からなる。図2Dは、本技術の別の実施形態に係る収着媒体6の領域200の拡大略側断面図を示す。収着媒体の平行な層22は、グラフェンのような第1の材料からなる。表面構造20は、窒化ホウ素のような第2の材料からなる。幾つかの実施形態において、平行な層22に窒化ホウ素が堆積される前にグラフェンにホウ素界面が適用される。表面構造は、多くの異なる材料のいずれかからなってもよい。例えば、幾つかの実施形態において、ナノチューブ20a、ナノスクロール20b、ロッド20c、及び/又は花状構造20dは、水素化ホウ素、ジボラン(B26)、水素化アルミニウムナトリウム、MgH2、LiH、水素化チタン、及び/又は別の金属水素化物又は別の化合物からなる。ホウ素界面上の水素化ホウ素生成は吸熱であり、それが適用される平行な層を通して除去されなければならない生成熱を有する。水素は、例えば、同様に水素の迅速なアンロードを可能にする水素化ホウ素の優れた熱伝導率のために、迅速にロードされて比較的不安定な水素貯蔵を形成する場合がある。
【0026】
平行な層の間の距離は、多くの技術のうちのいずれかを用いて制御されてもよい。幾つかの実施形態において、表面構造は、収着媒体6の層の表面上に適用され、収着媒体6の平行な層を特定距離だけ分離するように構成される。図2Dにおいて、例えば、区域226における表面構造のような隣接する層からの表面構造20は、互いに接触し、区域226のサイズを調整する。幾つかの実施形態において、平行な層は、多孔通路4のような支持基体上に構成され、所望の分離を達成するために層を互いから反発させる電荷などが平行な層に印加される。平行な層はまた、製造中又は層が基体上に構成されている間に、層の間にスペーサとして働く原子又は化合物を堆積することによって所望の距離だけ分離されてもよい。例えば、化合物が脱水素化されるとき、生産される収着媒体6の各層の間にセパレータ原子又は分子が適用されてもよい。幾つかの実施形態において、収着媒体6の平行な層は、加熱され膨張させられて層の間にセパレータ原子又は化合物が挿入されることを可能にするホスト材料から形成され、これはセパレータ原子又は化合物を有する区域の中にホスト材料が収縮するのを防ぐ。収着媒体6の2つの層の間の距離はまた、層を所定の距離をおいて配置するのに必要な仕事を提供するのに十分な力を誘起する層の又は2つの層の間のスペーサの相変化によって、制御することができる。層の間の距離は、層との間での熱の伝達を容易にするため、層の間に光を通すため、触媒の目的で、及び/又は湿らせる(dampening)目的で、容器2に構造的支持を提供するように調節されてもよい。
【0027】
物質は、収着媒体6の平行な層の表面及び表面構造20上に吸着されることによって、及び表面構造20の中に及び収着媒体6の層の間の区域の中に吸収されることによって、収着媒体6の中にロードされる。図3は、収着媒体6の中に物質をロードするためのプロセスの流れ図である。ブロック300において、物質は、収着媒体の縁部で与えられる。収着媒体6の縁部は、収着媒体の層の間の区域へのアクセスを提供する領域を含む。例えば、図1の容器2は、円盤形の層を備え、収着媒体6の内縁部15は、収着媒体の層の間の区域へのアクセスを提供する。物質の分子は、収着媒体6の内縁部15からロードされてもよい。
【0028】
ブロック310において、物質の分子が収着媒体6の層の表面上に吸着される。本明細書の全体を通して説明されるように、収着媒体6から熱が取り出されるとき、収着媒体6に電圧が印加されるとき、及び/又は収着媒体6によって経験される圧力が増加されるときに、収着媒体6は物質をロードする場合がある。幾つかの実施形態において、触媒は、物質のロードを容易にする又は引き起こす。
【0029】
ブロック320において、物質の分子が、収着媒体6の層上に構成される表面構造の表面上に吸着される。例えば、物質の分子は、収着媒体の層の表面上に構成されるナノロッドの表面上に吸着されてもよい。ブロック330において、物質の分子が表面構造の中に吸収される。例えば、物質の分子は、収着媒体6の層の表面上に位置するナノチューブの中に吸収されてもよい。
【0030】
ブロック340において、物質の分子が収着媒体6の層の間の区域の中に吸収される。幾つかの実施形態において、物質の分子は、分子がその上に吸着されることになるための残りの表面が存在しないような密度に分子が層の表面上に吸着されるまでは、収着媒体6の2つの層の間の区域の中にガス溶液として吸収されず、ロードされる残りの分子は2つの層の間の区域の中にガス溶液として吸収される。幾つかの実施形態において、物質の分子は、収着媒体6の縁部を介して吸着され、新たに吸着される分子からの力によって先に吸着された分子が収着媒体の層の間の区域の中に浮遊することとなり、吸収されるガス溶液の一部となるまで、先に吸着された分子を収着媒体6のより深くに押しやる。幾つかの実施形態において、物質の分子は物質の幾つかの分子が吸着される前に吸収され、又は物質の分子は物質の分子が吸着されるのと同時に吸収されることが当業者には分かるであろう。
【0031】
物質は、収着媒体6の平行な層の表面及び表面構造20上に吸着された状態から脱着されることによって、及び表面構造20に及び収着媒体6の層の間の区域の中に吸収された状態から脱着されることによって、収着媒体6からアンロードされる。図4は、収着媒体6から物質をアンロードするためのプロセスの流れ図である。ブロック400において、物質の分子は、収着媒体6の層の表面上に吸着された状態から脱着される。本明細書の全体を通して解説されるように、収着媒体の中にロードされている分子は、収着媒体に熱を伝達することによって、分子をロードするために印加される電圧とは反対の極性の電圧を収着媒体の両端に印加することによって、収着媒体によって経験される圧力を減少させることによって、及び/又は収着媒体を照射し、収着媒体を物理的に乱す機構のような他の機構によって、アンロードされてもよい。
【0032】
ブロック410において、物質の分子は、収着媒体6の表面構造の表面上に吸着された状態から脱着される。ブロック420において、物質の分子は、収着媒体の表面構造6の内部に吸収された状態から脱着される。上記で説明されたように、異なる種類の表面構造が、吸収された物質の分子を異なる速度で脱着させることができる。例えば、幾つかの実施形態において、ナノ花状構造は、吸着された物質をナノチューブよりも速く脱着させ、一度に吸収された物質の1分子だけを脱着することができる場合がある。
