説明

癌の治療のための組成物および方法

本明細書に開示されるのは、癌の治療のための方法および組成物である。特に、本発明は、ファンコニ貧血経路の阻害剤およびこれを使用する方法を開示する。このような阻害剤は、DNA損傷修復を阻害するのに有用であり、そして、例えば癌の治療において有用となり得る。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本出願は、2005年5月24日出願の米国仮出願60/684,136に基づく優先権を主張するものである。上記出願は、そのすべてが参照により本明細書に組み込まれる。
【0002】
政府支援
本発明は、国立衛生研究所の助成金番号第DK43889号および第HL52725号の下での政府支援によりなされた。米国政府は、本発明において一定の権利を有する。
【0003】
発明の分野
本発明は、概して癌の治療のための組成物および方法に関する。
【0004】
本発明の背景
多くの種類の癌が、有効な化学療法的治療に耐性である。卵巣癌において、耐性はシスプラチン等の化学療法剤にまで見られる。シスプラチン(シス-ジアミンジクロロ白金すなわちCDDP)は、もともと1960年代後半に発見されたものであり、卵巣癌を含む多くの癌を治療するために使用される細胞毒性薬である。シスプラチンは、DNAの白金化によって作用し、DNA架橋を生じる。最大50%の卵巣癌が、シスプラチン等の従来の化学療法剤または他の同類の白金治療に対して、本質的に耐性である。多くの耐性機序が主張されてきた。しかしながら、化学療法に対する内因性および外因性の耐性の基礎をなす正確な機序は解明されていない。化学療法の耐性を克服する1つの方法は、化学増感剤の使用を含む。化学増感剤は、一般的に耐性の機序を阻害する。例示は、ベラパミル、レセルピン、タモキシフェンおよびクレモホール、多重薬剤耐性を与える排出ポンプ(MDR1、P-糖タンパク質)の阻害剤を含む。しかしながら、このような化学増感剤は、薬剤排出が主な耐性機序である一部の腫瘍においてのみ有効である。さらに、それらの化学増感剤の多くが、望ましくない副作用を有する。
【0005】
発明の概要
1つの態様において、本発明は、腫瘍性の疾患または疾病を有する被験体が、遺伝毒性の抗腫瘍剤に応答するかどうかを予測する方法を提供する。本方法は、被験体から生体試料を得ること、および生体試料中のファンコニ貧血相補群D2(FANC D2)ポリペプチドのユビキチン化の程度を決定することを含む。被験体の生体試料中のFANC D2ポリペプチドのユビキチン化の程度が、対照の被験体由来の生体試料と比較した場合に約70%未満であることは、被験体が遺伝毒性の抗腫瘍剤に応答するであろうことを示唆する。
【0006】
別の態様において、本発明は、腫瘍性の疾患または疾病を有する被験体が、遺伝毒性の抗腫瘍剤に応答するかどうかを予測する方法を提供する。本方法は、被験体から生体試料を得ること、およびその生体試料中のFANC D2含有フォーカスを決定することを含む。フォーカス形成における違いは、対照の被験体由来の生体試料と比較した場合に、被験体由来の試料が約70%未満のFANC D2含有フォーカスを含むことであり、これは、遺伝毒性の抗腫瘍剤に応答する被験体であろうことを示唆する。
【0007】
別の態様において、非FA DNA損傷修復経路の阻害剤を同定する方法が提供される。本方法は、以下のステップを含む:(a)ファンコニ貧血(FA)経路が機能する対照細胞を提供するステップ;(b)試験細胞と同系であるが、FA経路を欠損した試験細胞を提供するステップ;(c)試験細胞および対照細胞を試験化合物と接触させるステップ;そして、(d)試験細胞および対照細胞の、試験化合物に対する感受性を比較するステップ。試験細胞の試験化合物に対する感受性が対照細胞より増加することは、試験化合物が非FA DNA損傷修復経路の阻害剤であることを示唆する。
【0008】
さらに別の態様において、治療を必要としている被験体の腫瘍性疾患の治療方法を提供する。本方法は、有効量の:(a)FA経路の阻害剤またはその製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグ、および(b)遺伝毒性の抗腫瘍剤の組み合わせを被験体に投与することを含む。
【0009】
さらに別の態様において、治療を必要としている被験体の腫瘍性疾患の治療方法を提供する。本方法は、有効量の:(a)FA経路の阻害剤またはその製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグ、および(b)非FA-DNA損傷修復経路の阻害剤の組み合わせを被験体に投与することを含む。
【0010】
別の態様において、治療を必要としている被験体の腫瘍性疾患の治療方法を提供する。本方法は、有効量の:(a)FA経路の阻害剤またはその製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグ、(b)非FA-DNA損傷修復経路の阻害剤、および(c)遺伝毒性の抗腫瘍剤またはその製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグの組み合わせを被験体に投与することを含む。
【0011】
別の態様において、遺伝毒性の抗腫瘍剤に対する腫瘍性疾患の感受性を増加させる方法を提供する。本方法は、治療的に有効な投与量の薬剤を投与する前に、後にまたは同時に、有効量のFA経路の阻害剤を投与することを含む。
【0012】
最後の態様において、遺伝毒性の抗腫瘍剤に対する腫瘍性疾患の感受性を増加させる方法を提供する。本方法は、治療的に有効な投与量の薬剤を投与する前に、後にまたは同時に、有効量の(a)FA経路の阻害剤またはその製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグ、および(b)非FA DNA損傷修復経路の阻害剤の組み合わせを投与することを含む。
【0013】
発明の詳細な説明
本発明は、抗腫瘍剤に対する癌の感受性において、FA経路が重大な役割を果たすことを明らかにする一連の発見に部分的に基づく。抗腫瘍剤に対する腫瘍性疾患および/または癌細胞の感受性の調節におけるFA経路の役割は、FA経路の構成成分に欠損のある細胞株を用いて、およびFA経路の阻害剤を用いて明らかにされてきた。従って、1つの実施形態において、腫瘍性疾患を有する被験体を治療する方法を提供する。そのような方法の1つは、有効量のFA経路の阻害剤を、遺伝毒性の抗腫瘍剤と組み合わせて投与することを含む。別の方法は、有効量のFA経路の阻害剤を、非FA DNA損傷修復経路の阻害剤と組み合わせて投与することを含む。また、腫瘍性疾患の治療に有用な組成物を提供し、これらは遺伝毒性の抗腫瘍剤および/または非FA DNA損傷修復経路の阻害剤と組み合わせたFA経路の阻害剤を含む。また、医薬組成物およびそれらのキットを提供し、これらはFA経路の阻害剤ならびに抗腫瘍剤および/または非FA DNA損傷修復経路の阻害剤を含む。
【0014】
また、FA経路を調節する薬剤を同定する方法も提供する。これらの方法は、FA経路の阻害剤を同定するのに有用である。このようにして同定される阻害剤は、化学増感剤および/または放射線増感剤として潜在的に有用である。また、本発明において、FA経路阻害剤と組み合わせて使用される非FA DNA損傷修復経路の阻害剤を同定する方法も提供される。阻害剤を組み合わせることは、抗腫瘍剤を受ける患者に投与するのに有用であり得る。
【0015】
I.定義
本明細書で使用する用語「腫瘍(neoplasm)」「腫瘍性疾患」「新生組織形成」「癌」「腫瘍(tumor)」および「増殖性疾患」は、自己増殖のための能力を有する細胞を指し、つまり、細胞増殖が急速に激増することを特徴とする異常な状態または状況であり、通常、正常な組織が有する構造機構および機能調整が部分的または全体的に欠損する異なる集団を形成する。前述の用語は、造血性腫瘍(例えば、リンパ腫または白血病)および充実性腫瘍(例えば、肉腫または癌腫)を含むことを意味し、前癌および癌性増殖もしくは発癌性プロセス、転移性組織または悪性形質転換細胞、組織もしくは臓器のすべてのタイプを、組織病理学的タイプまたは侵襲性の段階に関わらず含む。造血性腫瘍は、造血機構(血液細胞の形成に関わる機構)および免疫系の構成成分を侵す悪性腫瘍であり、脊髄、リンパ系または赤血球系から生じる白血病(血液および骨髄内の白血球(leukocytes)(白血球(white blood cells)およびそれらの前駆体に関連する)、およびリンパ腫(リンパ球に関連する)を含む。充実性腫瘍は肉腫を含み、これは筋肉、軟骨、血管、線維組織、脂肪または骨等の結合組織から生じる悪性腫瘍である。また、充実性腫瘍は癌腫を含み、これは上皮性構造(外面上皮(例えば、消化管、肺および頸部の皮膚および上皮)および種々の腺(例えば、胸部、膵臓、甲状腺)の内側を覆う内面上皮))から生じる悪性腫瘍である。本発明の方法による処理に特に感受性を有する腫瘍の例示は、白血病および肝細胞癌、肉腫、血管内皮癌、乳癌、中枢神経系癌(例えば、星状細胞腫、神経膠肉腫、神経芽細胞腫、希突起膠腫および膠芽細胞腫)、前立腺癌、肺癌および気管支癌、喉頭癌、食道癌、結腸癌、結腸直腸癌、胃腸癌、黒色腫、卵巣癌および子宮内膜癌、腎臓癌および膀胱癌、肝臓癌、内分泌癌(例えば甲状腺)、ならびに膵臓癌を含む。
【0016】
「遺伝毒性剤」または「遺伝毒性物質」は、細胞に適用した場合にDNA損傷を誘導する任意の化合物または処理法を指す。このような薬剤は化学物質または放射性物質であり得る。遺伝毒性剤は、化学物質(または代謝産物)の主要な生物活性が、DNAにコードされる情報の変更であるものである。遺伝毒性剤は、それらの作用機序が異なるものであってよく、エチルメタンスルホナート(EMS)、ニトロソグアニンおよび塩化ビニル等のアルキル化剤;ベンゾ(a)ピレンおよびアフラトキシンB1等のかさ高な付加生成物;スーパーオキシド、ヒドロキシラジカル等の活性酸素類;5-ブロモウラシル等の塩基類似体;アクリジンオレンジおよびエチジウムブロミド等の挿入剤を含み得る。
【0017】
本明細書で使用する「遺伝毒性の抗腫瘍剤」は、例えば癌を治療するための化学療法に用いる遺伝毒性剤である。特に、「遺伝毒性の抗腫瘍剤」は、DNAに損傷を引き起こす化学薬剤または他の薬剤の双方を含む。これらの薬剤は、DNAアルキル化剤、挿入剤等を含む。「遺伝毒性の抗腫瘍剤」の制限されない例示は、1,3-ビス(2-クロロエチル)-1-ニトロソウレア(BCNU)、ブスルファン、カルボプラチン、カルムスチン、クロラムブシル、シスプラチン、シクロホスファミド、ダカルバジン、ダウノルビシン、ドキソルビシン、エピルビシン、エトポシド、イダルビシン、イホスファミド、イリノテカン、ロムスチン、メクロレタミン、メルファラン、マイトマイシンC、ミトキサントロン、オキサリプラチン、テモゾロマイドおよびトポテカンを含む。「遺伝毒性の抗腫瘍剤」はまた、被験体に対してDNAの損傷を引き起こすのに十分な線量の放射線、特に癌の治療のための放射線治療に使用されるタイプを含む。
【0018】
本明細書で使用する「DNA損傷」は、細胞内のDNAの化学的修飾および/または物理的修飾を指し、メチル化、アルキル化による2本鎖切断、架橋化、紫外線によって引き起こされるチミジンダイマー、および酸素ラジカルのDNA塩基への結合によって形成される酸化障害を含む。
【0019】
本明細書で使用する「化学増感剤(chemosensitizer)」および「化学増感剤(chemosensitizing agent)」は、被験体に治療的に有効な量を投与した場合に、例えば疾患(腫瘍性疾患、良性腫瘍および悪性腫瘍ならびに癌性細胞など)の治療において、化学療法化合物に対する感受性を増加させる化合物、および/またはその化合物の治療効果を向上させる化合物を指す。遺伝毒性の抗腫瘍剤を含む化学療法化合物に対する感受性の増加は、例えば、化学増感剤の存在下において、化合物に対する細胞のLD50の減少を測定することによって測定可能である。
【0020】
同様に、本明細書で使用する「放射線増感剤(radiosensitizer)」および「放射線増感剤(radiosensitizing agent)」は、被験体に治療的に有効な量を投与した場合に、例えば疾患(腫瘍性疾患、良性腫瘍および悪性腫瘍ならびに癌性細胞など)の治療において、放射線治療(電磁放射線による治療)に対する感受性を増加させる化合物、および/または放射線治療の治療効果を向上させる化合物を指す。本明細書に記載されない他の疾患の電磁放射線治療も企図する。
【0021】
「試料」または「生体試料」は、任意の細胞もしくは組織、または細胞もしくは組織を含む組成物、または被験体由来の単離物を意味する。試料は、心臓、脳、胎盤、肝臓、骨格筋、腎臓、膵臓、脾臓、胸腺、前立腺、精巣、子宮、小腸または結腸に由来し得る。放射線、化学物質等の遺伝毒性剤に曝露された被験体内のDNA損傷の有無を検出するのに使用するための別のタイプの生体試料は、白血球を含む調製物、例えば、末梢血、痰、唾液、尿等であってもよい。
【0022】
本明細書で使用するFANC D2ポリペプチドの「ユビキチン化の程度」は、通常、FA経路の活性化レベルを指し、これは被験体またはその生体試料中のFANC D2ポリペプチドのモノユビキチン化の程度によって測定される。本明細書で使用するFANC D2ポリペプチドの「ユビキチン化の程度」は、モノユビキチン化される試料中の全FANC D2ポリペプチドの割合を含み、そして、分数または百分率として表すことができる。本明細書で使用するFANC D2ポリペプチドの「ユビキチン化の程度」はまた、FA経路の活性化(フォーカス形成の程度を含む)を検出する任意の代替法を用いて測定され得る。
【0023】
本明細書で使用する「フォーカス形成の程度」は、試料中のFANC D2含有フォーカスの総数または形成速度を指す。FANC D2含有フォーカスは、例えば遺伝毒性剤への曝露により、FA経路の活性化に応答して形成される核タンパク質複合体である。FANC D2含有フォーカスは、例えば、FANC D2ポリペプチドに対する標識抗体を用いた免疫蛍光顕微鏡法によって検出することができ、本明細書にさらに記載される通りである。特定の場合において、FANC D2含有フォーカスはまた、GFPおよびFANC D2ポリペプチドを含む機能性融合タンパク質を発現する細胞中で検出され得る。これらの細胞において、FANC D2含有フォーカスは、抗FANC D2抗体を使用せずに、蛍光顕微鏡検査法を用いて検出され得る。フォーカス形成の程度は、1つの試料から別のものに、例えば、細胞の総数、無傷核の総数、試料の総容量または試料の総質量について標準化され得る。
【0024】
「フォーカス形成の差異」は、FANC D2含有フォーカスの数、大きさまたは持続性(persistence)が、試験試料を対照試料または参照試料のどちらかと比較した場合に、高いまたは低いかの差異を意味する。差異は、対照試料または参照試料と比較して、2倍以上または2倍以下、例えば5、10、20、100、1000倍以上の増加または減少を含む。差異はまた、対照試料または参照試料と比較して、5%以上または5%以下、例えば10%、20%、30%、50%、75%、100%である増加または減少を含む。
【0025】
本明細書で使用するFANC D2含有フォーカスの形成を「調節する」は、生体試料中のFANC D2含有フォーカスの形成における変化または変更を指す。調節は、生体試料内のフォーカスの数、大きさまたは持続性についての増加または減少であってよく、そして、対照試料または参照試料と比較して2倍以上または2倍以下、例えば5、10、20、100、1000倍以上の増加または減少を含む。また、調節は対照試料または参照試料と比較して、5%以上または5%以下、例えば10%、20%、30%、50%、75%、100%である増加または減少であってよい。
【0026】
本明細書で使用する「低レベル」の遺伝毒性の抗腫瘍剤への曝露は、生体試料中のFANC D2含有フォーカスを最大数の20%以下にする用量の特定の遺伝毒性の抗腫瘍剤に曝露することを指す。試料が曝露され得る遺伝毒性の抗腫瘍剤が多数であるため、そしてそのような遺伝毒性の抗腫瘍剤に対する異なる試料の異なる感受性のため、FANC D2含有フォーカスの形成に相対的な用量を示すことは、特定の遺伝毒性の抗腫瘍剤の絶対的な用量を示すことよりも好ましい。
【0027】
用語「モジュレーター」は、生体高分子(例えば、核酸、タンパク質、非ペプチドもしくは有機分子)等の(天然または非天然の)化合物、あるいは細菌、植物、真菌または動物(特に哺乳動物)細胞もしくは組織等の生物材料から生じた抽出物、またはさらに無機元素もしくは無機分子を指す。モジュレーターは、本明細書に記載するスクリーニングアッセイに含めることにより、生物学的プロセスまたはプロセス群の(直接的または間接的な)阻害剤または活性化剤(例えば、アゴニスト、部分的アンタゴニスト、部分的アゴニスト、アンタゴニスト、抗腫瘍剤、細胞毒性剤、腫瘍転移または細胞増殖の阻害剤、細胞増殖促進剤等)としての潜在的活性について評価される。モジュレーターの活性は、既知であるか、未知であるか、または部分的に既知であり得る。そのようなモジュレーターは、本明細書に記載する方法を用いてスクリーニングされ得る。
【0028】
用語「モジュレーター候補」は、本発明の1以上のスクリーニング法によって、推定モジュレーターとして試験される化合物を指す。通常、以下に十分に記載するように、0.01μM、0.1μM、1.0μMおよび10.0μM等の種々のあらかじめ規定された濃度をスクリーニングに用いる。試験化合物対照は、試験化合物非存在下でのシグナルの測定、または標的を調節することが知られている化合物に対する比較を含み得る。
【0029】
本明細書で使用する「FA経路阻害剤」および「FA経路の阻害剤」は、生体高分子(例えば、核酸、タンパク質、非ペプチドもしくは有機分子)等の(天然または非天然の)化合物、あるいは細菌、植物、真菌または動物(特に哺乳動物)細胞もしくは組織等の生物材料から生じた抽出物、またはさらに無機元素もしくは無機分子を指す。「FA経路阻害剤」および「FA経路の阻害剤」は、概して、DNA損傷を修復するFA経路の能力を阻害する化合物を指す。「FA経路阻害剤」または「FA経路の阻害剤」によるFA経路の阻害は、本明細書に記載する技術を用いて評価することができ、それらはFANC D2含有フォーカスの検出およびFANC D2ポリペプチドのモノユビキチン化の検出を含むが、これらに限定されない。当業者に理解されるとおり、本方法は現在既知のまたは将来的に知られるFA経路の阻害剤の検出のためのあらゆる他の方法を企図する。阻害は、FANC D2含有フォーカスの数、大きさまたは持続性の減少であってよく、そして対照または参照と比較して2倍以上、例えば2、5、10、20、100、1000倍以上の減少を含む。阻害はまた、対照または参照と比較して、5%以上、例えば、5%、10%、20%、30%、50%、75%または100%までの減少であってよい。さらに、本明細書で使用する「FA経路阻害剤」および「FA経路の阻害剤」は、製薬上許容され得る塩、溶媒和物、エステル、誘導体またはプロドラッグを含む。
【0030】
本明細書で使用する「非FA DNA損傷修復経路」は、直接消去経路、非相同末端結合(NHEJ)経路、塩基除去修復(BER)経路、ヌクレオチド除去修復(NER)経路およびミスマッチ修復(MR)経路からなる群より選択される、任意のDNA損傷修復経路を指す。
【0031】
本発明の医薬組成物は、薬剤の治療効果を向上させるのに有効な任意の量および任意の投与経路を用いて投与され得る。本明細書で使用する「治療的に有効な量」は、化学増感剤または放射線増感剤と組み合わせて使用する場合、標的細胞または組織に対して所望の効果を与えるのに十分な化学増感剤の量を指す。正確な必要量は、被験体によって異なり、種、年齢および被験体の全身状態;個々の化学増感剤;その投与方法等に依存する。
【0032】
用語「製薬上許容され得る担体」は、治療薬の投与のための担体を指す。そのような担体は、生理食塩水、緩衝生理食塩水、ブドウ糖、水、グリセロール、エタノールおよびそれらの組み合わせを含むが、これらに限定されない。この用語は、細胞培養培地を明確に除外する。経口的に投与される薬剤について、製薬上許容され得る担体は、不活性希釈剤、崩壊剤、結合剤、滑沢剤、甘味剤、矯味剤、着色剤および保存剤等の製薬上許容され得る賦形剤を含むが、これらに限定されない。適切な不活性希釈剤には、炭酸ナトリウムおよび炭酸カルシウム、リン酸ナトリウムおよびリン酸カルシウムならびにラクトースが含まれ、一方、コーンスターチおよびアルギン酸は適切な崩壊剤である。結合剤には、デンプンおよびゼラチンが含まれ、一方、滑沢剤は、存在する場合には、通常はステアリン酸マグネシウム、ステアリン酸またはタルクである。必要に応じて、錠剤は胃腸管での吸収を遅延させるために、モノステアリン酸グリセリルまたはジアステアリン酸グリセリル等の物質でコーティングしてもよい。
【0033】
本明細書で使用する「治療的に有効な用量」は、症状または状態(例えば、腫瘍性疾患)を予防または改善するタンパク質もしくはその抗体、アンタゴニストまたは阻害剤の量を指す。そのような化合物の治療上の効果および毒性は、細胞培養または実験動物における標準的な医薬的手段、例えばED50(母集団の50%に治療的に有効な用量)およびLD50(母集団の50%に致死的な用量)によって決定することができる。治療効果と毒性効果との間の用量比は治療指数であり、そしてこれはLD50/ED50の比として表すことができる。高い治療指数を示す医薬組成物が好ましい。細胞培養アッセイおよび動物実験から得られるデータは、ヒトが使用するための製剤範囲を算出するのに用いられる。そのような化合物の用量は、好ましくは、毒性がほとんどないかまたはないED50を含む循環濃度の範囲内にある。用量は、使用する用量、患者の感受性および投与経路に依存したこの範囲で変化する。
【0034】
正確な用量は、各々の医師や獣医によって、治療する患者を考慮して選択される。用量および投与は、十分な濃度の活性部分を提供するように、または所望の効果を維持するよう調整する。考慮され得る付加的な因子は、病状の重症度;被験体の年齢、体重および性別;食習慣、投与の時間および頻度、薬剤の組み合わせ、反応感受性ならびに治療に対する耐性/応答を含む。長時間作用型の医薬組成物は、3〜4日おき、週に一度または2週間に一度、個々の製剤の半減期およびクリアランス率に基づいて投与され得る。
【0035】
用語「製薬上許容され得る塩」は、酸付加塩および塩基付加塩の双方を指す。塩の性質は、製薬上許容され得るならば重要ではない。酸付加塩の例示は、塩酸、臭化水素酸、ヨウ化水素酸、硝酸、炭酸、硫酸、リン酸、ギ酸、酢酸、クエン酸、酒石酸、コハク酸、シュウ酸、リンゴ酸、グルタミン酸、プロピオン酸、グリコール酸、グルコン酸、マレイン酸、エンボニン酸(パモン酸)、メタンスルホン酸、エタンスルホン酸、2-ヒドロキシエタンスルホン酸、パントテン酸、ベンゼンスルホン酸、トルエンスルホン酸、スルファニル酸、メシル酸、シクロヘキシルアミノスルホン酸、ステアリン酸、アルギン酸(algenic)、β-ヒドロキシ酪酸、マロン酸、ガラクタル酸、ガラクツロン酸等を含むが、これらに限定されない。適切な製薬上許容され得る塩基付加塩は、アルミニウム、カルシウム、リチウム、マグネシウム、カリウム、ナトリウムおよび亜鉛から生成される金属塩、または、N,N'-ジベンジルエチレンジアミン、クロロプロカイン、コリン、ジエタノールアミン、エチレンジアミン、N-メチルグルカミン、リジン、プロカイン等から生成される有機塩を含むが、これらに限定されない。製薬上許容され得る塩のさらなる例示は、Journal of Pharmaceutical Sciences(1977)66:2に記載される。これらすべての塩は、従来の手段によって、化合物を適切な酸または塩基で処理することにより、FANC D2含有フォーカスのモジュレーターから調製され得る。
【0036】
II.FANC D2フォーカス
DNA損傷に対する細胞応答は、細胞周期のチェックポイント、DNA修復およびアポトーシスを媒介する経路が複雑に相互作用するネットワークである。これらの経路を調べるためのモデル障害は、細胞周期のチェックポイントを迅速に誘導し、そして数多くの異なる経路によって修復されるDNA2本鎖の切断であるとされてきた。哺乳動物細胞では、相同組換えおよび非相同組換え経路の双方が利用される。哺乳動物細胞での詳細な研究によって、DNA修復および細胞周期チェックポイントタンパク質の複合体が、電離放射線によって誘導された2本鎖切断部位に迅速に局在化することが示されている。これらのタンパク質は、免疫蛍光解析によって検出できるフォーカスを生じる。
【0037】
ファンコニ貧血症相補群D2(FANC D2)は、染色体の安定性および修復に関わるタンパク質複合体の構成成分である。ファンコニ貧血症(FA)は、一部には、種々の癌に対する個人の危険性を増大させるDNA修復機構の欠損を特徴とする遺伝性疾患である。DNA損傷に対する応答において、FA複合体はFANC D2を活性化し、次に乳癌I型ポリペプチド(BRCA1)と結合する。FANC D2の活性化は、毛細血管拡張性運動失調症変異(ATM)キナーゼによるセリン222残基のリン酸化によって生じる。さらに、FA経路を介した活性化は、FANC D2のリジン561でのモノユビキチン化を介して生じる。その非修飾型では、FANC D2は核全体に拡散して存在する。ユビキチン化されると、FANC D2は核内にドットまたはフォーカスを形成する。FANC D2のユビキチン化およびそれに続く核内フォーカスの形成は、DNA損傷に応答して起こる。共免疫沈降によって、Nakanishiらは、FANC D2とナイミーヘン切断症候群1(NBS1)との間の構成的な相互作用を発見し、これらのタンパク質が2種類の異なる集合体で相互作用してS期チェックポイントおよびマイトマイシンC誘導性染色体損傷に対する耐性を媒介するという証拠を提供した(Nakanishiら(2002)Nat Cell Biol. 4:913-20)。
【0038】
少なくとも2つのタイプの電離放射線誘導性のフォーカスが観察されている:1つは、Rad51、BRCA1およびBRCA2タンパク質を含み、もう1つはMre11-Rad50-NBS1複合体を含む。Rad51フォーカスは、腫瘍抑制タンパク質BRCA1およびBRCA2を含み、また、DNA損傷の外因的誘導なしでS期に出現する。
【0039】
Mre11-Rad50-NBS1フォーカスは、早ければ照射後10分で検出することができ、DNA修復の進行中にDNA切断部位に明らかに存在する。これらのフォーカスはまた、BRCA1タンパク質と共局在化し、これはおそらくヒトRad50(hRad50)との物理的な相互作用を介して、それらの形成に必要であることが示されている。さらに、BRCA1により実施された共免疫沈降実験は、この複合体(BRCA1結合監視複合体と呼ばれる)には多数のさらなるタンパク質が存在することを示唆している。これらは、ミスマッチ修復タンパク質Msh2、Msh6およびMlh1、チェックポイントキナーゼATM、ブルーム症候群遺伝子BLMの産物、ならびに複製因子Cを含む。BRCA1、NBS1およびhMre11はすべて、ATMキナーゼの基質となること、およびDNA切断の存在に応答してリン酸化されるようになることが示されている。
【0040】
本発明は、遺伝毒性の抗腫瘍剤に曝露した細胞がFANC D2含有フォーカスを形成するという発見に関する。現在、DNA損傷に応答して、IRIF(電離放射線誘導性のフォーカス)とも呼ばれる核フォーカスを形成する複数のDNA損傷応答タンパク質が同定されている。FANC D2含有フォーカスを検出する方法は、ユビキチン化FANC D2ポリペプチドの相対量を検出および定量する方法と共に、米国特許出願第10/165,099号および米国特許出願第60/540,380号に記載され、これらの内容はその全体を参照により本明細書に組み込まれる。
【0041】
III.FANC D2活性化の検出法
1.FANC D2結合リガンドを用いた検出
FANC D2タンパク質の細胞全体の濃度は、DNA損傷に応答して有意には変化しない。むしろ、DNA損傷によって、FANC D2のモノユビキチン化と共に、FANC D2含有フォーカスへの補充がもたらされる。FANC D2含有フォーカスの存在を測定する代わりに、モノユビキチン化型のFANC D2に特異的に結合するが、非ユビキチン化型のFANC D2には結合しないリガンドを使用することが、当業者には理解されるだろう。モノユビキチン化FANC D2の存在を検出するために、リガンドを前記の検出可能な標識と結合させることが好ましい。そのようなリガンドを使用する主な利点は、当業者によって理解されるように、損傷のないDNAを有する細胞内のモノユビキチン化FANC D2の基礎濃度が一般的に低いため、FANC D2含有フォーカスの濃度は、モノユビキチン化FANC D2の濃度を代用マーカーとして使用して、生きた被験体から採取した試料で測定することができる。FANC D2のモノユビキチン化型(FANC D2-L)を特異的に認識する抗体は、迅速な診断薬としてかなり有用である。例えば、この抗体は以下のために使用される:
【0042】
1)免疫組織化学(IH)。この抗体は、充実性腫瘍(例えば、乳癌、卵巣癌、肺癌)から調製した組織切片を調べるために使用できる。IHによる陽性シグナルは、腫瘍がシスプラチンおよび関連薬剤に対して耐性であることを予測するだろう。
【0043】
2)FACS解析。末梢血リンパ球(PBL)は、この抗体でスクリーニングすることができる。陽性シグナルは、活性化FANC D2の存在を示唆し、個体がIRまたは毒素に最近曝露されたことと一致する。従って、この抗体は、本明細書に記載される放射線線量計アッセイの有用な外延である。
【0044】
3)精製FA複合体の阻害剤のスクリーニングのためのハイスループットアッセイ。これらの阻害剤は、in vitroにおいてFANC D2をモノユビキチン化するFA複合体の能力を妨げるだろう。新規のモノクローナル抗体は、最終生成物の検出に有用な試薬となるだろう。モノユビキチン化FANC D2を特異的に認識するリガンドを使用するFANC D2含有フォーカスを測定するさらなる方法は、生きた被験体から収集した試料の抽出物を使用したイムノブロット解析もしくは酵素結合免疫吸着検定法(ELISA)、またはFACS解析(Harlowら,1999, Using Antibodies:A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY)を含む。
【0045】
IR曝露の高感度な指標は、FANC D2のモノユビキチン化の増加である。非損傷細胞において、FANC D2-L(モノユビキチン化アイソフォーム)のFANC D2-S(非ユビキチン化アイソフォーム)に対する比率は、約0.5〜0.6である。この比率(L/S)は、ウエスタンブロットにおいて、Sバンドに対するLバンドの濃度を比較することにより、容易に算出される。増加したFANC D2モノユビキチン化およびIR曝露の高感度の指標となるのは、L/S比が1.0以上へ変換することである。
【0046】
2.GFP-FANC D2融合タンパク質を用いた検出
FANC D2活性化およびフォーカス形成の検出のための別の方法は、蛍光タンパク質(例えば、GFP)と融合させたFANC D2タンパク質を使用することである。FANC D2およびGFPの機能的融合タンパク質は、遺伝毒性の抗腫瘍剤に曝露した時に、フォーカスを形成することができる。次に、これらのフォーカスは蛍光顕微鏡によって見ることができる。従って、FANC D2含有フォーカスの形成は、遺伝毒性の抗腫瘍剤への曝露への応答におけるFA経路の活性化に対する代用マーカーとして測定することができる。そのような融合タンパク質構築物を作成する方法は、FANC D2含有フォーカスの形成を検出する方法と共に、米国特許出願第60/540,380号に記載され、これは参照によって本明細書に組み込まれる。
【0047】
IV.FA経路の阻害剤の同定
本発明は、FA経路の阻害剤を用いた腫瘍性疾患の治療に有用な方法および組成物を包含する。FA経路の阻害剤は、本明細書に記載する方法、ならびに、例えば、米国特許出願第10/165,099号および米国特許出願第60/540,380号(これらの内容は、参照により本明細書に組み込まれる)に既に記載された方法によっても同定することができる。例えば、FA経路の阻害剤は、図1に要約されるように、三段階の方法を用いて体系的に同定され得る。
【0048】
スクリーニングの第一段階は、FANC D2含有フォーカスの形成を変化させる薬剤を同定するための、ハイスループットな方法を含む。例えば、抗FANC D2抗体等のFANC D2リガンド、または機能性eGFP-FANC D2融合タンパク質を発現する細胞株を用いることによるFANC D2含有フォーカスの検出は、米国特許出願第10/165,099号および米国特許出願第60/540,380号(これらの内容は、参照により本明細書に組み込まれる)に記載される。本方法は、細胞または生体試料を、遺伝毒性の抗腫瘍剤(例えば、電離放射線(IR)、マイトマイシンCまたはシスプラチン)に曝露するのと同時に、その前または後に、FANC D2含有フォーカスの形成を誘導する用量で試験化合物と接触させることを含む。次に、細胞におけるFANC D2含有フォーカスの数および大きさを測定し、そして試験化合物と接触させなかった対照細胞と比較する。対照細胞と比較したFANC D2含有フォーカスの数および/または大きさの減少は、FA経路の阻害剤である薬剤であることを示唆し、一方、対照細胞と比較したFANC D2含有フォーカスの数および/または大きさの増加は、FA経路のアゴニストである薬剤であることを示唆する。このように同定された潜在的なアゴニストおよび阻害剤はさらに試験することにより、それらがFA経路に直接的に効果を発揮するのか、または間接的に作用するのか、例えば、DNAに直接的に損傷を生じることによるのか(FA経路の潜在的なアゴニストの場合)、またはスクリーニングに用いた遺伝毒性の抗腫瘍剤の効果を減少させることによるのかを決定することができる。