【0033】
ブロック430において、物質の分子は、収着媒体6の層の間の区域から吸収された状態から脱着される。ブロック440において、脱着される分子が、収着媒体から収着媒体の縁部の外に追い出される。幾つかの実施形態において、吸着された分子、したがって収着媒体と接触している分子が最初に脱着される。幾つかの実施形態において、吸収された分子が最初に脱着される。しかしながら、幾つかの実施形態において、収着媒体の層の表面上に吸着された分子、収着媒体の表面構造の表面上に吸着された分子、表面構造の中に吸収された分子、及び収着媒体の層の間の区域の中に吸収された分子が一緒に脱着される。収着媒体は、一般に、ロードされた物質の分子を大量にアンロードすることができる。例えば、収着媒体は、コンデンサが蓄積した電荷をアンロードする方法と同じように分子をアンロードしてもよい。
【0034】
B.多孔通路と閉じ込め
図1に戻って参照すると、物質は、第1のポート10又は第2のポート11のいずれかを通して容器2の中に導入され、物質は、多孔通路4を介して収着媒体6に与えられる。幾つかの実施形態において、多孔通路4は多孔管である。他の実施形態において、多孔通路4はワイヤークロスである。多孔通路4は、容器2を長手方向に補強することができ、これはまた、収着媒体6を冷却又は加熱するために流体を循環させることができる。幾つかの実施形態において、容器2は、2つよりも多いポート又は少ないポートを含む。例えば、物質を貯蔵するための容器は、1つのポートのみを含んでもよい。
【0035】
収着媒体6は、多孔通路4の穿孔を通して収着媒体の内縁部15に与えられる物質をロードする。収着媒体6は、収着媒体6の内縁部15から物質の分子をロードする。容器2は、容器2内に体積を含むために平行な層の外縁部17上のケーシング16を含み、これは、ロードされる物質の分子が平行な層の外縁部17を介して容器から逃げるのを防ぐ。
【0036】
ケーシング16は、低透過性膜14を備える。適した膜材料は、グラファイトホイル、ラップされる、深絞りされる、又はスピン成形されるチタン、アルミニウム、又はステンレス鋼、及び電鋳されるニッケルを含む。ポリエチレンテレフタレート、エチレンクロロトリフルオロエチレン、ポリフッ化ビニリデン、及びポリオレフィンの金属化された薄膜を含む種々の複合材が膜に用いられてもよい。金属化するために用いることができる材料は、鉄、アルミニウム、チタン、クロム、ニッケル、又はスパッタ合金を含む。幾つかの実施形態において、膜14は、導電性であり、及び/又は熱を伝達する高い能力を有する。
【0037】
膜14は、高強度接着剤又は拡散ろう付け配合物を用いて収着材料の平行な層の外縁部17に固定される。膜14を平行な層の外縁部17に固定するために、エポキシ(apoxis)、フェノール−ホルムアルデヒド、メラミン−ホルムアルデヒド、シリコン、及びシロキサンを含有するものを含む付加型ポリイミドのような熱硬化性樹脂と、芳香族ポリエステル、不飽和ポリエステル、及びポリエーテルイミドのような熱可塑性樹脂とを含む、種々の接着剤が用いられてもよい。膜14を平行な層の外縁部17上に拡散接合するために、外縁部17はまた、例えばダイヤモンド状物質を含む物質で被覆されてもよい。膜14を平行な層の外縁部17に固定するために種々の他の炭素堆積物を用いることもできる。
【0038】
ケーシングはまた、膜14の上に適用される高強度ロービング、ヤーン、又はファイバを用いて、多孔通路4の半径方向の補強を横断する方向に容器2を補強してもよい。幾つかの実施形態において、米国特許第6,503,584号で説明される伝熱フィンのような長手方向の波形部が膜の上に適用されてもよい。膜14とフィンとの間の熱交換を妨害することを避けながら波形にされた表面のロードを膜14の上に拡散させるために、軸方向の補強ロービングが伝熱フィンの上に適用されてもよい。
【0039】
C.熱交換
幾つかの実施形態において、物質のロードを容易にするために収着媒体6から熱が除去され、収着媒体6がロードした物質のアンロードを容易にするために収着媒体6に熱が加えられる。上記で解説されたように、収着媒体6の層は、熱伝達のための高い利用可能性を有する材料からなってもよく、これは、収着媒体6の層との間で、平行な層上に構成される表面構造20の中に及び外にでさえも熱を伝達できるようにする。
【0040】
図1に描かれた容器2は、収着媒体6との間で熱を伝達するように設計される種々のコンポーネントを含む。例えば、容器2は、収着媒体6の平行な層との間で熱を伝達することができる、収着媒体6の周辺を取り囲む連続的な伝熱管8を含む。幾つかの実施形態において、ケーシング16は、容器2と伝熱管8を保護し且つ断熱する外側ケーシング19を含み、収着媒体と伝熱管8のための構造的支持を提供する。図5は、外側ケーシングなしの容器2の側面図を示す。伝熱管8は、容器2の周辺の周りにラップされ、膜14上に直接に位置決めされる。冷却要素と加熱要素とを含むポンプ21は、収着媒体6に熱を加える又は収着媒体6から熱を除去するために、加熱された又は冷却されたアルゴン、二酸化炭素、一酸化炭素、若しくは別のガス又は流体を、管8を通して循環させることができる。幾つかの実施形態において、熱はまた、加熱された又は冷却されたガス又は液体を多孔通路4に通すことによって収着媒体6との間で伝達される。
【0041】
熱はまた、他の方法を用いて収着媒体6に適用することができる。幾つかの実施形態において、熱交換流体又はガスが通る付加的な管が、容器内に構成される。幾つかの実施形態において、収着媒体6に熱を伝達するために、抵抗加熱要素が容器内に構成される。幾つかの実施形態において、容器2のケーシング16と膜14は、実質的に透明であり、容器2に光が入って、光活性のある表面構造20に接触し、表面構造と収着媒体6の層を加熱することを可能にする。幾つかの実施形態において、光活性のある要素は、最大限の量の光を受けるために平行な層の外縁部17の間に配置される。
【0042】
D.圧力スイング
幾つかの実施形態において、物質は、容器内の圧力をシフトすることによって収着媒体の中にロードされ又は収着媒体からアンロードされる。図1に戻ると、幾つかの実施形態において、容器2の内部の圧力は、第2の弁18を閉じ、収着媒体6が物質をロードし始める点に容器内の圧力が増加するまで第1のポート10を通して物質をポンピングすることによって調節される。幾つかの実施形態において、容器2は、高圧パイプライン内に接続され、容器内の圧力を収着媒体6が容器2を通る物質又は物質の特定のコンポーネントの幾らかをロードすることができるのに十分なだけ高いままにする。この詳細な説明の全体を通してより詳細に解説されるように、物質の特定の化合物のみをロードする容器2はフィルタとして用いられてもよい。