【0049】
スクリーニングの第二段階は、ユビキチン化FANC D2ポリペプチドの検出を含む。上記のように、FA経路の活性化は、FANC D2ポリペプチドのモノユビキチン化を生じる。従って、FA経路の活性化は、非ユビキチン化FANC D2ポリペプチドと比較したユビキチン化FANC D2の相対量を検出することによって測定することができる。FANC D2のユビキチン化は、タンパク質抽出物のイムノブロット解析を実施することによって検出することができる。イムノブロット解析において、ユビキチン化FANC D2はより高分子量のバンドに移動し、そして、標識化FANC D2リガンド(例えば、抗FANC D2抗体)を使用して検出され得る。従って、スクリーニングの第二段階は、細胞または生体試料を、遺伝毒性の抗腫瘍剤(例えば、電離放射線(IR)、マイトマイシンCまたはシスプラチン)に曝露するのと同時に、その前または後に、FANC D2含有フォーカスの形成を誘導する用量で試験化合物と接触させることを含む方法を包含する。非ユビキチン化FANC D2ポリペプチドと比較したユビキチン化FANC D2ポリペプチドの量を検出し、そして試験化合物と接触させなかった対照細胞試料または生体試料と比較する。対照細胞と比較したユビキチン化FANC D2の相対量における差異は、試験化合物がFA経路のモジュレーターであることを示唆する。対照細胞または生体試料と比較したユビキチン化FANC D2ポリペプチドの相対量の増加は、FA経路のアゴニストであることを示唆し、一方、対照細胞または生体試料と比較したユビキチン化FANC D2ポリペプチドの相対量の減少は、FA経路の阻害剤であることを示唆する。上述のように、このように同定された潜在的なアゴニストおよび阻害剤はさらに試験することにより、それらがFA経路に直接的に効果を発揮するのか、または間接的に作用するのか、例えば、DNAに直接的に損傷を生じることによるのか(FA経路の潜在的なアゴニストの場合)、またはスクリーニングに用いた遺伝毒性の抗腫瘍剤の効果を減少させることによるのかを決定することができる。
【0050】
スクリーニングの第三段階は、in vitroにおける遺伝毒性の抗腫瘍剤に対する化合物の感受性についての試験を含む。細胞または生体試料をFA経路の阻害剤に接触させることにより、遺伝毒性の抗腫瘍剤に対する試料/細胞の感受性が増加することが予想されるだろう。試験薬剤によるFA経路の特異的阻害は、例えばFA経路の1つ以上の構成成分において特定の欠損を有する細胞株と比較して、感受性の程度が増加することが予想される。このタイプのアッセイに有用な細胞株は、FANCFを欠損する卵巣癌細胞株、2008を含む。FANCFを欠損する2008細胞は、遺伝毒性の抗腫瘍剤に対して高感受性を示し(図8のグラフの白抜きの四角を参照せよ)、そしてこの感受性はFANCFの過剰発現によって野生株レベルに回復する(図8、白抜きの丸)。次に、遺伝毒感受性を野生株レベルに回復させることにおけるFANCFの役割は、FA経路を阻害する試験薬剤と接触させることにより無効となり(図8、黒塗りの丸)、一方で、FANCFのトランスフェクションがなければ遺伝毒性の抗腫瘍剤に対する感受性は影響を受けないままである(図8、黒塗りの四角)。
【0051】
上記のスクリーニングの3つの段階は、FA経路の潜在的なモジュレーターを迅速に同定し、特徴を明らかにするための合理的な手法を提供する。モジュレーターを同定するための方法は、上記の本発明の特定の実施形態に限定されることはなく、そして実施形態を変化させることができ、なお本発明の範囲内にあることが理解されるべきである。さらに、本明細書で使用する用語は、特定の実施形態を説明するためであり、そして限定することを意図するものではない。
【0052】
V.FA経路の阻害剤
本発明は、FA経路の阻害剤の使用を企図する。FA経路の阻害剤は、通常FANC D2含有フォーカスの形成を引き起こす遺伝毒性の抗腫瘍剤の前に、後にまたは同時に投与する場合に、FANC D2含有フォーカスの形成阻害をもたらすあらゆる化合物を含む。FANC D2含有フォーカスの形成を誘導する遺伝毒性の抗腫瘍剤の例示は、電離放射線(IR)、およびシスプラチンまたはマイトマイシンC等のDNAアルキル化剤を含むが、これらに限定されない。FA経路の阻害は、通常ユビキチン化を誘導する薬剤による試料のユビキチン化FANC D2ポリペプチドおよび非ユビキチン化FANC D2ポリペプチドの相対量を測定することによっても検出することができる。例えば、顕微鏡検出手段を用いたFANC D2含有フォーカスの検出は、FANC D2ポリペプチドの相対的なユビキチン化状態を決定することと同じく、米国特許出願第10/165,099号(2002年6月6日出願)および米国特許出願第60/540,380号(2004年1月30日出願)に記載され、これらの内容は参照により本明細書に組み込まれる。つまり、FANC D2含有フォーカスは、免疫蛍光顕微鏡法を用いて、抗FANC D2抗体を使用して検出することができる。あるいはまた、FANC D2の蛍光タンパク質標識バージョンは、対象の細胞にトランスフェクションすることができ、そしてFANC D2含有フォーカスの形成を、蛍光「フォーカス」を検出することにより顕微鏡で測定することができ、これもまた米国特許出願第60/540,380号に記載される通りである。ワートマニンおよびトリコスタチンA等のFA経路を阻害する化合物は、例えば、米国特許出願第60/540,380号(2004年1月30日出願)で先に開示されている。
【0053】
本発明は、クルクミン、H-9およびアルスターパウロンを含むFA経路の阻害剤のさらなる例示を記載し、これらは本明細書に記載するスクリーニング法を用いて同定された。
【化1】

【0054】
H-9キナーゼ阻害剤は、N-2-アミノエチル-5-イソキノリンスルホンアミド(式I)としても知られるが、PKA、PKG、PKC、カルシウム/カルモジュリン依存性プロテインキナーゼおよびミオシン軽鎖キナーゼを含むいくつかのキナーゼの阻害剤として知られる(Inagakiら(1985)J Biol. Chem. 260(5):2922-5;Itoら(1988)Int. J Immunopharmacol. 10:211-216)。
【化2】

【0055】
アルスターパウロン(式II)はCdk1/サイクリンB、Gsk-3BおよびCdk5を阻害することが知られる(Sausvilleら(2000)Ann N Y Acad. Sci. 910:207-221;Schultzら(1999)J Med. Chem. 42:2909-2919)。
【化3】

【0056】
クルクミン(ターメリックイエローであり、1,7-ビス(4'-ヒドロキシ-3'-メトキシフェニル)-1,6-ヘプタジエン-3,5-ジオン、ジフェルロイルメタンとしても知られる)は、スパイスであるターメリックから得られる低分子量のポリフェノールであり、ヒトのいくつかの充実性腫瘍の退縮に関与する(Chengら(2001)Anticancer Res. 21:2895-2900)。クルクミンは、8000 mg/日までの用量で、ヒト臨床試験において安全である(Chengら、同上)。最近の研究は、クルクミンが例えば嚢胞性線維症といった他のヒト疾患の治療において活性を有し得ることを示唆する(Eganら(2004)Science 304:600-602)。
【化4】

【0057】
ゲルダナマイシン(式IV)は、ベンゾキノンアンサマイシン抗生物質であり、Hsp90(熱ショックタンパク質90)に結合してその機能を改変する。本発明は、ゲルダナマイシンおよびその類似体を含む組成物および方法を包含する。ゲルダナマイシンの類似体は、17-(アリルアミノ)-17-デメトキシ-ゲルダナマイシンを含む(Schnurら(1995)J Med. Chem. 38:3806-12;Dunn(2002)J. Natl. Cancer Inst 94, 1194-5)。本発明はさらに、HSP90の他の阻害剤、特にHSP90のベンゾキノンアンサマイシン阻害剤、クマリン誘導体を含む組成物および方法を企図する(例えば、WO 00/53169に記載される)。
【0058】
FA経路を阻害し得る他の化合物は、表2に記載される化合物を含む。従って、FA経路の阻害剤は、アルスターパウロン、(+-)13-HODE、ニフェジピン、ペニトレムA、ゲルダナマイシン、Go6976、ロイコトリエンB3、トリコスタチン-A、AG-370、マイトマイシンC、アマニチン(αアマニチン)、HNMPA-(AM)3、ヨウ化プロピジウム、DRB、オクラトキシン、Ca-074-Me、K252c、ワートマニン、アクチノマイシンD、AG213、BAPTA-AM、クルクミン、ピューロマイシン、ブメタニド、メチルアデニン(3-メチルアデニン)、H9、TPEN、スペルミンNONOate、PD00600、5323069および1M556Sからなる群より選択することができる。
【0059】
VI.他のDNA損傷修復経路の阻害剤
細胞は継続的に、異なる種類のDNA損傷を受ける。これらの損傷は、スーパーオキシド(O2-)、過酸化水素(H2O2)等の反応性酸素類を含む種々の内在性および外因性の薬品ならびに放射線への曝露によって生じ得る。さらに、ヒトは恒常的にありとあらゆる発癌物質にさらされ、それらの多くはDNAへの損傷を引き起こす作用を有する。ヒトにおいては、受けた損傷のタイプによって、少なくとも6つの異なる機構がDNA損傷修復のために存在することが示されている。
【0060】
多くの癌が、6つの主要なDNA損傷修復経路のうちの少なくとも1つに欠損を有する。これらのDNA修復機構のいずれかの崩壊は、ゲノムの不安定性の増加を引き起こすことに加え、遺伝毒性の抗腫瘍剤に対する感受性の増加をもたらし得る。従って、これらの癌は、生存するために他の5つのDNA損傷経路のうちの1つに高い依存性を有する。ゆえに、第二の、これらの腫瘍性疾患における非FA DNA損傷修復経路の破壊(例えば、低分子阻害剤による)は、選択的な癌の細胞死をもたらし得る。つまり、多くの癌は、優先的な(主要な)DNA損傷修復経路を有することになり得る。1つのDNA損傷修復経路が癌細胞において既に破壊されているかまたは顕著に減少しているので、高い増殖速度を維持し、かつこれらの細胞のDNA損傷を阻止するためには優先的な経路に余分な負担がかかる。従って、主要なDNA損傷修復経路が破壊または縮小した癌細胞において、外因的な阻害剤によって優先的な経路を破壊することは、腫瘍細胞に対して絶大な細胞毒性効果を有し得るが、しかし、周囲の正常細胞には比較的低い細胞毒性効果を有し得る。
【0061】
FA/BRCA経路の喪失は、染色体不安定性をもたらし、シスプラチン感受性を増加させ、ゆえに、塩基除去修復(BER)経路を含む非FA DNA損傷修復経路を維持する活性の増加をもたらす。従って、非FA DNA損傷修復経路(例えばBER)の阻害剤(PARP1阻害剤またはBER経路における特定のキナーゼの阻害剤等)は、それらの細胞に致死的であるが、しかし、正常な(非腫瘍)細胞にはほとんど影響がないだろう。
【0062】
本発明はまた、種々の他のDNA損傷修復経路の阻害剤の使用を企図する。前記の通り、DNA損傷修復のためにはいくつかの主要な経路があり、それらは、非相同末端結合(NHEJ)、塩基除去修復(BER)ヌクレオチド除去修復(NER)およびミスマッチ修復(MR)を含むが、これらに限定されない。これらの機構は、例えば、Hoeijmakers JHJ(2002)Nature 411:366-374、Svejstrup JQ(2002)Nat Rev Mol Cell Biol. 3:21-29およびPanasci, DNA Repair in Cancer Therapy Humana Press, 2004, Totowa, NJに記載されるが、これらに限定されることはない(これらは参照により本明細書に組み込まれる)。
【0063】
A.非相同末端結合(NHEJ)
DNA2本鎖の切断(DSBs)は、活性酸素類、電離放射線(IR)およびブレオマイシンのような特定の抗腫瘍剤を含む、あらゆる環境または他の因子によって引き起こされ得る。DSB修復の失敗は、突然変異、染色体異常および最終的な細胞死を含む多くの結果をもたらし得る。非相同末端結合(NHEJ)は、非正統的組換えとも呼ばれ、DSBを修復する1つの主要な経路である。NHEJ経路のいくつかのメンバーを、表1に示す。
【表1】

【0064】
DNA依存性プロテインキナーゼ(DNA-PK)は、触媒サブユニット(DNA-PKcs)と調節サブユニット(Ku70/Ku80ヘテロダイマー)とから構成される。DNA-PKcsサブユニットは、セリン/トレオニンキナーゼであり、ホスファチジルイノシトール-3 キナーゼファミリーに属する。Ku80/Ku70ヘテロダイマー(Ku)は、二本鎖末端に対する配列依存的な結合を示し、そしてDNAへの結合の時に、DNA-PKcs触媒サブユニットを回復(recruits)および活性化する。DNA-PKの阻害剤のいくつかの候補は、例えば、ビリジン(Hanson, J. R. Nat. Prod. Rep., 12:381-384, 1995)、ワートマニン、ケルセチン(quercitins)(Izzardら(1999) Cancer. Res., 59:2581-2586)、LY294002(Vlahosら(1994) J. Biol. Chem., 269:5241-5248)が記載されており、これらの文献は参照により本明細書に組み込まれる。NHEJの他の阻害剤はATMの阻害剤を含み、これは米国特許出願第2004/0002492号に記載され、参照により本明細書に組み込まれる。
【0065】
B.塩基除去修復(BER)
一本鎖DNA切断(SSB)は、細胞DNAで起こる最も頻度の高い障害の1つである。SSBは、自然発生的にまたは塩基除去修復(BER)の間の塩基損傷の酵素的修復の中間体として生じ得る(Caldecott(2001) Bioessays 23(5):447-55)。この修復経路において、DNAグリコシラーゼによる損傷塩基の除去の後に、生じたアプリン/アピリミジン(AP)部位をまずApeI APエンドヌクレアーゼによって処理して、5'デオキシリボース-リン酸塩を離脱し;次にAPリアーゼ活性によって3'β除去産物を離脱する。その後の、DNAポリメラーゼβまたはPCNA依存性ポリメラーゼによるこれらのAP部位の除去は、1つのヌクレオチド(Pol βについて)またはより長い修復パッチ(Pol δ/εについて)のどちらかをフィルイン(fill-in)するための修復合成を可能にし、次いでこれらは再び結合する(Wilson(1998) Mutat. Res. 407:203-15)。もし、SSB部位が効果的に処理および除去されなければ、損傷部位の集団と停止した複製フォークとを形成し、細胞にとって潜在的に致死的な結果を有するDSBの形成をもたらす(Chaudhry & Weinfeld(1997) J Biol Chem. 272:15650-5;Harrison, Hatahetら(1998) Nucleic Acids Res. 26:932-41)。
【0066】
ポリ(ADPリボース)ポリメラーゼ(PARP)は、DNA結合性亜鉛フィンガータンパク質であり、ADPリボース残基をNAD+からそれ自身および異なるクロマチン構成成分に運搬するのを触媒し、分岐ADPリボースポリマーを形成する。PARPの酵素活性はDNA損傷の時に誘導され、これは、DNA修復およびDNA損傷誘導性の細胞死におけるPARPの役割を示唆する。多数のPARPの阻害剤が開示されてきたが、それらの一部は市販されている。例えば、PJ-34 N-(6-オキソ-5,6-ジヒドロフェナントリジン-2-イル)-N,N-ジメチルアセトアミド.HCl、INHBP 5-ヨード-6-アミノ-1,2-ベンゾピロン、3-アミノベンズアミド、ベンズアミド、4-アミノ-1,8-ナフタルイミド、6(5H)-フェナントリジノン、5-アミノイソキノリノン(5-AIQ).塩酸塩、4-ヒドロキシキナゾリン、4-キナゾリノール、1,5-イソキノリンジオール、5-ヒドロキシ-1(2H)-イソキノリノン、3,4-ジヒドロ-5-[4-(1-ピペリジニル)ブトキシ]-1(2H)-イソキノリノン(DPQ)は、すべてInotek Pharmaceuticals(Beverly, MA)より入手可能である。GPI 15427(Tentoriら(2003) Proceedings of the AACR, 44, Abs No. 5466)およびメトキシアミン(Liuzziら(1985) J Biol. Chem. 260, 5252-5258;Rosaら(1991) Nucleic Acids Res., 19, 5569-5574;およびHortonら(2000) J. Biol. Chem., 275, 2211-2218)等の他の化合物は、化学療法および放射線治療の双方の抗腫瘍効果を促進することが報告されてきた。
【0067】
C.ヌクレオチド除去修復(NER)
ヌクレオチド除去修復(NER)は、そのほとんどが正常な塩基対合を妨害する外因的な原因によって引き起こされる、種々のへリックス歪曲DNA障害に作用する。ヒトにおけるNERの第一の機能は、紫外線(UV)によって誘導される損傷(例えばピリミジンダイマー)の除去であるようだ。NER経路のメンバーが同定されており、その欠損によって色素性乾皮症(XP)と呼ばれる常染色体劣性疾患を引き起こす可能性があり、これらは7つの異なる遺伝子XPA、XPB、XPC、XPD、XPE、XPFおよびXPGを含み、これらすべてがNER経路において機能する(Hoeijmakers(2001) Mutant Res. 485:43-59)。
【0068】
真核生物のNERは、転写共役修復(TCR)およびゲノム全体の修復(GGR)という2つの主要な分岐を含む(de Laatら(1999) Genes Dev. 13:768-85、Tornaletti & Hanawalt(1999) Biochimie. 81:139-46)。GGRはゲノム全体を損傷について調べるゆっくりしたランダムなプロセスであり、一方、TCRは高度に特異的かつ効果的であり、損傷ブロッキングRNAポリメラーゼIIに集中している。2つの機構は、基質特異性および基質認識が異なる。GGRにおいて、XPC-HR23B複合体は非転写領域に位置する損傷を認識し(Sugasawaら(2001) Genes Dev. 15:507-21)、一方、RNAポリメラーゼII(RNAPII)の停止はTCRにおける認識シグナルとなる。RNAPII置換の分子機構は現在のところ不明確であるが、コケイン症候群タンパク質CSA、CSB、XPA-結合タンパク質2(XAB2)、TFIIHおよびXPG(Svejstrup 2002)等の必須要素は、TCRにおいて機能することが同定されている。次に、GGRおよびTCRの双方において、損傷の周辺に、開環したらせん状でない構造が形成される。これは、XPGおよびERCC1-XPFヌクレアーゼのための特異的切断部位を作出し、そして生じたギャップは、PCNA依存性ポリメラーゼによって埋められ、そしてDNAリガーゼによってふさがれる(de Laatら,同上)。
【0069】
D.ミスマッチ修復(MR)
ミスマッチ修復(MMR)は、DNAポリメラーゼによって誤対合されたヌクレオチド、および反復配列の複製の間のずれによって引き起こされる挿入/欠失ループの双方を除去する(Harfe & Jinks-Robertson(2000) Annu Rev Genet 34:359-399)。初めに、ヘテロダイマーMSH複合体がヌクレオチドミスマッチを認識し、その後、MLH1/PMS2およびMLH1/MLH3複合体との相互作用が続く。いくつかのタンパク質が、ヌクレオチド除去および再合成のプロセスに加わる。ミスマッチ修復を欠損した腫瘍細胞は、正常細胞より非常に高い突然変異頻度を有する(Parsonsら(1993) Cell 75: 1227-1236、Bhattacharyyaら(1994) Proc Natl Acad. Sci USA 91:6319-6323)。誤対合修復に関与する、少なくとも6つの遺伝子、MSH2、MLH1、PMS2、MSH3、MSH6およびMLH3がヒトにおいて同定されている。MSH3を除くこれらの遺伝子の欠損は、遺伝性非ポリポーシス性大腸癌を引き起こす(HNPCC)(Hoeijmakers 2001)。
【0070】
DNA損傷修復に対する他の阻害剤が開示されており、アフィジコリン(Gera(1993) J Immunol. 151:3746-57)、ラパマイシン(mTOR阻害剤、Sabersら(1995) J Biol. Chem. 270:815-22)、AGT阻害剤06-ベンジルグアニン(Bronsteinら(1992) Cancer Res. 52:3851-6)を含む。
【0071】
VII.非FA DNA損傷修復経路の阻害剤の同定
上記のように、特定の状況において、細胞のDNA損傷修復経路は部分的には不必要となり得る。このことは、1つの経路を特異的に阻止する薬剤を同定することにおいて問題となる。ゆえに、機能的なDNA損傷修復経路を有する細胞に基づいた方法を用いて同定された阻害剤は、複数のDNA損傷修復経路に含まれる多数の標的を有する。従って、1つ以上のDNA損傷修復経路を欠損する細胞株を用いることは、新規の特異的な阻害剤の同定を非常に迅速化し得る。それゆえに、1つの態様によると、非FA DNA損傷修復経路を阻害する薬剤を同定する方法が提供される。本方法は、FA経路に障害を有する細胞を使用する。本方法は、細胞を薬剤に接触させること、および遺伝毒性の抗腫瘍剤に対する感受性を試験することを包含する。機能的なDNA損傷修復経路を含む対照細胞と比較した場合に、FA経路の障害を含む試験細胞において遺伝毒性の抗腫瘍剤に対する感受性を増加させる薬剤が、試験細胞が障害を含む経路以外の非FA DNA損傷修復経路を阻害することを示唆する。1つの実施形態において、試験細胞および対照細胞は、試験細胞がFA/BRCA経路の少なくとも1つの成分、例えば、特に、FANCA、FANCB、FANCC、FANCD、FANCE、FANCF、FANCG、FANCLおよびATRプロテインキナーゼに障害を含むことを除いて同系である。
【0072】
1つの実施形態によると、本方法は、FA経路の機能が異なる2つの同系の細胞株の、遺伝毒性の抗腫瘍剤に対する感受性を比較することを包含する。1つの実施形態において、2つの同系卵巣腫瘍株である元の2008細胞およびFANCF cDNAを補完した2008細胞を使用する。元の2008細胞は、FANCFを発現できず、これらの細胞はFA経路が崩壊しており、そして、これらはシスプラチンに対して超感受性である。2008細胞をFANCF cDNAにより補完することは、これらの細胞におけるFA経路を回復させる。従って、これらの対照細胞は比較のための基準を提供する。この細胞の同系ペアは、化合物(例えばキナーゼ阻害剤)のライブラリーによる、ハイスループットな化学スクリーニングを受ける。2008細胞(FA/BRCA経路を欠損する)を選択的に死滅させるが、FANCFを加えて修復した2008対照細胞を死滅させない薬剤は、非FA DNA損傷修復経路の阻害剤の候補である。
【0073】
これらの同系細胞株の利用はまた、FA経路以外のDNA損傷修復経路に関与する遺伝子産物の同定を可能にする。1つの実施形態において、対照の細胞ではなく元の細胞の生存能力に作用する遺伝子を、siRNAライブラリーを用いた体系的で大規模な阻害によって試験する。例えば、バーコード化されたsiRNAライブラリーが、2つの細胞株の安定したトランスフェクションに使用することができる。2008細胞の生存能力に必要であるが、修復した細胞には必要でない遺伝子。FA経路以外のDNA損傷修復経路(例えばBER経路)に重要な遺伝子は、そのような遺伝子のsiRNAノックダウンが、元の2008細胞においては致死的であるが、FANCF cDNAでトランスフェクションした対照の2008細胞においてはそうではないという結果をもたらすことが予想される。
【0074】
このように同定され、1つ以上のDNA損傷修復経路が崩壊している細胞を死滅させることができるが、崩壊が回復される同系の細胞株は死滅させない薬剤は、癌の治療に使用され得る。6つの主要なDNA損傷修復経路の2つ以上の崩壊は、細胞死をもたらし得る。多くの癌がすでにノックアウトまたは抑制された1つの経路を有するため、第二の経路(例えばBER経路)に対する相対的に非毒性の阻害剤が、化学療法剤の非存在下においても、癌の腫瘍縮小を引き起こすのに十分となり得る。さらに、主要なDNA損傷修復経路が無傷の腫瘍細胞において2つの阻害剤を組み合わせて用いることは(例えば、FA経路の1つの阻害剤およびBER経路の1つの阻害剤)、このような組み合わせの毒性が正常(非癌)細胞に有害でなければ、有意な腫瘍縮小を引き起こすのに十分となり得る。そのような場合、これらの薬剤の癌細胞による取り込みを促進するプロドラッグ法が、必要な治療指数を提供する。
【0075】
VIII.抗腫瘍剤
本明細書に開示するのは、DNA損傷修復経路の阻害剤と組み合わせた抗腫瘍剤の組み合わせを用いて、腫瘍性疾患を有する患者を治療する方法である。抗腫瘍剤で特に有用なものは、DNAに損傷を引き起こす薬剤を含むが、これに限定されない。これらの薬剤は、DNAアルキル化剤、挿入剤等を含む。さらに意図されるのは、従って、DNA損傷化学療法化合物の使用であり、これは、1,3-ビス(2-クロロエチル)-1-ニトロソウレア(BCNU)、ブスルファン、カルボプラチン、カルムスチン、クロラムブシル、シスプラチン、シクロホスファミド、ダカルバジン、ダウノルビシン、ドキソルビシン、エピルビシン、エトポシド、イダルビシン、イホスファミド、イリノテカン、ロムスチン、メクロレタミン、メルファラン、マイトマイシンC、ミトキサントロン、オキサリプラチン、テモゾロマイドおよびトポテカンを含むが、これらに限定されない。さらに、本明細書に記載する方法はまた、腫瘍性疾患を治療する放射線治療法を用いる。1つの実施形態において、遺伝毒性の抗腫瘍剤は、投与された濃度ではDNA損傷修復を阻害しない。
【0076】
IX.抗腫瘍剤の応答物の同定
本発明は、細胞のFA経路の有効性が、その化学療法薬剤に対する感受性に強く関連するという驚くべき発見に基づく。従って、1つの態様において、本発明は、腫瘍性疾患または疾病を有する被験体が、遺伝毒性の抗腫瘍剤に応答するかどうかを予測する方法を提供する。本方法は、被験体から生体試料を得ること、および生体試料中のファンコニ貧血症相補群D2(FANC D2)ポリペプチドのユビキチン化の程度を決定することを含む。被験体の生体試料中のFANC D2ポリペプチドのユビキチン化の程度が、対照被験体からの生体試料と比較した場合に約70%未満であることは、被験体が遺伝毒性の抗腫瘍剤に応答するであろうことを示唆するものである。
【0077】
別の態様において、本発明は、腫瘍性疾患または疾病を有する被験体が、遺伝毒性の抗腫瘍剤に応答するかどうかを予測する方法を提供する。本方法は、被験体から生体試料を得ること、および生体試料中のFANC D2含有フォーカスを決定することを含む。フォーカス形成における違いは、対照被験体からの生体試料と比較した場合に、被験体由来の試料が約70%未満のFANC D2含有フォーカスを含むことであり、これは、遺伝毒性の抗腫瘍剤に応答するだろう被験体であることを示唆する。
【0078】
1つの実施形態において、腫瘍性疾患は、白血病、急性骨髄性白血病、慢性骨髄性白血病、慢性リンパ性白血病、骨髄異形成、多発性骨髄腫、ホジキン病または非ホジキンリンパ腫、小細胞肺癌または非小細胞肺癌、胃癌、腸癌または結腸直腸癌、前立腺癌、卵巣癌または乳癌、頭部癌、脳腫瘍または頸部癌、尿道内の癌、腎臓または膀胱癌、悪性黒色腫、肝臓癌、子宮癌または膵臓癌からなる群より選択される。
【0079】
これらの態様によると、FA経路を活性化する生体試料の能力を、FANC D2モノユビキチン化のレベルを測定することによって決定しながら、化学療法剤、特に遺伝毒性の抗腫瘍剤に対する応答物を同定するために決定する。抗腫瘍剤は、癌の治療に使用されるあらゆるものであってよく、そして、1つの実施形態において、抗腫瘍剤の作用機序はDNAの損傷を介している。これらの化合物は以下を含むが、これらに限定されない:1,3-ビス(2-クロロエチル)-1-ニトロソウレア(BCNU)、ブスルファン、カルボプラチン、カルムスチン、クロラムブシル、シスプラチン、シクロホスファミド、ダカルバジン、ダウノルビシン、ドキソルビシン、エピルビシン、エトポシド、イダルビシン、イホスファミド、イリノテカン、ロムスチン、メクロレタミン、メルファラン、マイトマイシンC、ミトキサントロン、オキサリプラチン、テモゾロマイドおよびトポテカンならびに電離放射線。
【0080】
特定の実施形態において、患者あるいはまた患者から得た生体試料を、FANC D2ポリペプチドのユビキチン化の程度を決定する前に、抗腫瘍剤に曝露することができる。1つの実施形態において、患者または患者から得た生体試料を、治療上有効な用量以下の用量で曝露する。別の実施形態において、曝露は、抗腫瘍剤の治療上有効な用量の50%以下である。
【0081】
FANC D2ポリペプチドのユビキチン化の程度は、対照被験体のそれと比較され得る。本明細書で使用するように、対照被験体は、抗腫瘍剤に対する応答について正常であることが事前に決定されている単独の被験体、または多くの正常被験体であり得る。単独の対照被験体または多くの対照被験体のどちらかからの生体試料が使用され得る。この態様において、被験体からの試料と比較してFANC D2ユビキチン化の割合が約70%未満の場合、試験試料として同じかまたは同等の用量の抗腫瘍剤投与を受けた被験体からの試料と比較した場合に、例えば、70%未満、65%未満、60%未満、50%未満、40%未満、30%未満、20%未満、10%未満またはそれ以下であると、被験体は抗腫瘍剤の応答者であると見なされる。さらに、FANC D2ポリペプチドのユビキチン化の程度を決定する前に抗腫瘍剤に曝露することを含む実施形態において、対照試料は、試験試料の調製の前に調製するか、または、試験試料の調製と同時に調製することができる。
【0082】
1つの実施形態において、被験体あるいはまた被験体から採取した生体試料は、FA経路の有効性を測定する前に、遺伝毒性の抗腫瘍剤で処理され得る。抗腫瘍剤の用量は,正常な被験体においてFA経路を誘導するのに必要な量であるだろう。通常、抗腫瘍剤の用量は、標準的な治療上有効な用量の約5%〜100%の間であり、より典型的には20%〜100%の間、そして最も典型的には約35%〜100%の間であるだろう。
【0083】
本明細書に記載するように、生体試料中のFANC D2ポリペプチドのユビキチン化の程度を測定する数多くの方法がある。FANC D2ポリペプチドのユビキチン化の程度は、上記のようにイムノブロット解析を用いて測定され得る。あるいはまた、例えば生体試料の免疫蛍光顕微鏡法を用いて、FANC D2ユビキチン化に対する代用マーカーとして、FANC D2含有フォーカスの形成を検出し得る。
【0084】
ユビキチン化FANC D2ポリペプチドの形成が正常被験体と比較した場合に約70%以下、例えば、正常被験体の70%以下、65%以下、60%以下、50%以下、40%以下、30%以下であれば、被験体は応答者と考えられる。
【0085】
X.腫瘍性疾患の治療
特定の実施形態において、被験体または患者は、治療上有効な用量の遺伝毒性の抗腫瘍剤を、非FA DNA損傷修復経路(例えばFA経路)の阻害剤を投与するのと同時に、前にまたは後に投与される。多くの抗腫瘍剤の治療上有効な用量は既知であり、そして、例えば、Cancer Chemotherapy and Biotherapy:A Reference Guide Edition Number:2 Tenenbaum監修、Saunders & CO(1994)において見ることができ、これは参照により本明細書に組み込まれる。
【0086】
腫瘍性疾患の治療を必要とする被験体の腫瘍性疾患を治療する方法もまた、本明細書により提供される。1つの態様において、本方法は、被験体に有効量のFA経路の阻害剤および遺伝毒性の抗腫瘍剤を投与することを含む。抗腫瘍剤は、1,3-ビス(2-クロロエチル)-1-ニトロソウレア(BCNU)、ブスルファン、カルボプラチン、カルムスチン、クロラムブシル、シスプラチン、シクロホスファミド、ダカルバジン、ダウノルビシン、ドキソルビシン、エピルビシン、エトポシド、イダルビシン、イホスファミド、イリノテカン、ロムスチン、メクロレタミン、メルファラン、マイトマイシンC、ミトキサントロン、オキサリプラチン、テモゾロマイドおよびトポテカン、ならびに電離放射線からなる群より選択され得る。