【0043】
容器2内の圧力はまた、物質を収着媒体6内に高圧で貯蔵することによって、及び第1の弁13又は第2の弁18を開いて容器2内の圧力を低下させることによって調節することができる。例えば、天然ガスは、容器2内に高圧でロードされてもよく、第2の弁18は、容器2内の圧力を低下させて収着媒体6に天然ガスをアンロードさせるために開かれてもよい。幾つかの実施形態において、物質は、第1の弁13を通して容器2の中にロードされ、第2の弁18は、ある程度閉じられ、物質が容器2を通して流れるのを妨げ、容器2内の圧力を増加させて、収着媒体6に幾らかの物質をロードさせる。幾つかの実施形態において、圧力スイングは、収着媒体6に電荷を適用することによって引き起こされる。
【0044】
E.電位
幾つかの実施形態において、物質のロード又はアンロードを容易にするために収着媒体6の層の両端に電圧が印加される。収着媒体6に電圧が印加されるとき、収着媒体6は、物質をより速くロードする、電圧が印加されないときとは異なる物質の化合物をロードする、より低い温度又は圧力で物質をロードする、及び/又はより多くの物質を層の間の区域にロードすることができ、これにより容器2の貯蔵密度を増加する。
【0045】
図6Aは、収着媒体6の平行な層のうちの少なくとも幾つかに電圧を印加するために容器2に接続されてもよい回路と電源を備える電源装置601を含む容器2の略側断面図である。膜14は、グラフェンのような電気伝導性材料からなる。電源装置601の第1の端子605は、膜14に電気的に接続される。多孔通路4はまた、チタン、モネル400、又は銅のような電気伝導性材料からなる。第2の端子606は、多孔通路4に電気的に接続される。誘電体材料からなるガスケット602は、膜14と多孔通路4を電気的に分離する。膜14は、収着媒体6に電気的に接続され、同様に、多孔通路4は、収着媒体6の平行な層の内縁部15の各々に電気的に接続される。その結果、収着媒体6の平行な層の各々の両端に電荷が適用される。
【0046】
幾つかの実施形態において、膜は、種々の回路608を通じて収着媒体6の層を電気的に接続し、膜14と多孔通路4との間に電圧が印加されるときに異なる収着媒体6の層の両端に異なる電圧を印加させる。幾つかの実施形態において、回路608は、膜14と収着媒体6との間に構成される。幾つかの実施形態において、回路608は、膜14の一部として又は膜の外部に構成される。図6Bは、本技術の実施形態に係る容器の領域610の拡大略側断面図である。回路608は、収着媒体6の少なくとも幾つかの層に膜14を接続する種々のコンポーネントを含む。例えば、導電要素620は、膜14を幾つかの収着媒体の層に電気的に接続するが、他の収着媒体6の層には電気的に接続せず、膜14に電気的に接続される収着媒体の層の間の帯電した区域613と、膜14に電気的に接続されない収着媒体の層の間の帯電していない区域611とをもたらす。
【0047】
幾つかの実施形態において、収着媒体6の複数の層の両端に電荷勾配が適用される。例えば、電荷勾配は、20個の隣接する収着媒体6の層の両端に適用されてもよく、この場合、各層には、次の隣接する層よりも少ない電荷が印加される。電荷勾配は、物質の群から特定の物質(単数又は複数)をフィルタリングするときに有用である。例えば、20個の連続的な層の両端に電荷勾配が適用され、且つ物質が容器2の中に導入される場合、高い絶縁耐力を有する物質の特定のコンポーネントは、電荷勾配が最も強い電荷勾配の中央にロードされるであろう。低い絶縁耐力を有する物質の特定のコンポーネントは、結果として、電荷勾配が最も弱い電荷勾配の端にロードされるであろう。実例として、電荷勾配が適用されるときに窒素と水素が収着媒体の中にロードされる場合、窒素は勾配の中央にロードされ、水素は勾配のいずれかの側にロードされるであろう。
【0048】
電荷勾配を適用するために、幾つかの実施形態において、膜と収着媒体6の各層との間に、抵抗値が変化する電気抵抗器が構成される。図6Cは、本技術の実施形態に係る容器の領域610の拡大略側断面図である。回路608は、収着媒体6の少なくとも幾つかの層に膜14を接続する種々のコンポーネントを含む。第1の抵抗器624は第1のインピーダンスを有し、第2の抵抗器625は第2のインピーダンスを有し、第3の抵抗器626は第3のインピーダンスを有し、第4の抵抗器627は第4のインピーダンスを有し、第5の抵抗器628は第5のインピーダンスを有し、第6の抵抗器630は第6のインピーダンスを有する。抵抗器は、膜14を収着媒体6の平行な層22に接続する。第1のインピーダンスは第2のインピーダンスよりも大きく、第2のインピーダンスは第3のインピーダンスよりも大きく、第3のインピーダンスは第4のインピーダンスよりも大きく、以下同様である。したがって、膜14に電荷が印加されるときに、第6の抵抗器630を介して膜14に接続される収着媒体の層は、第5の抵抗器628を介して膜14に接続される収着媒体の層よりも高い電圧を経験し、以下も同じである。第1の抵抗器624を介して膜14に接続される収着媒体の層は、描かれた層22の外へ最も低い電圧を経験するであろう。幾つかの実施形態において、収着媒体6の層は、誘電体材料によって電気的に分離されてもよい。
【0049】
幾つかの実施形態において、電源は、容器2に第1の極性の電圧を供給するように構成され、これはまた、容器に反対の極性の電圧を供給するようにも構成される。例えば、電源は、収着媒体にロードするために第1の端子605がカソードであり第2の端子606がアノードであってもよく、且つ収着媒体にアンロードするために第1の端子605がアノードに切り換えられ第2の端子606がカソードに切り換えられてもよいように構成される。
【0050】
F.触媒
幾つかの実施形態において、物質のロード又はアンロードを容易にするために又は化学反応に触媒作用を及ぼすために、平行な層に触媒が適用される。図1に戻ると、触媒は、収着媒体6の層の表面上(すなわち、隣接する層に面する層の表面上)又は層の縁部上のみに適用されてもよい。幾つかの実施形態において、収着媒体6の第1の層は、第1の層に隣接する収着媒体6の第2の層が構成される前に触媒で被覆される。幾つかの実施形態において、触媒は、収着媒体6の内縁部15又は外縁部17上にのみ適用される。
【0051】
幾つかの実施形態において、触媒は、収着媒体6への特定の物質のロードを容易にし、及び/又は物質を収着媒体6により速く又はより高密度にロードさせる。例えば、水素とメタンを含む物質が収着媒体の平行な層の内縁部15に与えられてもよい。炭化チタン又は炭化鉄(例えば、Fe3C)のような屈折性炭化物を備える触媒を平行な層の内縁部15上に適用し、それらにメタンではなく水素をロードさせてもよい。結果として、物質から水素をフィルタすることができる。別の例として、天然ガスの外への水素のロードを容易にするために、48%の鉄、49%のチタン、及び3%のイットリウムからなる触媒が収着媒体6に適用されてもよい。
【0052】
幾つかの実施形態において、触媒は、2つの化合物の間の化学反応に触媒作用を及ぼし、反応生成物が収着媒体6の中にロードされる。例えば、イオン化する紫外線又は誘起される火花を用いて空気からオ区域が生成される場合がある。オ区域は、収着材料の層の内縁部15に適用されるクロミア(chromia)のような触媒を用いてメタンと反応して、酸素とメタノールを生成する場合があり、そのいずれかが収着媒体6によってロードされる。幾つかの実施形態において、第2の反応生成物が容器2を通して第2のポート11を出るが、一方、他の実施形態において、第2の生成物の少なくとも一部はまた収着媒体6によってロードされる。1つの例において、収着媒体6の層の内縁部15に与えられる物質は、メタンと水を含有し、収着媒体6の層の内縁部15上に炭化鉄触媒が適用される。収着媒体6にエネルギーが印加され、メタンと水との間に化学反応を引き起こして、メタノールと水を生成する。次いで、収着媒体はメタノールと水をロードする。
【0053】
幾つかの実施形態において、容器がフィルタとして用いられるときに、ロードされる物質を容器2から空にすることができるように、容器を定期的に取り外さなければならない。例えば、メタンガスの流れから二酸化炭素がフィルタされる場合、収着媒体6は、二酸化炭素で飽和される場合があり、メタンガスからさらなる二酸化炭素がフィルタされる前に、二酸化炭素を収着媒体6から除去する必要がある場合がある。
【0054】
化学反応を容易にするために収着媒体6の縁部に種々の触媒が適用されてもよい。例えば、適した触媒は、マンガンで助触媒作用を及ぼされる銅、亜鉛、又はジルコニア;銅又は亜鉛をドープされ且つ助触媒作用を及ぼされるジルコニウム又はマンガン;マンガンをドープされる銅、亜鉛、又はジルコニウム;又は鉄、マンガン、ニッケル、クロム、バナジウム、及び他の遷移金属の酸化物を含む。
【0055】
G.向流フィルタ
図7は、ロードされる物質をアンロードする必要なしに物質の流れを連続的にフィルタすることができるフィルタ700の略側断面図である。フィルタ700は、管702の中に構成され、収着材料の平行な層からなる収着媒体708を含む。平行な層は、円盤状に形状設定され、その結果、フィルタ700は、平行な層の内縁部726によって囲まれる内側区域710と、収着媒体708の平行な層の外縁部728と管702内の管704によって囲まれる外側区域706とを含む。管702は、管702と管704との間のスペースにおいて空気又は耐火断熱のための閉じ込めシールドとして作用する。幾つかの実施形態において、平行な層の内縁部726に沿って多孔通路711が構成される。収着媒体708の層は、容器2に関して上記で解説された材料のいずれかからなってもよく、収着媒体708の層は、上記で解説された方法のいずれかを用いて生産され構成されてもよい。幾つかの実施形態において、収着材料708の平行な層の外縁部728上に膜(図示せず)が適用される。幾つかの実施形態において、収着材料の平行な層の内縁部726上又はこれらの層の表面上に触媒が適用される。幾つかの実施形態において、外側区域706での化学反応を容易にするために、収着材料の平行な層の外縁部728上に触媒が適用される。幾つかの実施形態において、抵抗加熱要素712は、管704内に含まれる。
【0056】
幾つかの実施形態において、多孔通路711は、管702内にフィルタ700を吊るすのを支援する構造的支持に接続される。図8は、本技術の実施形態に従って構成されるフィルタ700の等角図である。多孔通路711は、収着媒体708を越えて延び、支持部材830は、多孔通路711と管704(図8に描かれた管704は透明であり、管702は、明瞭にする目的のため描かれていない)の内部との間に構成される。支持部材830は、収着媒体708を管704内に浮遊されてもよいように支持する一助となる。
【0057】
図7を再び参照すると、フィルタ700は、収着媒体708によって物質の特定のコンポーネントが内側区域711からロードされるときに物質をフィルタし、物質の残りはフィルタ700から追い出される。内側区域710は、フィルタ700の第1の端722から物質718を受け入れ、フィルタされた物質720をフィルタ700の第2の端724に通過させる。外側区域706は、フィルタ700の第2の端724上で反応物714を受け取り、化学反応の生成物716をフィルタ700の第1の端722に通過させる。物質718が多孔通路711に入るときに、収着媒体によって物質718の特定のコンポーネントがロードされる。ロードされる物質は、平行な層の外縁部728の方に半径方向に移動し、収着媒体によってロードされる付加的な分子の各々が、先にロードされた分子を外縁部728の方にさらに押す。ロードされる分子が収着媒体708の外縁部728に到達するときに、分子と反応物714との間で化学反応が起こり、収着材料の平行な層の外縁部上に適用された触媒によって容易にされる。
【0058】
幾つかの実施形態において、フィルタ700は、燃焼機関の排気路に構成され、向流型熱交換器として作用し、エンジンの排気から有用な化合物をもたらすのに用いられる。燃焼機関からの排気は、フィルタ700の内側区域710におけるフィルタ700の第1の端722から供給される。再生可能な供給原料から提供することができるメタンは、外側区域706におけるフィルタ700の第2の端724から供給される。作動時には、ラジエータを通して普通は排出される熱を、吸熱反応のために熱が必要とされるフィルタ700に加えることができる。例えば、熱は、外側区域706に入る前にメタンに加えることができる。抵抗加熱要素712はまた、メタンを加熱してもよい。フィルタ700の収着媒体708は、排気中に存在する蒸気を吸収する。水分子は、収着媒体708の外縁部728の方に半径方向外向きに押される。収着媒体708の外縁部728は、48%の鉄、49%のチタン、及び3%のイットリウムからなる合金のような触媒を含んでもよい。触媒のサイトでの熱とメタンと水との組合せが、式1によって説明される化学反応を引き起こす。