【0087】
別の態様において、腫瘍性疾患の治療を必要とする被験体の腫瘍性疾患を治療する方法を提供する。本方法は、有効量のFA経路の阻害剤および非FA DNA損傷修復経路の阻害剤を被験体に投与することを含む。非FA DNA損傷修復経路の阻害剤は、任意の修復経路を阻害するものを選択することができ、そして、PARP阻害剤、DNA-PK阻害剤、mTOR阻害剤、ERCC1阻害剤、ERCC3阻害剤、ERCC6阻害剤、ATM阻害剤、XRCC4阻害剤、Ku80阻害剤、Ku70阻害剤、XPA阻害剤、CHK1阻害剤、CHK2阻害剤、またはこれらの製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグからなる群より選択され得る。FA経路の阻害剤は、非FA DNA損傷修復経路の阻害剤を投与する前に、同時にまたは後に投与され得る。阻害剤は、非経口的、経口的または直接的に腫瘍に投与され得る。
【0088】
FA経路の阻害剤は、非FA DNA損傷修復経路の阻害剤と同様に、遺伝毒性の抗腫瘍剤に対する腫瘍性疾患の感受性を増加するように作用し得る。従って、別の態様において、遺伝毒性の抗腫瘍剤に対する腫瘍性疾患の感受性を増加する方法が提供される。本方法は、治療上有効な用量の薬剤を投与する前に、後にまたは同時に、有効量のFA経路の阻害剤および非FA DNA損傷修復経路の阻害剤との組み合わせを投与することを含む。本方法は、腫瘍性疾患の多くのタイプの治療に有用となり得るものであり、そして、これらは白血病、急性骨髄性白血病、慢性骨髄性白血病、慢性リンパ性白血病、骨髄異形成、多発性骨髄腫、ホジキン病または非ホジキンリンパ腫、小細胞肺癌または非小細胞肺癌、胃癌、腸癌または結腸直腸癌、前立腺癌、卵巣癌または乳癌、頭部癌、脳腫瘍または頸部癌、尿道内の癌、腎臓または膀胱癌、悪性黒色腫、肝臓癌、子宮癌または膵臓癌からなる群より選択され得る。
【0089】
FA経路の阻害剤は、さらに、遺伝毒性の抗腫瘍剤に対する腫瘍性疾患の感受性を増加させる薬剤として有用である。従って、別の態様において、本発明は、遺伝毒性の抗腫瘍剤に対する腫瘍性疾患の感受性を増加させる方法を提供する。本方法は、治療上有効な用量の遺伝毒性の抗腫瘍剤を投与する前に、後にまたは同時に、有効量のFA経路の阻害剤を投与することを含む。上記のように、FA経路の阻害剤は、非FA DNA損傷修復経路の阻害剤を投与する前に、同時にまたは後に投与することができ、そして、非経口的、経口的または直接的に腫瘍に投与され得る。1つの実施形態において、本方法は、FA阻害剤および遺伝毒性の抗腫瘍剤に加え、さらに非FA DNA損傷修復経路の阻害剤を投与することを含む。非FA DNA損傷修復経路の阻害剤は、治療上有効な用量のFA経路阻害剤および遺伝毒性の抗腫瘍剤を投与する前に、後にまたは同時に投与され得る。
【0090】
本明細書に開示される組成物の、腫瘍性疾患の予防または治療における有効性は、例えば、特定の腫瘍性疾患の動物モデルにおいて試験することができる。動物モデルの数多くの例示は、当業者によく知られており、そして例えば、Holland, Mouse Models of Cancer(Wiley-Liss 2004);Teicher, Tumor Models in Cancer Research(Humana Press; 2001);Kallman, Rodent Tumor Models in Experimental Cancer Therapy(Mcgraw-Hill, TX, 1987);Hedrich,The Laboratory Mouse(Handbook of Experimental Animals)(Academic Press, 2004);ならびにArnoldおよびKopf-Maier, Immunodeficient Animals:Models for Cancer Research(ContributionsとOncology,第51巻)(Karger, 1996)において開示され、これらの内容はその全体を参照により本明細書に組み込まれる。
【0091】
XI.本発明の試験化合物
in vitro系であろうとin vivo系であろうと、本発明は、FANC D2含有フォーカスの形成を阻害し得る組成物、ならびに、FA経路以外のDNA損傷修復経路を阻害する組成物をスクリーニングする方法を包含する。合成または天然化合物の大きなライブラリーから、モジュレーター候補化合物がスクリーニングされ得る。糖類、ペプチドおよび核酸を基剤とした化合物のランダムな合成および直接的な合成のために、現在、数多くの手段が用いられている。合成化合物ライブラリーは、Maybridge Chemical Co.(Trevillet, Cornwall, UK)、Comgenex(Princeton, NJ)、Brandon Associates(Merrimack, NH)およびMicrosource(New Milford, CT)を含む多くの企業から市販されている。希少な化学ライブラリーは、Aldrich(Milwaukee, WI)から入手できる。コンビナトリアルライブラリーは、入手することも調製することもできる。あるいはまた、細菌、真菌、植物および動物の抽出物の形態の天然化合物のライブラリーは、例えば、Pan Laboratories(Bothell, WA)またはMycoSearch(NC)から入手可能であり、また、当技術分野でよく知られる方法によって容易に作製することができる。さらに、天然および合成的に作製されたライブラリーおよび化合物は、従来の化学的、物理的および生化学的手段によって容易に改変される。
【0092】
有用な化合物は、通常は低分子有機化合物を含む有機化合物であるが、多数の化学種内に見出され得る。低分子有機化合物の分子量は、50ダルトンより大きく、さらに約2,500ダルトン未満であり、好ましくは約750ダルトン未満、より好ましくは約350ダルトン未満である。種類の例としては、複素環、ペプチド、糖類、ステロイド等を含む。化合物は、有効性、安定性、薬剤適合性等が向上するように改変され得る。薬剤の構造的同定は、さらなる薬剤を同定、生成またはスクリーニングするために使用され得る。例えば、ペプチド薬剤を同定する場合、非天然型アミノ酸、例えばD-アミノ酸、特にD-アラニンを使用する等して、アミノ末端またはカルボキシル末端を官能化することによって(例えば、アミノ基はアシル化またはアルキル化、カルボキシル基はエステル化またはアミド化する等して)、安定性を向上させる様々な方法でそれらを改変することができる。
【0093】
本発明の方法によってスクリーニングすることができるモジュレーター候補には、受容体、酵素、リガンド、制御因子および構造タンパク質が含まれる。モジュレーター候補にはまた、核タンパク質、細胞質タンパク質、ミトコンドリアタンパク質、分泌タンパク質、細胞膜関連タンパク質、血清タンパク質、ウイルス抗原、細菌抗原、原生動物抗原および寄生生物抗原が含まれる。モジュレーター候補にはさらに、タンパク質、リポタンパク質、糖タンパク質、リンタンパク質および核酸(例えば、リボザイム等のRNAまたはアンチセンス核酸)が含まれる。本発明の方法を使用してスクリーニングできるタンパク質またはポリペプチドには、ホルモン、成長因子、神経伝達物質、酵素、凝固因子、アポリポタンパク質、受容体、薬剤、癌遺伝子、腫瘍抗原、腫瘍抑制因子、構造タンパク質、ウイルス抗原、寄生生物抗原、細菌抗原および抗体が含まれる(以下参照)。
【0094】
本発明によってスクリーニングすることができるモジュレーター候補はまた、試験細胞もしくは生物が欠損している物質、または正常な濃度より高い濃度で臨床的に有効な物質、ならびに不要なタンパク質の翻訳を排除するよう設計された物質が含まれる。本発明で使用する核酸は、上記のモジュレーター候補をコードするだけでなく、有害なタンパク質を排除する生成物を排除するかまたはコードし得る。このような核酸配列は、アンチセンスRNAおよびリボザイム、ならびにそれらをコードするDNA発現構築物である。以下に説明するように、アンチセンスRNA分子、リボザイム、またはそれらをコードする遺伝子を当技術分野で知られているの核酸デリバリー方法によって、試験細胞または生物に投与することができることに注意されたい。核酸配列を不活性化することにより、標的mRNAに特異的なリボザイムまたはアンチセンスRNAをコードすることができる。ハンマーヘッド型リボザイムは知られている最小のものであり、それら自身をin vitro産生させたり、細胞に輸送させたりする(Sullivan (1994) J. Invest. Dermatol., 103: 85S-98S;Usmanら(1996), Curr. Opin. Struct. Biol., 6: 527-533に要約される)。
【0095】
XII.医薬組成物
別の態様において、本発明は、上記の項に記載した抗腫瘍性薬剤および/または非FA DNA損傷修復経路の阻害剤、ならびに以下に記載する製薬上許容され得る担体と組み合わせたFA経路の阻害剤を含む方法および医薬組成物に関する。FA経路の阻害剤を含む医薬組成物は、癌を含む種々の疾患および疾病の治療に有用であり、そして、遺伝毒性の抗腫瘍剤に対する保護剤としても有用となり得る。
【0096】
1つの実施形態において、本発明は、以下の有効量の組み合わせを投与することを含む腫瘍性疾患の治療を必要とする被験体を治療する方法を提供する:
a)FA経路の阻害剤、またはこれらの製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグ、および
b)遺伝毒性の抗腫瘍剤。
【0097】
FA経路の阻害剤の例示は、H-9、アルスターパウロンおよびクルクミンを含む。しかし、FA経路のさらなる阻害剤が、例えば、本明細書に記載される方法を用いて同定され得ることは当業者に理解されるだろう。これに関して、FA経路の阻害剤は、低分子および抗体、リボザイムまたはsiRNA分子であり得る。
【0098】
本方法は、白血病、急性骨髄性白血病、慢性骨髄性白血病、慢性リンパ性白血病、骨髄異形成、多発性骨髄腫、ホジキン病または非ホジキンリンパ腫、小細胞肺癌または非小細胞肺癌、胃癌、腸癌または結腸直腸癌、前立腺癌、卵巣癌または乳癌、頭部癌、脳腫瘍または頸部癌、尿道内の癌、腎臓または膀胱癌、悪性黒色腫、肝臓癌、子宮癌または膵臓癌を含む種々の腫瘍性疾患の治療に使用され得る。1つの実施形態において、本方法は卵巣癌を治療するために使用される。
【0099】
FA経路の阻害剤の用量は、溶解度、生物学的利用率、血漿タンパク質結合、腎クリアランスおよび阻害定数を含むいくつかの因子に依存する。特定の治療的利用において、少なくとも部分的なFA経路の阻害を達成するために適当な量が、「有効な用量」と定義される。この用量を得るのに必要な量は、疾患の重症度および患者自身の免疫系の全身状態に依存するであろうが、しかし、一般的に体重1キログラム当たり0.005〜5.0mgの範囲で、0.05〜2.0mg/kg/回の用量の阻害剤が通常使用される。あるいはまた、用量が機能的な用量を用いて投与することができるのは、被験体におけるFA経路の活性化が、本明細書に記載される方法を用いたFANC D2ポリペプチドのユビキチン化を使用して、実験的に決定することができるためである。従って、FA経路の阻害剤の「有効な用量」は、対照試料と比較した場合に、FANC D2ユビキチン化のレベルを約70%以下、さらに典型的には対照試料の約50%以下に減少させるのに必要な用量を意味し得る。これに関して、対照試料は、理想的には阻害剤の投与前に同じ被験体から採取される。
【0100】
遺伝毒性の抗腫瘍剤の用量に対するFA経路の阻害剤の用量は、比率として表すことができる。FA経路の阻害剤は、モルベースで遺伝毒性の抗腫瘍剤に対して、約100:1〜約1:100の間、例えば、1:100、1:50、1:10、1:5、1:2、1:1、2:1、5:1、10:1、20:1、50:1または100:1の比率で投与され得る。
【0101】
遺伝毒性の抗腫瘍剤は、腫瘍性疾患を治療するために使用される薬剤であり、1,3-ビス(2-クロロエチル)-1-ニトロソウレア(BCNU)、ブスルファン、カルボプラチン、カルムスチン、クロラムブシル、シスプラチン、シクロホスファミド、ダカルバジン、ダウノルビシン、ドキソルビシン、エピルビシン、エトポシド、イダルビシン、イホスファミド、イリノテカン、ロムスチン、メクロレタミン、メルファラン、マイトマイシンC、ミトキサントロン、オキサリプラチン、テモゾロマイドおよびトポテカンを含む。
【0102】
上記の抗腫瘍剤の用量は、異なるタイプの腫瘍性疾患に対して確立されてきている。しかし、FA経路の阻害剤との共投与は、腫瘍性疾患の抗腫瘍剤に対する感受性を増加させ得る。従って、抗腫瘍剤の用量が、特定の腫瘍性疾患に対して典型的に投与される用量より少なくなる可能性がある。より少ない用量は、副作用を減少させる付加的な利点を有し得る。しかし、通常、抗腫瘍剤の用量は、特定の腫瘍性疾患に対する典型的な用量の約20%〜100%、より典型的には約35%〜100%の間に入ると予想される。
【0103】
さらに別の実施形態において、本発明は、腫瘍性疾患の治療を必要とする被験体を治療する方法を提供し、以下の有効量の組み合わせを被験体に投与することを含む:
(a)FA経路の阻害剤、またはこれらの製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグ、および
(b)DNA損傷修復経路の阻害剤。
【0104】
DNA損傷修復経路の阻害剤は、PARP阻害剤、DNA-PK阻害剤、FA阻害剤、mTOR阻害剤、ERCC1阻害剤、ERCC3阻害剤、ERCC6阻害剤、ATM阻害剤、XRCC4阻害剤、Ku80阻害剤、Ku70阻害剤、XPA阻害剤、CHK1阻害剤、CHK2阻害剤、またはこれらの製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグからなる群より選択され得る。
【0105】
1つの実施形態において、非FA DNA損傷修復経路はFA経路以外の経路である。1つの実施形態において、阻害剤は、非相同末端結合DNA損傷修復経路、ミスマッチ修復経路およびヌクレオチド除去経路からなる群より選択される経路を標的とする。別の実施形態において、阻害剤は非相同末端結合DNA損傷修復経路を標的とする。さらに別の実施形態において、阻害剤は直接消去経路を標的とする。別の実施形態において、阻害剤はミスマッチ修復経路を標的とする。さらに別の実施形態において、阻害剤はヌクレオチド除去修復経路を標的とする。別の実施形態において、阻害剤は塩基除去修復経路を標的とする。
【0106】
DNA損傷修復経路の阻害剤の理想的な用量は、FA経路の阻害剤について上記に記載したように、疾患の重症度および患者自身の免疫系の全身状態に依存するであろうが、しかし、一般的に体重1キログラム当たり0.005〜5.0mgの範囲で、0.05〜2.0mg/kg/回の用量の阻害剤が通常使用される。あるいはまた、適切な用量は実験的に決定することができ、DNA損傷修復経路の阻害は、被験体から採取した生体試料を用いて測定することができる。従って、DNA損傷修復経路の阻害剤の「有効な用量」は、対照試料と比較した場合に、特定経路のレベルを約70%以下、さらに典型的には対照試料の約50%以下に減少させるのに必要な用量を意味し得る。これに関して、対照試料は、理想的には阻害剤の投与前に同じ被験体から採取される。
【0107】
さらに別の実施形態において、本発明は、腫瘍性疾患の治療を必要とする被験体を治療する方法を提供し、以下の有効量の組み合わせを被験体に投与することを含む:
(a)FA経路の阻害剤、またはそれらの製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグ、
(b)非FA DNA損傷修復経路の阻害剤、および
(c)遺伝毒性剤、またはこれらの製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグ。
【0108】
FA経路の阻害剤、その投与する用量および方法は、上記の通りである。同じように、非FA DNA損傷修復経路の阻害剤、さらにその投与する用量および方法は上記の通りである。しかし、上記の通り、FA経路、さらに非FA DNA損傷修復経路の阻害剤の投与は、抗腫瘍剤に対する感受性を増加させることができる。従って、抗腫瘍剤の用量は、特定の腫瘍性疾患に対して典型的に投与される用量より少なくなる可能性がある。より少ない用量は、副作用を減少させる付加的な利点を有し得る。しかし、通常、抗腫瘍剤の用量は、特定の腫瘍性疾患に対する典型的な用量の約20%〜100%、より典型的には約35%〜100%の間に入ると予想される。
【0109】
本発明の化合物、またはこれらの製薬上許容され得る塩、エステル、誘導体、溶媒和物もしくはプロドラッグは、疾患の治療的または予防的処置のために、経口投与、静脈内投与、筋肉内投与、皮下投与、局所投与および/または非経口投与のために製剤され得る。経口または非経口投与のために、本発明の化合物は、従来の医薬担体および賦形剤と混合することができ、錠剤、カプセル、エリキシル剤、懸濁化剤、シロップ、カシェ剤(wafers)等の形態で使用され得る。本発明の化合物を含む組成物は、重量で約0.1%〜約99.9%、約1%〜約98%、約5%〜約95%、約10%〜約80%または約15%〜約60%の活性化合物を含む。
【0110】
本発明の化合物は、投与の分割方法を用いて別々の時間に投与することができる。例えば、特定の状況において、FA経路の阻害剤を、遺伝毒性の抗腫瘍剤または他の薬剤の投与の前に、同時にまたは後に投与することが有利となり得る。同様に、各々の化合物を投与する方法は、それらを投与する最適な手段に依存するだろう。
【0111】
本明細書に開示される医薬品は、標準的な手順に従って調製され、そして、癌を減少、予防もしくは除去するために、または電離放射線といった遺伝毒性の抗腫瘍剤に対する保護効果をもたらすために選択された用量で投与される(例えば、ヒトを治療するために様々な抗菌剤を投与する方法の一般的な説明については、Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA;ならびにGoodmanおよびGilman, Pharmaceutical Basis of Therapeutics, Pergamon Press, New York, N. Y.を参照し、これらの内容は、参照により本明細書に組み込まれる)。本発明の組成物は、放出制御送達系(例えば、カプセル)または持続放出送達系(例えば、生分解性マトリクス)を使用して送達され得る。本発明の組成物の投与に適した薬剤送達のための遅延放出送達系の例示は、米国特許第4,452,775号、米国特許第5,239,660号および米国第3,854,480号に記載される。
【0112】
本発明の製薬上許容され得る組成物は、1以上の本発明の化合物を、本明細書においてまとめて「担体」物質と称する1以上の非毒性の製薬上許容され得る担体および/または希釈剤および/またはアジュバントおよび/または賦形剤、ならびに、必要に応じて他の活性成分と共に含む。本組成物は、コーンスターチまたはゼラチン、ラクトース、スクロース、微結晶セルロース、カオリン、マンニトール、第二リン酸カルシウム、塩化ナトリウムおよびアルギン酸等の一般的な担体および賦形剤を含み得る。本組成物は、クロスカルメロースナトリウム、微結晶セルロース、デンプングリコール酸ナトリウム、およびアルギン酸を含み得る。
【0113】
含有され得る錠剤結合剤は、アラビアゴム、メチルセルロース、カルボキシメチルセルロース・ナトリウム、ポリビニルピロリドン(プロビドン)、ヒドロキシプロピルメチルセルロース、スクロース、デンプンおよびエチルセルロースである。
【0114】
使用され得る滑沢剤は、ステアリン酸マグネシウムまたは他のステアリン酸金属塩、ステアリン酸、シリコン溶液、タルク、ワックス、油およびコロイドシリカを含む。
【0115】
ペパーミント、冬緑油、チェリー矯味剤等の矯味剤もまた使用され得る。着色剤を添加することにより、剤形の見た目をより美しくしたり、または本発明の化合物を含む製品を識別する助けになることもまた望ましい。
【0116】
経口で使用するために、錠剤およびカプセル等の固形製剤は特に有用である。持続放出製剤または腸溶コーティング製剤もまた考案され得る。小児使用および高齢者使用のために、懸濁液、シロップおよびチュアブル錠は特に適切である。経口投与するための医薬組成物は、例えば、錠剤、カプセル、懸濁液または液剤の形態である。医薬組成物は、好ましくは、治療上有効な量の活性成分を含む投与単位の形態で作成される。そのような投与単位の例示は、錠剤およびカプセルである。治療目的のために、錠剤およびカプセルは、活性成分に加えて、結合剤、例えば、アラビアゴム、ゼラチン、ポリビニルピロリドン、ソルビトールまたはトラガカント;充填剤、例えば、リン酸カルシウム、グリシン、ラクトース、トウモロコシデンプン、ソルビトールまたはスクロース;滑沢剤、例えば、ステアリン酸マグネシウム、ポリエチレングリコール、シリカまたはタルク:崩壊剤、例えば、ジャガイモデンプン、矯味剤または着色剤、または許容され得る湿潤剤等の、従来の担体を含み得る。経口液体製剤は、一般的に水性溶液または油性溶液、懸濁液、乳化液、シロップまたはエリキシルの形態であり、懸濁化剤、乳化剤、非水溶剤、保存剤、着色剤および矯味剤等の従来の添加物を含み得る。液体製剤のための添加剤の例示は、アラビアゴム、アーモンド油、エチルアルコール、分別した(fractionated)ヤシ油、ゼラチン、グルコースシロップ、グリセリン、硬化食用油脂、レシチン、メチルセルロース、メチルもしくはプロピルパラヒドロキシ安息香酸、プロピレングリコール、ソルビトールまたはソルビン酸を含む。
【0117】
静脈内(iv)への使用のために、本発明の化合物は任意の一般的に用いられる静脈内輸液に溶解または懸濁され得るものであり、注射によって投与され得る。静脈内輸液は、限定はされないが、生理食塩水またはリンゲル液を含む。
【0118】
非経口(parental)投与のための製剤は、水性または非水性等張滅菌注射液または懸濁液の形態であり得る。これらの溶液または懸濁液は、経口投与の製剤に使用することが記載される1種以上の担体を有する滅菌した粉末または顆粒から調製することができる。本化合物は、ポリエチレングリコール、プロピレングリコール、エタノール、トウモロコシ油、ベンジルアルコール、塩化ナトリウムおよび/または種々の緩衝液に溶解され得る。
【0119】
筋肉内投与製剤のために、本発明の化合物の滅菌製剤または本発明の化合物を形成する適切な可溶性の塩は、注射用水(WFI)、生理食塩水または5%グルコース等の医薬希釈剤中に溶解して投与することができる。本化合物の適切な不溶性形態は、水性基剤または製薬上許容され得る油性基剤(例えば、オレイン酸エチル等の長鎖脂肪酸のエステル)中の懸濁液として調製して投与され得る。
【0120】
局所使用のために、本発明の化合物はまた、皮膚または鼻および喉の粘膜に使用するのに適切な形態に調製することができ、クリーム、軟膏、液体スプレーもしくは吸入剤、トローチ剤または喉塗布剤の形態をとり得る。このような局所製剤はさらに、ジメチルスルホキシド(DMSO)等の化合物を含有させることが可能であり、これにより、活性成分の表面浸透を容易にすることができる。
【0121】
目または耳に使用するために、本発明の化合物は、軟膏、クリーム、ローション、塗布剤または粉末のような、疎水性基剤または親水性基剤中で調剤される液体または半液体の形態で提供され得る。
【0122】
直腸投与のために、本発明の化合物は、カカオ脂、ワックスまたは他のグリセリド等の従来の担体と混合した坐剤の形態で投与され得る。
【0123】
あるいはまた、本発明の化合物は、送達時に適切な製薬上許容され得る担体で再構成するための粉末形態であり得る。別の実施形態において、化合物の投与単位形態は、滅菌された密閉アンプル内での適切な希釈剤中の化合物またはそれらの塩の溶液であり得る。
【0124】
投与単位中の本発明の化合物の量には、少なくとも1つの本発明の活性化合物の治療上有効な量が含まれ、この量は受容被験体、投与経路および投与頻度によって変化し得る。被験体は、ヒツジ等の動物またはヒトを含む哺乳類を指す。
【0125】
本発明のこの態様によると、本明細書に開示される新規の組成物は、製薬上許容され得る担体に収納(placed)され、そして、既知の薬物送達方法によって受容被験体(ヒト被験者を含む)に送達される。一般的に、in vivoで本発明の組成物を送達するための本発明の方法は、当技術分野で認識されている方法において薬剤を本発明の化合物に置換するという点のみを実質的に改変して、当技術分野で認識されている薬物送達方法を使用する。
【0126】
本発明の化合物は、前癌状態もしくは癌状態を治療するための方法、または遺伝毒性の抗腫瘍剤に対する保護剤として使用する方法を提供する。本明細書で使用する用語「単位用量」は、所望の治療応答を誘導する治療上有効な量の本発明の化合物の量を指す。用語「治療」は、被験体に治療上有効な量の少なくとも1つの本発明の化合物を、前癌状態または癌状態の発生を阻止すること、あるいは前癌状態または癌状態を制御または除去することの双方のために投与することとして定義される。用語「所望の治療応答」は、受容被験体を本発明の化合物で治療することにより、受容被験体の前癌状態または癌状態が回復、停止または阻止されることを指す。
【0127】
本発明の化合物は、1日単回投与または1日当たり複数回投与として投与され得る。治療計画は、長期間、例えば、数日間または2〜4週間投与することを必要とし得る。投与用量当たりの量または全投与量は、病状の特性および重症度、受容被験体の年齢および全身状態、受容被験体の化合物に対する耐性および癌の種類、治療薬に対する癌の感受性、ならびに、その他の治療薬の組み合わせ(使用する場合)、使用した治療薬の用量および種類などの要素に依存するだろう。
【0128】
本発明の化合物はまた、患者もしくは動物の食餌中または飼料中に投与され得る。動物の飼料は、化合物を添加し得るか、またはプレミックスに添加することができる通常の食品であり得る。
【0129】
本発明の化合物は、このような治療を必要とする受容被験体を治療するために、既知の臨床的に認可された任意の薬剤と組み合わせて、共に、または別々に摂取され得る。
【0130】
他に定義されない限り、本明細書で使用する技術用語および科学用語は、本発明が属する当業者に通常に理解される意味と同様の意味を有する。本明細書に記載されるものと類似または等価な方法および材料が本発明の実施または試験に使用され得るが、適切な方法および材料を以下に記載する。さらに、本明細書に記載される方法および実施形態に関する開示は、Chinomasら, Mol. Cancer Ther. 5(4):952-961(2006)ならびにTaniguchiおよびD'Andrea, published electronically in Blood(2006)DOI 10.1182/blood-2005-10-4240に見ることができ、これらの双方は共に参照によりこれらの全体が本明細書に組み込まれる。本明細書に記載するすべての刊行物、特許出願、特許および他の参照は、参照によりこれらの全体が本明細書に組み込まれる。矛盾する場合には、定義を含む本明細書が規定する。さらに、材料、方法および実施例は、一例に過ぎず、限定を意図するものではない。
【実施例】
【0131】
実施例1:方法
細胞株および細胞培養
Hela細胞、PD20(FA-D2)線維芽細胞およびGM6914(FA-A)線維芽細胞を、既に記載されるとおり培養した(Taniguchiら(2002)Cell. 109:459-472)。短時間、細胞を15%ウシ胎仔血清(FCS)を添加したダルベッコの変法イーグル培地(DMEM)中で培養した。FANCF欠損卵巣腫瘍株(2008)およびFANCF cDNA修復2008細胞は既に記載されている。乳癌細胞株MCF7は、アメリカン・タイプ・カルチャー・コレクション(American Type Culture Collection; Manassas,Virginia)から取得した。OVCAR5およびOVCAR8は、既に記載されるとおり増殖させた。
【0132】
プラスミドおよびレトロウイルス感染
レトロウイルス発現ベクター、pMMP-puro(Oryら(1996)Proc Natl Acad. Sci USA. 93:11400-11406)およびpMMP-puro-FANCD2は、既に記載されている(Timmersら(2001)Mol Cell. 7:241-248;Garcia-Higueraら(2001)Mol Cell. 7:249-262)。pMMPpuro EGFP-FANCD2は、EGFP cDNA配列(pEGFP-N1(Clontech)より)をFANCD2 cDNA配列のN末端に付加して構築した。cDNA挿入物は、ダイレクトDNAシーケンスによって確認した。pMMPレトロウイルス上清の生成および線維芽細胞(PD20フィブロブラスト)の感染は、既に記載されるとおり実施した(Nafら(1998)Mol Cell Biol, 18:5952-5960)。48時間後、細胞をトリプシン処理し、そしてピューロマイシン(1μg/mL)を含む培地中で選択した。死滅細胞を除去し、そして生存細胞をピューロマイシン中での継続的な選択の下で増殖させた。pMMPpuroEGFP-FANCD2を感染させたPD20線維芽細胞のサブクローニングは、限界希釈法によって実施し、そして、IR処理(15Gy,10時間)に対して明白なEGFP-FANCD2フォーカス形成を示したクローンを、薬剤スクリーニング実験のために選択した(PD20F-EGFP-FANCD2クローン7)。
【0133】
細胞毒性解析
ヒト細胞(Hela細胞、PD20線維芽細胞、または2008細胞;Taniguchiら(2003)Nat Med. 9:568-574に示される)を12穴プレート中のDMEM-15%FCS(5 ml)に、9×104細胞/ウェルで播種した。細胞を16〜24時間付着させた後、培地を、シスプラチン(CDDP)またはMMC(Sigma)を種々の濃度で含み、異なる濃度または同じ濃度のキナーゼ阻害剤またはクルクミン(Sigma)を含むかまたは含まないDMEM-15%FCSと交換した。細胞を37℃で1日間インキュベションした。培地を除去し、そしてウェルをリン酸緩衝生理食塩水(PBS)で一回洗浄した後に、新たにDMEM-15%FCSを添加した。5〜6日間インキュベーションした後、単層を(PBS)で2回洗浄した後、5〜10時間、23℃で10%(vol/vol)メタノールおよび10%(vol/vol)酢酸中で固定した。付着したコロニーを2〜10分間、23℃でメタノール(1ウェル当たり0.5 ml)の1%(wt/vol)クリスタル・バイオレット(Sigma)により染色した。プレートを蒸留水で洗浄し、そして0.1%(wt/vol)ドデシル硫酸ナトリウムSDSを含むメタノール(1ウェル当たり0.5 ml)で、1〜4時間、23℃で穏やかに攪拌することにより、吸着された染料を再可溶化した。染色溶液(150μl)を96穴プレートに移し、そしてメタノールで希釈した(1:3)。クリスタル・バイオレット濃度を、3550型マイクロプレート測定器(Bio-Rad)で光度測定(595 nm)した。定量には、595 nmでの吸光度の測定値を、細胞生存の収率が100%であると考えられる未処理の細胞(CDDPの濃度=0 nM)で得られた測定値で標準化した。
【0134】
免疫蛍光顕微鏡法
細胞を4穴チャンバースライド(Falcon)上に播種し、そして16〜24時間培養した。スライドをPBSで洗浄し、付着した細胞を20分間23℃でパラホルムアルデヒド(PBS中に4%(wt/vol))中で固定し、そしてTriton X-100(PBS中に0.3%(vol/vol))で10分間23℃で透過処理した。1次(精製抗FANCD2親和性)抗体および2次(フルオレセイン結合ヤギ抗ウサギ)抗体を用いて2時間23℃で染色し、次に5分間23℃でDAPI(4',6-ジアミジノ-2-フェニルインドール二塩酸塩;PBS中に10μg/ml;Sigma)で対比染色をした。スライドをVectashield(Vector Laboratories)に載せ、蛍光顕微鏡で解析した。
【0135】
FA/BRCA経路の低分子阻害剤に対するハイスループットスクリーニング
まず、本発明者らは、PD20(FA-D2)線維芽細胞をpMMP-GFP-FANCD2-puroレトロウイルス上清により形質導入し、そして20個の独立したピューロマイシン耐性コロニーを選択した。蛍光顕微鏡で判断したところ、1つのクローン(クローン7)はGFP-FANCD2の核内での発現レベルが低く、しかし、IR(2Gy)に応答して鮮やかなGFPフォーカスを形成した。クローン7を以下の実験に使用した。
【0136】
ハイスループットスクリーニングのために、クローン7細胞を384穴プレートに播種した。播種してから1時間後、市販のライブラリー(Kauら,(2003)Cancer Cell. 4:463-476)から得た化合物を、約20〜40μMの単一の濃度で各々のウェルに添加した。ライブラリーの化合物を、二連のプレートに添加した。12時間インキュベーションした後、プレートに放射線(15 Gy)を照射し、次に、さらに12時間インキュベーションして、細胞をGFP顕微鏡用に固定した。各々のウェルについて顕微鏡写真を取り、そしてGFPフォーカスにおいて有意な(50%)減少のあったウェルを、目視検査によって同定した。