CH4+H2O+熱→CO+3H2 (1)
結果として生じる一酸化炭素と水素は、外側区域706を通してフィルタ700の第1の側部722の外に流れ、貯蔵され又は燃料としてすぐに用いられてもよい。収着媒体708によってロードされた水を除くエンジンからの排気が、フィルタ700の第2の側部724を通してフィルタの外に流れる。残りの排気は、貯蔵され又はさらにフィルタされてもよい。例えば、排気は、フィルタされ排気がフィルタ700を通過した後で容器に貯蔵されてもよいアルゴンを含んでもよい。
【0059】
幾つかの実施形態において、物質718の特定の部分が収着媒体708によってロードされ、且つ化学反応における反応物であることなく、収着媒体708の外縁部728の外にアンロードされる。代わりに、収着媒体708によってロードされる物質718の特定の部分が、別のシステムに渡され、廃棄され、又は貯蔵される。同様に、フィルタされた物質720は、廃棄され、貯蔵され、又はどこかで用いられてもよい。幾つかの実施形態において、フィルタの第1の端722及び第2の端724は、物質718を生成物716から分離し、且つ反応物714をフィルタされた物質720から分離するノズルを含む。
【0060】
幾つかの実施形態において、フィルタ700は、物質のロード又はアンロードを支援する若しくは化学反応を容易にするために収着媒体708との間で熱を伝達する種々の伝熱コンポーネントを備える。フィルタ700は、例えば、加熱された又は冷却されたガス又は液体をポンプする抵抗加熱要素又は伝熱管を含む、上記で説明された伝熱コンポーネントのいずれかを含んでもよい。同様に、幾つかの実施形態において、フィルタ700は、物質のロード又はアンロードを容易にするために収着媒体708に電位を印加するコンポーネントを含む。フィルタ700は、収着媒体700の層に電位を印加するための上記で説明されたコンポーネントのいずれかを含んでもよい。加えて、物質718は、外側区域706に導入される反応物の圧力よりもかなり高い圧力で内側区域710に導入されてもよく、結果として、収着媒体708に物質718のコンポーネントをロードさせる圧力差が生じる。貯蔵材料の平行な層はまた、上記で説明された表面構造のような種々の表面構造を含んでもよい。
【0061】
H.容器をロードする及びアンロードするためのシステム
図9は、収着媒体6の中にロードされるべき物質を多孔通路4を通して供給する、収着媒体6との間で熱を伝達して物質のロード又はアンロードを容易にするために加熱された又は冷却されたガス又は液体を多孔通路4に通す、且つ放出された物質を供給することができる付加的なシステム又は装置に容器2の出口ポートを接続するシステム900に接続される容器2の側断面図を示す。
【0062】
弁7は、水素又は天然ガスのような物質が収着媒体6によってロードされるべき容器2の中に流れることを可能にするために開かれてもよい。伝熱管8は、収着媒体6よりも低温のガス又は液体を循環させることによって収着媒体6から熱を除去する。弁7が開かれ、収着媒体6が冷却されるとき、収着媒体6は物質をロードする。上述のように、幾つかの実施形態において、収着媒体6は表面構造を含む。幾つかの実施形態において、物質は、容器6に入る前に冷却される。幾つかの実施形態において、物質のロードを容易にするために、物質は、冷却された伝熱物質と混合される。例えば、冷却コンポーネント36は、収着媒体6の温度よりも低い温度に伝熱物質を冷却するように構成されてもよく、冷却された伝熱物質は、ロードされるべき物質と共に多孔通路4を通して循環されてもよい。
【0063】
加熱される場合、収着媒体6は、ロードされた物質をアンロードすることができる。すでに述べたように、収着媒体6は、収着媒体6よりも熱い液体又はガスを伝熱管8に通すことによって加熱することができる。加えて、収着媒体6は、加熱されたガス又は液体を多孔通路4に通すことによって加熱することができる。システム900は、多孔通路4を通して循環されるガス又は液体を加熱する熱交換器34にエネルギーを供給する発電器40を含む。例えば、熱交換器34は、アルゴン、二酸化炭素、一酸化炭素、又は別の熱交換物質を加熱してもよく、これは次に、収着媒体6を加熱するために多孔通路4を通してポンプされてもよい。加熱された後で、収着媒体6がロードされた物質をアンロードするときに、収着媒体6を循環される熱交換物質と混合してもよい。幾つかの実施形態において、容器2は、ロードされる物質のアンロードを多孔通路4の中央管(図示せず)に又は周辺区域に方向付けることによって、ロードされる物質が循環される熱交換物質と混ざるのを防ぐ。
【0064】
物質を混合する実施形態において、混合物は、容器2から追い出された後でフィルタされてもよい。容器から追い出されるときに、混合物は容器2の第2のポート11を通過し、混合物を浄化するためにマイクロフィルタ又は膜42からなるフィルタ30を通して送達されてもよい。適したマイクロフィルタ及び膜は、物質の放出を誘起するために電荷を確立することによって生産されるイオン透過性ポリマーなどの選択的ポリマーのような有機膜と、パラジウム、PdAg、又は鉄、チタン、銅、及びレニウムの合金のような無機膜とを含む。アンロードされた物質又は放出された物質と熱交換物質との混合物は、燃料電池32、火花噴射システム9(四方弁48及び弁38を通して)を含む他のシステム及び/又は貯蔵装置に、又は四方弁48を通して熱交換器34に供給され、そこでより高い温度に加熱され、多孔通路4を通して戻されてもよい。混合物はまた、別のポート(図示せず)を通してシステム900の外部に渡されてもよい。例えば、アンロードされる物質又は混合物は、パイプライン又は別のシステムに送達されてもよい。
【0065】
収着媒体に物質をロードするのを容易にするために種々の装置及び方法が上記で説明される。例えば、収着媒体との間で熱を伝達してもよく、収着媒体の層に電荷を適用してもよく、若しくは容器内の又は収着媒体の区域の間の圧力を変化させてもよく、このすべては収着媒体への物質のロードを容易にすることができる。物質のロード又はアンロードを容易にするために1つだけのこうした方法を採用するものとして幾つかの実施形態が説明されるが、1つよりも多いロード又はアンロード方法が同時に採用されてもよいことが当業者には分かるであろう。例えば、物質をロードするために収着材料の層を冷却することができ、物質の分子がロードされる速度を増加させるために層に電荷を適用することができる。
【0066】
幾つかの実施形態において、物質のロード又はアンロードを容易にするために容器の収着媒体又はフィルタに超音波振動が適用される。同様に、幾つかの実施形態において、物質のロード又はアンロードを容易にするために収着媒体は選択的に照射される。
【0067】
そのうえ、円盤のような特定の形状を有するものとして収着媒体の種々の実施形態が説明されるが、収着媒体は他の形状を備えてもよいことが当業者には分かるであろう。例えば、収着媒体は、収着材料の平行な長方形の層を備えてもよい。幾つかの実施形態において、物質は、長方形の層の第1の縁部に与えられ、そこで長方形の層が物質をロードし、長方形の層は、層の第2の縁部で物質をアンロードし、そこで物質は化学反応における反応物とすることができる。
【0068】
本技術の1つの利点は、天然ガス及び水素などのガスを炭化水素と比較できるエネルギー密度で貯蔵できるようにすることである。
【0069】
本技術の別の利点は、エンジンの排気のような廃生成物をフィルタし、及び別の化合物と反応させて有用且つ再生可能な化合物をもたらしてもよいことである。
【0070】
本技術の別の利点は、燃料がまた消費されるであろう場所で燃料を生産し、フィルタし、及び貯蔵することができ、燃料ソースから燃料が消費されるであろう場所に長距離にわたって燃料を輸送する必要をなくすことである。
【0071】
上記から、例証する目的で本発明の特定の実施形態が本明細書で説明されているが、本発明の精神及び範囲から逸脱することなく種々の修正がなされてもよいことが理解されるであろう。したがって、本発明は付属の請求項以外によって制限されない。

【特許請求の範囲】
【請求項1】
物質をロードするための装置であって、
収着材料の第1の層と、
収着材料の第2の層と、
を備え、
前記収着材料の前記第2の層が、前記収着材料の前記第1の層と平行に構成され、
前記収着材料の前記第1の層と前記第2の層が、前記収着材料の前記第1の層と前記第2の層との間に物質がロードされることを可能にする距離だけ分離され、
前記距離が、前記第1の層及び/又は前記第2の層の表面上への前記物質の一部の吸着と前記第1の層と前記第2の層との間の区域への前記物質の一部の吸収によって、前記物質が前記収着材料の前記第1の層と前記第2の層との間にロードされることを可能にする、装置。
【請求項2】
前記収着材料の前記第1の層と前記第2の層が、円盤状に形状設定され、前記装置は、前記物質が前記収着材料の前記第1の層及び第2の層の内縁部を横切る第1の方向に流れ、且つ第2の物質が前記収着材料の前記第1の層と第2の層の外縁部を横切る第2の方向に流れように構成され、前記第1の方向と前記第2の方向が反対方向である、請求項1に記載の装置。
【請求項3】
前記装置が、前記物質が前記収着材料の前記第1の層と前記第2の層との間で前記前記収着材料の前記第1の層及び第2の層の内縁部を介してロードされ、且つ前記収着材料の前記第1の層及び第2の層の前記外縁部を介してアンロードされるように構成される、請求項2に記載の装置。
【請求項4】
前記物質と前記第2の物質との間の化学反応を容易にするために前記第1の層及び/又は前記第2の層の少なくとも一部上に適用される触媒をさらに備える、請求項3に記載の装置。
【請求項5】
前記第1の層及び前記第2の層のうちの少なくとも1つが、前記層の表面上に配向された表面構造を含む、請求項1に記載の装置。
【請求項6】
前記収着材料の前記第1の層と前記収着材料の前記第2の層が、電気伝導率を提供し、前記装置は、前記物質の前記ロードを引き起こす及び/又は容易にするために前記収着材料の前記第1の層及び/又は前記第2の層に電荷が印加されてもよいように構成される、請求項1に記載の装置。
【請求項7】
前記収着材料の前記第1の層と前記収着材料の前記第2の層が、熱伝達のための高い利用可能性を有し、前記物質の前記ロードを容易にする及び/又は引き起こすために、伝熱コンポーネントと前記収着材料の前記第1の層及び前記第2の層との間で熱が伝達されてもよい、請求項1に記載の装置。
【請求項8】
物質と別の物質との間の化学反応を容易にするために前記第1の層及び/又は前記第2の層の少なくとも一部上に適用される触媒をさらに備える、請求項1に記載の装置。
【請求項9】
前記収着材料の前記第1の層及び前記第2の層が円盤の形状であり、収着材料の前記第1の層及び第2の層の内縁部が、前記層が互いに隣接して構成されるときに内部区域を形成し、前記物質が、前記内部区域を介して前記第1の層及び前記第2の層に導入される、請求項1に記載の装置。
【請求項10】
前記収着材料の前記第1の層及び第2の層が、グラフェン、窒化ホウ素、又はグラファイトを備える、請求項1に記載の装置。
【請求項11】
前記表面構造が、ナノチューブ、ナノスクロール、ナノ花状構造、及び/又は剥離された炭化組織を備える、請求項5に記載の装置。
【請求項12】
前記装置が排気管に構成される、請求項4に記載の装置。
【請求項13】
前記収着材料の前記第1の層及び前記第2の層の各々が第1の縁部及び第2の縁部を含み、前記装置が、前記第1の層及び第2の層の前記第1の縁部に隣接する区域の圧力が前記第1の層及び第2の層の前記第2の縁部に隣接する区域の圧力とは異なるように構成される、請求項1に記載の装置。
【請求項14】
前記物質が、第1の化合物の分子と第2の化合物の分子とを備え、前記装置は、前記第1の化合物の分子が前記収着材料の前記第1の層と前記第2の層との間にロードされ、前記第2の化合物の分子が前記収着材料の前記第1の層と前記第2の層との間にロードされないように構成される、請求項1に記載の装置。
【請求項15】
前記表面構造が、前記収着材料の前記第1の層及び第2の層とは異なる材料からなる、請求項5に記載の装置。
【請求項16】
前記表面構造が窒化ホウ素からなり、前記収着材料の前記第1の層及び第2の層がグラフェンからなる、請求項15に記載の装置。
【請求項17】
前記表面構造が、前記第1の層と前記第2の層とを分離する前記距離を支持する、請求項5に記載の装置。
【請求項18】
前記収着材料の前記第1の層及び前記第2の層と平行に構成される前記収着材料の第3の層及び前記収着材料の第4の層をさらに備え、前記収着材料の前記第3の層及び前記第4の層が、前記第1の距離とは異なる第2の距離だけ分離される、請求項1に記載の装置。
【請求項19】
物質をロードするための装置であって、
少なくとも1つのポートを含む膜と、
収着材料の第1の層と、
前記収着材料の第2の層と、
を備え、
前記膜が、前記収着材料の前記第1の層及び第2の層を取り囲み、
前記収着材料の前記第2の層が、前記収着材料の前記第1の層と平行に構成され、
前記収着材料の前記第1の層と前記第2の層が、前記収着材料の前記第1の層と前記第2の層との間に物質がロードされることを可能にする距離だけ分離され、
前記第1の層及び/又は前記第2の層の表面上への前記物質の一部の吸着と、前記第1の層と前記第2の層との間の区域への前記物質の一部の吸収によって、前記物質が前記収着材料の前記第1の層と前記第2の層との間にロードされる、
装置。
【請求項20】
前記第1の層及び前記第2の層のうちの少なくとも1つが、前記層の表面上に配向された表面構造を含む、請求項19に記載の装置。
【請求項21】
前記収着材料の前記第1の層と前記収着材料の前記第2の層が、電気伝導率を提供し、前記装置は、前記物質の前記ロード及び/又は前記アンロードを引き起こす及び/又は容易にするために前記収着材料の前記第1の層及び/又は前記第2の層に電荷が印加されてもよいように構成される、請求項19に記載の装置。
【請求項22】
前記収着材料の前記第1の層と前記収着材料の前記第2の層が、熱伝達のための高い利用可能性を有し、前記物質の前記ロード及び/又は前記アンロードを容易にする及び/又は引き起こすために伝熱コンポーネントと前記収着材料の前記第1の層及び前記第2の層との間で熱が伝達されてもよい、請求項19に記載の装置。
【請求項23】
物質と別の物質との間の化学反応を容易にするために前記第1の層及び/又は前記第2の層の少なくとも一部上に適用される触媒をさらに備える、請求項19に記載の装置。
【請求項24】
前記収着材料の前記第1の層及び前記第2の層が円盤の形状であり、前記収着材料の前記第1の層及び第2の層の内縁部が、前記層が互いに隣接して構成されるときに内部区域を形成し、前記物質が、前記ポートを介して前記第1の層と第2の層及び前記内部区域に導入される、請求項19に記載の装置。
【請求項25】
前記収着材料の前記第1の層及び第2の層が、グラフェン、窒化ホウ素、又はグラファイトを備える、請求項19に記載の装置。
【請求項26】
前記表面構造が、ナノチューブ、ナノスクロール、ナノ花状構造、及び/又は剥離された炭化組織を備える、請求項20に記載の装置。
【請求項27】
前記膜が実質的に透明であり、前記収着材料の前記第1の層が、光活性のある要素と熱連通するための高い能力を有する、請求項19に記載の装置。
【請求項28】
前記化学反応の生成物が、前記収着材料の前記第1の層と前記第2の層との間にロードされる、請求項23に記載の装置。
【請求項29】
前記表面構造が、前記収着材料の前記第1の層及び第2の層とは異なる材料からなる、請求項20に記載の装置。
【請求項30】
前記表面構造が窒化ホウ素からなり、前記収着材料の前記第1の層及び第2の層がグラフェンからなる、請求項29に記載の装置。
【請求項31】
前記表面構造が、前記第1の層と前記第2の層とを分離する前記距離を支持する、請求項30に記載の装置。
【請求項32】
前記収着材料の前記第1の層及び前記第2の層と平行に構成される前記収着材料の第3の層及び前記収着材料の第4の層をさらに備え、前記収着材料の前記第3の層及び前記第4の層が、前記第1の距離とは異なる第2の距離だけ分離される、請求項19に記載の装置。
【請求項33】
収着媒体に物質をロードする方法であって、
収着媒体の縁部に隣接する領域に物質を提供するステップであって、前記収着媒体が、収着材料の少なくとも2つの平行な層と、前記少なくとも2つの平行な層の間の区域へのアクセスを提供する収着媒体の縁部とを備える、ステップと、
前記物質の少なくとも一部を前記収着媒体にロードするステップと、
を含み、
前記物質の少なくとも幾つかの分子が、前記少なくとも2つの平行な層のうちの層の表面上に吸着され、
前記物質の少なくとも幾つかの分子が、前記少なくとも2つの平行な層の間の前記区域の中に吸収される、
方法
【請求項34】
前記物質の少なくとも一部が、前記収着材料の少なくとも2つの平行な層のうちの層の表面上に位置する表面構造によって吸収される、請求項33に記載の方法。
【請求項35】
前記収着媒体から熱を除去するステップをさらに含み、前記収着媒体から熱を除去するステップが、前記物質の少なくとも一部の前記ロードを容易にする及び/又は引き起こす、請求項33に記載の方法。
【請求項36】
前記収着材料の少なくとも2つの平行な層のうちの少なくとも1つの層の両端に電圧を印加するステップをさらに含み、前記電圧を印加するステップが、前記物質の少なくとも一部の前記ロードを容易にする及び/又は引き起こす、請求項33に記載の方法。
【請求項37】
収着媒体によって経験される圧力を増加させるステップをさらに含み、前記収着媒体によって経験される圧力を増加させるステップが、前記物質の少なくとも一部の前記ロードを容易にする及び/又は引き起こす、請求項33に記載の方法。
【請求項38】
前記物質の少なくとも一部を前記収着媒体にロードするステップが、
前記収着媒体から熱を除去するステップと、
前記少なくとも2つの平行な層のうちの少なくとも1つの層の両端に電圧を印加するステップと、
収着媒体によって経験される圧力を増加させるステップと、
のうちの少なくとも2つによって容易にされ及び/又は引き起こされる、
請求項33に記載の方法。
【請求項39】
前記収着媒体の第2の縁部で前記収着媒体にロードされた前記物質の少なくとも一部をアンロードするステップをさらに含む、請求項33に記載の方法。
【請求項40】
前記収着媒体の第2の縁部が、前記物質の第1の化合物の分子と第2の化合物の分子との間の化学反応に触媒作用を及ぼす触媒を含む、請求項39に記載の方法。
【請求項41】
前記物質が、少なくとも2つの化合物の分子を備える、請求項33に記載の方法。
【請求項42】
前記収着媒体に前記物質をロードするステップが、1つの化合物の分子のみを前記収着媒体にロードすることを含む、請求項41に記載の方法。
【請求項43】
前記収着材料が、グラフェン、グラファイト、又は窒化ホウ素のうちの1つである、請求項33に記載の方法。
【請求項44】
前記物質の少なくとも一部の前記ロードを容易にする及び/又は引き起こすために前記吸収媒体の両端に電圧勾配を印加するステップをさらに含む、請求項33に記載の方法。
【請求項45】
収着媒体から物質をアンロードするための方法であって、
収着材料の少なくとも2つの平行な層を備え、且つ前記少なくとも2つの平行な層の間の区域へのアクセスを提供する縁部を有する収着媒体から、前記収着媒体にロードされている物質の分子をアンロードするステップを含み、
前記分子のうちの少なくとも幾つかが、前記少なくとも2つの平行な層のうちの層の表面上に吸着された状態からアンロードされ、
前記分子のうちの少なくとも幾つかが、前記少なくとも2つの平行な層の間の前記区域の中に吸収された状態からアンロードされ、
前記収着媒体の縁部を介して前記収着媒体から分子が追い出される、
方法。
【請求項46】
前記収着媒体が、前記収着材料の平行な層のうちの少なくとも1つの表面上に位置する表面構造をさらに備え、前記分子のうちの少なくとも幾つかが、前記表面構造において吸収された状態からアンロードされる、請求項45に記載の方法。
【請求項47】
前記収着媒体に熱を加えるステップをさらに含み、前記収着媒体に熱を加えるステップが、前記収着媒体にロードされている物質の分子のうちの少なくとも幾つかの前記アンロードを容易にする及び/又は引き起こす、請求項45に記載の方法。
【請求項48】
前記収着媒体に熱を加えるステップをさらに含み、前記平行な層のうちの少なくとも1つを通して及び前記表面構造の中に熱を伝達し、前記収着媒体に熱を加えるステップが、前記表面構造において吸収された状態からアンロードされる前記分子を含む前記収着媒体にロードされている物質の分子のうちの少なくとも幾つかの前記アンロードを容易にする及び/又は引き起こす、請求項46に記載の方法。
【請求項49】
前記収着材料の少なくとも2つの平行な層のうちの少なくとも1つの層の両端に電圧を印加するステップをさらに含み、前記電圧を印加するステップが、前記収着媒体にロードされている物質の分子のうちの少なくとも幾つかの前記アンロードを容易にする及び/又は引き起こす、請求項45に記載の方法。
【請求項50】
収着媒体によって経験される圧力を減少させるステップをさらに含み、前記収着媒体によって経験される圧力を減少させるステップが、前記収着媒体にロードされている物質の分子のうちの少なくとも幾つかのアンロードを容易にする又は引き起こす、請求項45に記載の方法。
【請求項51】
前記収着媒体にロードされている物質の分子をアンロードするステップが、
前記収着媒体に熱を加えること、
前記少なくとも2つの平行な層のうちの少なくとも1つの層の両端に電圧を印加すること、
前記収着媒体によって経験される圧力を減少させること、
のうちの少なくとも2つによって容易にされ又は引き起こされる、
請求項45に記載の方法。
【請求項52】
前記収着媒体にロードされている物質の分子をアンロードするステップが、前記収着媒体にロードされている第1の化合物の分子をアンロードすることを含み、前記収着媒体にロードされている第2の化合物の分子はアンロードされない、請求項45に記載の方法。
【請求項53】
前記収着材料が、ラフェン、グラファイト、又は窒化ホウ素のうちの1つである、請求項45に記載の方法。
【請求項54】
前記収着材料の少なくとも2つの平行な層のうちの少なくとも1つの層の両端の前記電圧が、前記収着媒体に前記物質の分子をロードするために印加された電圧の極性の反対の極性を有する、請求項49に記載の方法。
【請求項55】
物質を収着媒体にロードする及びアンロードするためのシステムであって、
ポートを含み、且つ収着媒体を収容する容器であり、収着媒体が収着材料の平行な層を備える、容器と、
前記ポートを通して及び前記容器の中に熱交換物質を循環させるように構成された伝熱コンポーネントと、
開かれたときに物質が前記ポートを通して及び前記容器の中に流れて前記収着媒体の中にロードされることを可能にする弁と、
を備え、収着媒体の中にロードされるときに、物質の少なくとも幾つかの分子が収着媒体の層の表面上に吸着され、物質の分子のうちの少なくとも幾つかが収着媒体の平行な層の間の区域の中に吸収される、
システム。
【請求項56】
前記ポートから追い出される物質をフィルタするフィルタをさらに備える、請求項55に記載のシステム。
【請求項57】
収着媒体からアンロードされる物質を受け入れる燃料電池をさらに備える、請求項55に記載のシステム。
【請求項58】
前記収着媒体の平行な層のうちの層の表面上に位置する表面構造をさらに備える、請求項55に記載のシステム。
【請求項59】
前記収着材料の平行な層が電気伝導率を提供し、前記容器は、前記収着材料の平行な層に電荷が印加されるように構成される、請求項55に記載のシステム。
【請求項60】
前記収着材料の平行な層が、熱伝達のための高い利用可能性を有し、前記ポートを介して前記収着媒体の中に熱が伝達されてもよい、請求項55に記載のシステム。
【請求項61】
前記収着材料の平行な層が電気伝導率を提供し、前記容器が、前記収着材料の平行な層に電荷勾配を印加するように構成される、請求項55に記載のシステム。
【請求項62】
前記物質をロードするために前記収着材料に第1の極性の電圧が印加され、物質をアンロードするために前記収着材料に第2の極性の電圧が印加される、請求項59に記載のシステム。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公表番号】特表2013−503310(P2013−503310A)
【公表日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2012−526835(P2012−526835)
【出願日】平成22年8月16日(2010.8.16)
【国際出願番号】PCT/US2010/045668
【国際公開番号】WO2011/102851
【国際公開日】平成23年8月25日(2011.8.25)
【出願人】(511201174)マクアリスター テクノロジーズ エルエルシー (23)
【Fターム(参考)】