【0137】
イムノブロット法
全細胞溶解液を、SDS-PAGE(ATRおよびFANCD2解析については7%ポリアクリルアミド・ビスアクリルアミドゲル、そしてChk1およびRPA1解析については10%)により電気泳動をした。タンパク質はニトロセルロースに転写し、ブロックして、記載されるとおりに(Andreassenら,(2004) Genes. Dev. 18:1958-1963)1次抗体を用いてインキュベーションした。抗体は、抗FANCD2(E35,1:1000;Garcia-Higueraら,同上)、抗ATR(1:1000 Santa Cruz)、抗リン酸-S345-Chk1(1:1000, Cell Signaling)および抗Chk1(1:500 Santa Cruz)を含む。メンブレンを洗浄し、HRP結合2次抗体(Amersham)を用いてインキュベーションし、そして記載されるとおりに(Taniguchiら,(2002)Cell. 109:459-472)化学発光(Amersham)によって検出した。
【0138】
ATRに対するin vitroキナーゼアッセイ
Flag-ATRおよびkinase-dead型Flag-ATRによるin vitroキナーゼアッセイは、既に記載されている(Andreassenら,同上)。
【0139】
実施例2:FANC D2ユビキチン化およびフォーカス形成の潜在的阻害剤の同定および特徴解析
上記の顕微鏡法を使用して、Institute of Chemistry and Cell Biology(ICCB), Harvard Medicalのコレクションの489の既知の生物活性化合物を、IR媒介FANC D2フォーカス形成の阻害についてスクリーニングした。電離放射線に曝露した時にFANC D2含有フォーカスの形成を阻止する薬剤を同定するための、ハイスループット蛍光顕微鏡法を用いた1次スクリーニングを使用して、多くの陽性反応が同定された。多くの化合物が、表2に記載されるように同定された。
【表2】

【0140】
上記の化合物に加え、ICCBの市販の様々なセット由来の5,056の化合物をスクリーニングし、PD00600、5323069および1M556Sを潜在的な陽性と同定するに至った。上記で同定された陽性反応の多くは、アルスターパウロン、H-9、クルクミン、ゲルダナマイシン、AG370、Go6976、スペルミンNONOate、PD00600、ニフェジピン、α-アマニチン、K252c、5323069、1M566Sを含み、これらをさらにFANC D2ポリペプチドのモノユビキチン化を阻害する能力、および/または機能性FANC Fを発現する2008細胞にシスプラチン超感受性を供与する能力について試験した。以下の実施例は、3つの化合物、H-9、クルクミンおよびアルスターパウロンの、FA経路の阻害における効果を記載する。
【0141】
実施例3:FANC D2ユビキチン化およびフォーカス形成の阻害剤としてのH-9の同定および特徴解析
H-9を、上記のようにハイスループットスクリーニングを用いて、FA経路の阻害剤として同定した。図7の蛍光顕微鏡に示すように、H-9は50〜100μMの範囲でFANC D2フォーカスの形成を阻害した。モノユビキチン化FANC D2の相対的なプールを測定するためのイムノブロット解析を用いた2次スクリーニングのとおり、H-9処理はFANC D2のモノユビキチン化の全体的なレベルを減少させることが分かった(図8)。H-9はFANC D2のATM依存性リン酸化に影響を及ぼさなかったが、しかし、CHK1のATR依存性リン酸化を阻害した。最後に、FANC F欠損2008細胞の超感受性は、FANCF cDNAを用いて形質導入した場合に野生株レベルに回復するが、これは、クルクミンと接触させることにより2008 + FANCF細胞において類似し得る(図9)。総合すると、これらの結果は、H-9がATPキナーゼを阻害することによって、直接的または間接的にFA/BRCA経路を阻止することを示唆する。
【0142】
実施例4:FANC D2ユビキチン化およびフォーカス形成の阻害剤としてのアルスターパウロンの同定および特徴解析
同様に、アルスターパウロンを、ハイスループットスクリニングを用いて、FA経路の潜在的な阻害剤として同定した。アルスターパウロンは、Cdk1/サイクリンB、Gsk-3BおよびCdk-5を阻害することが知られている(Sausvilleら(2000)Ann N Y Acad. Sci. 910:207-221;Schultzら(1999)J Med. Chem. 42:2909-2919)。アルスターパウロンは、FANC D2フォーカスの形成を10μMの濃度で阻害した(図10)。H-9と同様に、アルスターパウロンはFANC D2のモノユビキチン化を阻害し、そしてChk1のATR依存性リン酸化を阻害した(図11)。
【0143】
実施例5:FANC D2ユビキチン化およびフォーカス形成の阻害剤としてのクルクミンの同定および特徴解析
天然化合物であるクルクミンもまた、スクリーニングアッセイにおけるFANC D2フォーカス形成において、用量依存的な減少を引き起こした(データは示さない)。さらに、3〜20μMの範囲では、クルクミンは、Hela細胞およびシスプラチン曝露Hela細胞に対して、FANC D2のモノユビキチン化の用量依存的な減少を引き起こした(図10)。クルクミンはまた、ATR媒介Chk1リン酸化の用量依存的な減少を引き起こし(図11)、さらに、クルクミンがFA/BRCA経路の上流での事象を阻止することを示唆する。
【0144】
本発明者らは次に、細胞毒性アッセイにおけるシスプラチンの活性を増強するクルクミンの能力を試験した。クルクミンはシスプラチンに対してFANCF修復2008細胞を増感させたが、元の2008細胞の化学増感に対しては効果が低かった(図12)。クルクミンは、3〜20μMの用量範囲において細胞を増感した。この濃度範囲は、FA/BRCA経路の阻害に必要なクルクミン用量範囲と相関していた。同様の結果が、シスプラチンを添加する前に細胞を24時間クルクミンで前処理した場合にも観察された。総合すると、これらの結果は、クルクミンは、卵巣腫瘍の細胞毒性(cytoxicity)の促進においてシスプラチンと相乗作用し、そして、このクルクミン効果がFA/BRCA経路の阻害と相関していることを示唆する。
【0145】
次に、乳癌細胞株におけるクルクミンの相乗作用効果を、シスプラチンの細胞毒性効果がシスプラチン耐性細胞株において向上しているかを見るために評価した。つまり、乳癌細胞株、MCF7(ATCC)をシスプラチンに増感させる効果について、クルクミンを試験した。これらの結果は、卵巣腫瘍細胞株で見られたものと類似していた。シスプラチンおよびカルボプラチンの双方が、クルクミンの添加(5〜20μM)により細胞毒性の増加を示した。これらの用量はまた、この細胞株のFANC D2のモノユビキチン化の減少をもたらし、FA/BRCA経路の阻害を示唆する(図12)。Chk1リン酸化は;2008、2008+FおよびMCF7のすべての細胞株において、クルクミン用量依存的な様式で阻害された(図12)。
【0146】
クルクミンの化学増感活性を、さらにそのシスプラチンに対する特異性について試験した。卵巣腫瘍細胞株であるSKOV3は、シスプラチンおよびタキソールに対して感受性である(YangおよびPage(1995)Oncol Res. 7:619-24)。クルクミンは、これらの細胞を死滅させることに対して、シスプラチンと相乗作用を与えた。一方、クルクミンは、これらの細胞の用量依存的タキソール細胞毒性の特性において、効果を有さなかった。
【0147】
実施例6:FANCF相補による卵巣癌細胞株2008のシスプラチン超感受性の修復
これらの阻害剤が、シスプラチン増感剤であるかどうかを決定するために、2つの卵巣腫瘍株−シスプラチン感受性でFANCF欠損である元の2008株、およびFANCF cDNAで修復した2008株を用いた。元の2008株は、FANCF遺伝子のエピジェネティックサイレンシングのためにFANCFを欠損している(Taniguchiら(2003)Nat Rev Cancer. 3:23-34)。アルスターパウロンは、FANCF cDNA修復細胞においてシスプラチンの細胞毒性を増加させたが、元の2008細胞においては増加させず、このことは、このキナーゼ阻害剤が潜在的なシスプラチン増感剤であって、FA経路の阻害を介して作用することを示唆する(図11)。クルクミンは、シスプラチンに対してFANCF修復2008細胞を増感させたが、しかし、元の2008細胞の化学増感に対しては効果が低かった(図9および表3)。クルクミンは、3〜20μMの用量範囲で細胞を増感させ、これはFA/BRCA経路の阻害に必要なクルクミン用量範囲に相当した。同様の結果が、シスプラチンを添加する前に細胞を24時間クルクミンで前処理した場合にも観察された(データは示さない)。総合すると、これらの結果は、クルクミンは、卵巣癌の細胞毒性の増加においてシスプラチンと相乗作用し、そして、このクルクミン効果がFA/BRCA経路の阻害と相関していることを示唆する。
【0148】
実施例7:FA経路阻害剤の脳室内投与のための最大許容用量の決定
FA経路阻害剤クルクミンおよびアルスターパウロンは、25%DMSOに2.5 mMまで溶解し、これは脳室内投与に適合する最大濃度である。マウスの全脳室系がほんの20 μlからなることを考慮すると、到達した最大濃度(50 μM)はFA経路阻害に必要な濃度を上回った。同様に、AMD3100およびO6ベンジルグアニンの双方は、溶剤に十分に可溶性であり、推定される脳室内濃度がin vitroでの有効性に必要な濃度を超えることを可能にする。各々の化合物を試験するために、6匹のマウスのグループに脳室カテーテルを埋め込む(ラムダ縫合の前方4 mm、正中線の0.7 mm側部および硬膜の2.5 mm下方)。カテーテルは、2.5 mM、1.25 mM、0.625 mM、0.313 mM、0.151 mMの各化合物またはベヒクル媒体を含む皮下アルゼット浸透圧ポンプ1007D型(90μl容量を0.5μl/時間で送達)と連結する。注射している間、毎日、神経障害についてマウスを観察し、そして、術後21日で解剖する。脳切片を、1)側脳室とカテーテルが連続しているかを確認し、そして2)TUNEL染色に加えてヘマトキシリンおよびエオシンで染色することにより、細胞内毒性を評価する。損傷の臨床的または組織学的な徴候がなく送達される最大用量を、以下に記載する次の有効性実験のために選択する。
【0149】
実施例8:FA経路阻害剤の脳室内投与による全身BCNU投与のin vivoにおける殺腫瘍効果
本明細書で使用するマウス異種移植片生物発光モデルは、U87 GMB細胞株(ATCC)を使用し、これはレトロウイルスによってpMMPベクター内のルシフェラーゼのコード配列により形質導入されている。確立されたU87-ルシフェラーゼ細胞株を、対数増殖期の中期に採取し、10μlのPBS中に50,000細胞で再懸濁し、そして定位ガイダンスを用いてマウスの脳に導入する(十字縫合の2 mm側部および後方、硬膜の3 mm下方)。マウスにD-ルシフェリン(Xenogen, Alameda, CA)の腹腔内注射をし、術後5日目および10日目にIVIS画像システム(Xenogen)で画像化する。
【0150】
試験する各化合物について、30匹のマウスのグループにU87-ルシフェラーゼを移植し、そして術後5日目および10日目に調査し、それらのうち20〜26匹のマウスについて、移植された腫瘍の生着が期待される(Rubinら(2003)Proc. Natl. Acad. Sci. USA, 100:13513-13518)。U87-ルシフェラーゼ腫瘍が生着したマウスに、次に外科的に脳室カテーテルおよびアルゼットポンプ1007Dを埋め込む。次にこれらのマウスを4つのグループに階層化する:
グループ1:対照ベヒクル(25%DMSO)により処理;
グループ2:腹腔内BCNU投与(15 mg/kg)により処理;
グループ3:最大許容用量のFA阻害剤の腹腔内投与により処理;および
グループ4:最大許容用量のFA阻害剤に加えてBCNUの腹腔内投与(15 mg/kg)により処理。
【0151】
脳室カテーテルを、腫瘍移植部位の反対側に置くことにより、定位位置での腫瘍増殖の影響を最小限にする。腹腔内BCNU注射は、脳室内投与の4日後に実施して、増感を可能にする。マウスは、初めに腫瘍の移植をしてから15日後および20日後に画像化する。腫瘍増殖の比較は、LIVING IMAGEソフトウエアパッケージ(Xenogen)を使用して決定する。
【0152】
実施例9:動物モデルの抗腫瘍剤に対する卵巣腫瘍の増感におけるFA阻害剤の効果
多くの卵巣癌の動物モデルが、当技術分野において知られる。例えば、Connollyら((2003)Cancer Research, 63, 1389-1397)は、本明細書に参照として組み込まれるが、MISIIRプロモーターの制御下にあるSV40タグのキメラ発現によって、マウスに上皮性卵巣癌を生成させる方法を開示する。別の例示(Liuら(2004)Cancer Research 64, 1655-1663)において、これもまた本明細書に参照として組み込まれるが、ヒトHRASまたはKRAS腫瘍遺伝子の、不死化したヒト卵巣表面上皮細胞への導入を開示し、これは、免疫不全症のマウスへの注射後に皮下腫瘍を形成する。これらのマウスモデルは、抗腫瘍剤に対する卵巣腫瘍の増感においてFA阻害剤の有効性を試験するのに有用な手段を提供する。1グループ当たり6匹のマウスを使用する。シスプラチンの有効性を試験するために、単独でまたはFA阻害剤アルスターパウロンと組み合わせて、以下のグループを使用した:
グループ1:対照ベヒクルにより処理;
グループ2:4 mg/kgのシスプラチンにより処理;
グループ3:アルスターパウロン5 mg/kgにより処理;
グループ4:4 mg/kgのシスプラチンおよびアルスターパウロン5 mg/kgにより処理。2日後にこのサイクルを繰り返す。
【0153】
すべての処理は、腫瘍接種の1週間後に開始する。マウスを合計10サイクル処理し、そして、薬剤処理の中止後2週間(50日目)経ってから、腫瘍小結節について解剖する。解剖して、腹腔における腫瘍小結節の数を数え、腫瘍の直径を測定し、腹水の容量を測定し、そして腫瘍誘導性の脈管化の程度の指標として腹膜壁の色を定性的に観察することにより、各グループの抗腫瘍活性を評価する。毒性は解剖前のマウスの全体的な外観および行動の定性的な観察、ならびに処理の過程における様々な間隔での体重の測定によって評価する。
【0154】
クルクミン、アルスターパウロンおよびH-9等の他のFA阻害剤の有効性がこの手段を用いて試験することができるということは、当業者にとって明らかであろう。クルクミンは、LD50が10,000 mg/kgより多い高用量で安全であるということが知られる。クルクミンは、経口的、腹腔内または膀胱内に投与可能である。1つの例示において、100mg/kg〜300mg/kgのクルクミンの腹腔内投与が実施され、上記のように単独または抗腫瘍剤(例えばシスプラチン)と組み合わせて、マウスにおいて試験される。別の実施例において、クルクミンの膀胱内投与を、上記で既説した方法を用いて決定した最大可能用量で実施する。
【0155】
実施例10:卵巣腫瘍の治療におけるFA阻害剤とDNA損傷修復経路阻害剤との組み合わせの有効性
FA阻害剤とDNA損傷修復経路阻害剤との組み合わせの有効性を、基本的に上記の実施例6に記載されるように試験する。つまり、卵巣腫瘍の治療におけるFA阻害剤(例えば、クルクミン、H-9またはアルスターパウロン)の有効性を、単独またはDNA損傷修復経路阻害剤と組み合わせて試験する。1つの実施例において、以下のグループを試験する:
グループ1:対照ベヒクルにより処理;
グループ2:5 mg/kgでアルスターパウロンにより処理;
グループ3:2 mg/kgでメトキシアミンにより処理;
グループ4:5 mg/kgでアルスターパウロンにより、2 mg/kgでメトキシアミンにより処理。2日後にこのサイクルを繰り返す。
進行を上記のように観察する。
【0156】
実施例11:卵巣腫瘍の抗腫瘍剤に対する増感におけるFA阻害剤およびDNA損傷修復経路阻害剤の組み合わせ
この実施例において、クルクミン、H-9またはアルスターパウロン等のFA経路阻害剤と、メトキシアミン等のDNA損傷修復経路阻害剤との組み合わせの、抗腫瘍剤に対する腫瘍の増感における能力を、動物モデルを用いて、基本的に上記のように試験する。しかしながら、投与する抗腫瘍剤の用量は変更され、増感が腫瘍を治療するのに必要な抗腫瘍剤の全用量をより低くするかどうか決定され得る。以下のグループのマウスを試験する:
グループ1:対照ベヒクルにより処理;
グループ2:シスプラチン0 mg/kg;アルスターパウロン5 mg/kgおよびメトキシアミン2 mg/kgにより処理;
グループ3:シスプラチン1 mg/kg;アルスターパウロン5 mg/kgおよびメトキシアミン2 mg/kgにより処理;
グループ4:シスプラチン2 mg/kg;アルスターパウロン5 mg/kgおよびメトキシアミン2 mg/kgにより処理;
グループ5:シスプラチン4 mg/kg;アルスターパウロン5 mg/kgおよびメトキシアミン2 mg/kgにより処理;
進行を上記のように観察する。
【表3】

【0157】
実施例12:再発性ミュラー管悪性腫瘍のクルクミンおよびカルボプラチンでの処理の臨床的評価
第I相非盲検、用量漸増安全性試験は、ミュラー管を起原とする再発性癌を有する患者に、白金を用いた化学療法の前12か月未満に実施する。クルクミンは、カルボプラチンAUC 5の静脈内投与の前の夜、直前、その夜および翌朝に経口的に投与する。治療サイクルは28日で、1日目に開始するカルボプラチン投与の後に28日間の観察期間が続く。用量漸増に関する決定および用量制限毒性の決定は、4週間のサイクルの最後に行う。病状の進行の徴候がなく、治療を許容する患者は、さらなるサイクルのクルクミン/カルボプラチン治療に適格性を有する。
【0158】
まず、3人の患者を第一の用量レベルに入れる。初回用量レベルは、カルボプラチンAUC 5およびクルクミン900mgとする。もし、用量制限毒性(DLT)を有する者がいない場合、次にその3人の患者に用量レベル2を与える。もし、1人についてDLTが任意の用量レベルで生じた場合、3人の別の患者をその用量レベルに加える。もし、2人についてDLTがその用量レベルで生じた場合、最大許容用量(MTD)の超過が宣言され、そして、MTDは前用量レベルであると定義される。患者間の用量の漸増はしない。
【0159】
薬剤投与実験
初回用量としては、カルボプラチンAUC 5を60分間に渡って注入し、そしてクルクミン900mgを経口的に服用する。実験期間中、クルクミン用量のみを漸増する一方、カルボプラチン用量は患者の腎臓機能に基づいて一定に保つ。サイクルは、28日間隔と決め、そして、サイクルの1日目にカルボプラチンの1回の処理、ならびに1日目のカルボプラチンの前日(0日目)、直前、1日目の夜および2日目の朝に、各サイクルの間に合計4回投与されるクルクミンの1回のコースを含む。クルクミンの用量は、DLTおよびMTDが決定されるまで、さらなる患者の集団に対して漸増されるだろう。
【表4】

【0160】
カルボプラチン投与
カルボプラチンを、1時間かけて静脈内注射する。カルボプラチンの用量は、クレアチニンクリアランスに基づいたカルバート式を用いて以下のように算出する:
総用量(mg)=標的AUC(1分間当たりのmg/ml)×(推定GFR+25)
カルボプラチン用量は、mg/m2ではなく、mgで算出する。この試験におけるカルボプラチン処理の初期標的AUCは、AUC=5である。クレアチニンクリアランス(CrCL)は、測定するか、またはJelliffe式を用いて推定することができる。
【0161】
女性に対するJelliffe式:
【数1】

【0162】
*年齢は十の位未満は四捨五入
カルボプラチン制吐剤の前投薬の個人的な選択は許容される。標準的な前投薬は、ズフラン、アチバンおよびデカドロンを含む。
【0163】
用量制限毒性(DLT)の定義
用量漸増の評価を目的としたDLTの決定は、既知かつ承認されたカルボプラチンの毒性を考慮に入れたNCI CTCバージョン3.0基準を用いて、以下のように定義する。前投薬なく達する毒性は、DLTであると判断されない。
・最大制吐剤の前投薬を伴うあらゆる吐き気、嘔吐>段階3
・他のすべての薬剤依存的非血液毒性>段階3
・血液毒性
好中球数<500細胞/μl>7日
クルクミン/カルボプラチン投与後、好中球数<500細胞/μlである、あらゆる発熱性好中球減少(Tが>101°Fと定義)
血小板数<10,000細胞/μl、または血液製剤もしくは血小板輸血を必要とする出血の徴候を伴う段階3。
エリスロポエチン共投与を伴うヘモグロビン>段階4毒性
【0164】
応答の評価
測定可能な疾患の患者は、標準的な基準によって評価されるだろう。患者を、カルボプラチン/クルクミンの2サイクル後毎に再評価する。ベースライン/スクリーニング走査に加え、客観的応答の初回文書化から4週間後に確認走査を得る。
【0165】
定義
応答および進行はこの実験において、Response Evaluation Criteria in Solid Tumors(RECIST)Committee(JNCI 92(3):205-216, 2000)によって提案された新規の国際基準を用いて評価する。腫瘍病変の最長直径における変化が、RECIST基準に使用される。病変は、以下に列挙する基準を用いて、測定可能または測定不可能である。
【0166】
測定可能な疾患の評価のための指針:
ベースラインにおいて、腫瘍病変は以下のように分類される:
(1)測定可能―20mmを従来の技術で、もしくは10 mmをスパイラルCTで、少なくとも一次元において正確に測定可能である病変。または
(2)測定不能―他のすべての病変
すべての測定値をメートル法表記で記録する。すべてのベースライン評価は、治療の初めにできる限り細かく実施し、そして治療の開始より4週間以上前には行わない。測定不能な疾患は以下を含む:骨病変、軟髄膜疾患、腹水症、胸膜/心膜内浸出、画像技術によって確認および観察されない腹部腫瘤、嚢腫性病変。
【0167】
測定法の特定
同定および報告される各々の病変を特徴付けするために、ベースラインにおいて、および観察期間中に、同じ評価方法および同じ技術を使用する。画像化を基準とした評価は、双方の方法が治療の抗腫瘍効果を評価するのに使用された場合に、臨床実験による評価として好ましい。
【0168】
臨床実験
臨床的に検出された病変は、それらが表面にある場合に測定可能とみなされる(例えば、皮膚結節および触知可能なリンパ節腫大)。すべての皮膚病変は、カラー写真で記録され、これは病変の大きさを測定する定規を含む。
【0169】
胸部X線
明確に測定できる場合には、測定可能な病変として、胸部X線の病変が許容されるが、CTが好ましい。
【0170】
コンピュータ断層撮影法(CT)および磁気共鳴画像法(MRI)
CTおよびMRIは、応答評価のために選択された標的の病変を測定するのに、最も有用な(かつ最も再現性を有する)方法である。従来のCTおよびMRIは、10mmまたはそれ以下のスライス厚の連続切片で行う。
【0171】
超音波
超音波は、腫瘍病変を測定するのに使用されない。超音波は、表面の触知可能なリンパ節腫大および皮下組織の病変に対して、臨床的に測定するための代替法として考慮され得る。
【0172】
腫瘍マーカー
腫瘍マーカーは、応答を評価するのに単独では使用されない。しかしながら、もしマーカーが初期から上限を超える場合において、すべての腫瘍病変が消失した時、患者が臨床的に完全寛解した応答と考えられる、正常レベルまで回復する必要がある。
【0173】
細胞学、組織学
これらの技術は、腫瘍タイプの残りの病変が良性の成分を含み得る稀なケースで、部分応答(PR)と完全寛解(CR)とを区別するのに使用される。
【0174】
測定可能な腫瘍が応答または安定した疾患の基準を満たした場合に治療中に現れるかまたは悪化する腫瘍起原のあらゆる浸出液の細胞学的な確認は、応答または安定した疾患と進行性の疾患とを区別するのに必須である。
【0175】
腫瘍応答評価
「標的」および「非標的」病変の文書化
臓器あたり最大で5個の病変および合計で10個の病変のすべての測定可能な病変は、含まれるすべての臓器の典型であり、標的病変として同定され、そしてベースラインとして記録および測定される。標的病変は、それらの大きさ(最長直径)、そして、正確な反復測定(画像化技術によるかまたは臨床的な)に対する適性を基準にして選択される。すべての標的病変の長径和を算出し、そして、ベースライン長径和として記録する。ベースライン長径和を、対象とする腫瘍応答を特徴付けるための参照として用いる。
【0176】
すべての他の病変(または疾患の部位)を非標的病変として同定し、そしてベースラインとしても記録する。これらの病変の測定は必要ないが、各々が存在するかどうかは観察期間中に記載するべきである。
【0177】
応答基準
標的病変の評価
基準はWHOハンドブックの原本から出典し、すべての標的病変だけの最長の直径の測定が考慮されている:完全寛解―すべての標的病変の消失;部分寛解―ベースライン長径和を参照として、標的病変の長径和が少なくとも30%減少;進行性疾患―治療開始からまたは1以上の新規の病変が出現してから記録した最小の長径和を参照として、標的病変の長径和が少なくとも20%増加;安定疾患―治療開始から最小の長径和を参照として、部分寛解に適合するのに十分な減少も、進行性疾患に適合するのに十分な増加もない。
【0178】
非標的病変の評価
非標的病変に対する対象の腫瘍応答を決定するのに使用する基準は:完全寛解―すべての非標的病変の消失および腫瘍マーカーレベルの正常化;不完全寛解/安定疾患―1以上の非標的病変の持続および/または正常値の上限より高い腫瘍マーカーレベルの維持;ならびに進行性疾患―1以上の新規の病変の出現および/または存在する非標的病変の明確な進行、である。
【表5】

【図面の簡単な説明】
【0179】
【図1】図1は、FA経路の阻害剤およびアゴニストを同定するためのスクリーニングの流れの例示を概説する。
【図2】図2は、蛍光顕微鏡を用いたFA経路アゴニストおよびアンタゴニストを同定するためのハイスループット計画を概説する。
【図3】図3は、DNA損傷修復のFA経路において同定されるタンパク質構成成分を示す概略図である。
【図4】図4は、eGFP-FANC D2融合構築物の概略図、および電離放射線(IR)、HUまたはマイトマイシンC(MMC)に曝露した時の、トランスフェクションしたPD20F、GM6914およびHeLa細胞のユビキチン化を示す。
【図5】図5は、eGFP-FANC D2をトランスフェクションしたPD20およびGM6914細胞から放出される蛍光シグナルを示す蛍光顕微鏡写真である。さらにFANCAをトランスフェクションしたGM6914は、電離放射線に曝露した際に、点状のFANC D2含有フォーカスを示す。
【図6】図6は、蛍光顕微鏡によるFA阻害剤のスクリーニングのための方法を概説する。
【図7】図7は、eGFP-FANC D2含有細胞をキナーゼ阻害剤H-9に曝露した時の、IRに媒介されるFANC D2含有フォーカスの形成の阻害を示す蛍光顕微鏡写真である。
【図8】図8は、IR誘導性のFANC D2のモノユビキチン化の阻害(上の2つのパネル)、ATRキナーゼのリン酸化(中央パネル)、Chk1リン酸化(4番目のパネル)およびChk1ポリペプチドレベル(下段パネル)におけるH-9の効果を示すイムノブロット解析を示す。グラフは、H-9により増強された2008細胞のシスプラチンに対する感受性を示す。2008細胞が本質的にシスプラチンに対して感受性であるのは、FANCFを欠損するためである(白抜きの四角)。このシスプラチンに対する感受性は、FANCFのトランスフェクションにより低下する(2008 + F、白抜きの丸)。2008 + F細胞をH-9で処理することは、シスプラチンに対する感受性(黒塗りの丸)を回復させるが、一方、トランスフェクションしない細胞においてはシスプラチンに対する感受性に影響しない(黒塗りの四角)。
【図9】図9は、クルクミン処理による、シスプラチン依存性FANC D2モノユビキチン化の阻害を示す。グラフ(9B)は、FANCF修復2008細胞のシスプラチンに対する増感を示し、元の2008細胞の化学増感における増感効果はクルクミン処理によって減少することを示す。
【図10】図10は、FANCD2フォーカスにおけるクルクミンの効果およびシスプラチンに対する感受性を示す。(a)クルクミンは、ヒト腫瘍細胞をシスプラチンに対して増感させる。この実験において、本発明者らは2008細胞(FANCFタンパク質を欠損するため、FA経路に欠陥を有する卵巣腫瘍株)およびFANCF cDNAにより修復した2008細胞を比較した。細胞は、指示通り、24時間クルクミン(20μM)と共にまたはクルクミンなしで前処理し、次に細胞を用量を増やしながらシスプラチンに曝露した。重要なことは、修復した2008細胞が、クルクミンでの前処理によって、シスプラチンに対して増感することである。(b)クローン7細胞のクルクミンによる前処理は、FANCD2フォーカスの集合を抑制する。
【図11】図11は、FANC D2のIR誘導性のモノユビキチン化の阻害に対するアルスターパウロンの効果を示すイムノブロット解析を示す。アルスターパウロンはCdk1阻害剤であり、T691におけるIR誘導性のD2リン酸化を阻害せず、むしろ促進する。アルスターパウロンは、卵巣癌細胞株においてFANC D2のIR誘導性のモノユビキチン化およびCdk1の(セリン345における)リン酸化を阻害する。
【図12】図12は、アルスターパウロンにより処理した細胞における、IR媒介FANC D2およびBRCA1含有フォーカスの阻害を示す顕微鏡写真である。
【図13】図13は、細胞をスペルミンNONOateで処理することが、IR非存在下において、FANC D2のリン酸化およびモノユビキチン化ならびにChk1のリン酸化を誘導することを示す。グラフは、FANC Fをトランスフェクションした場合に、2008細胞(2008+F)のスペルミンNONOateに対する感受性が、ベクターをトランスフェクションした2008細胞(2008+vec)と比較した場合に、わずかに減少することを示す。
【図14】図14は、細胞をスペルミンNONOateで処理することが、IR非存在下において、FANC D2のリン酸化およびモノユビキチン化ならびにChk1のリン酸化を誘導することを示す。
【図15】図15は、スペルミンNONOateが、IR非存在下および存在下において、ヒストンH2AXのリン酸化を誘導することを示す顕微鏡写真である。
【図16】図16は、ゲルダナマイシン(Hsp90阻害剤)がHeLa細胞においてIR誘導性のD2モノユビキチン化を阻害することを示すイムノブロット解析を示す。ゲルダナマイシンはまた、Chk1発現の減少を引き起こす。グラフは、FANC Fによる2008細胞のトランスフェクションが、ゲルダナマイシンに対する細胞の感受性を変化させないことを示す。
【図17】図17は、ゲルダナマイシンにより処理した細胞における、IR媒介FANC D2およびBRCA1含有フォーカスの阻害を示す顕微鏡写真である。
【図18】図18は、PKC、Chk1阻害剤であるGo6976の、HeLa細胞におけるFANC D2のIR誘導性モノユビキチン化に対する効果を示す。Go6976は、HeLa細胞においてChk1のリン酸化を促進する。しかし、FANC Fによる2008細胞のトランスフェクションは、Go6976に対する感受性に影響しない。
【図19】図19は、Go6976により処理した細胞における、IR媒介FANC D2含有フォーカスの形成阻害を示す顕微鏡写真である。
【図20】図20は、PDGFRキナーゼ阻害剤であるAG370の、HeLa細胞におけるFANC D2のIR誘導性モノユビキチン化の阻害に対する効果を示すイムノブロットパネルである。AG370のChk1に対する効果は明らかではない。
【図21】図21は、AG370により処理した細胞における、IR媒介FANC D2およびBRCA1含有フォーカスの阻害を示す顕微鏡写真である。
【図22】図22は、FA経路の不活性化が、BCNUを含むDNA架橋剤に対する感受性の増加をもたらすことを示す。(a)同系のPD20(丸)およびレトロウイルスによってFANCD2を修復したPD20(四角)は、BCNUに対して異なる感受性を示した。生存率をY軸にプロットした。同様のデータが、2008(FANCF欠損細胞株)およびFANFで補完した2008を用いて得られた。(b)FA経路のモデル。(c)BCNUは、正常なFA経路(レーン4)である場合のみ、FANCD2のモノユビキチン化を誘導した。2008およびレトロウイルスによってFANCFを補完した2008は、BCNUにより処理しないかまたは処理した。全細胞溶解液は、SDS-PAGEにより分画され、そしてFANCD2抗血清でイムノブロットした。同様のデータは、PD20およびFANCD2により修復したPD20を用いて得られた。(d)HT15 GBM細胞株は、BCNU処理した場合に、FANCD2モノユビキチン化を受けなかった。試験した他のGBM株(LN308、LN428、A172、T98Gは上記に示す;CRL1620、CRL2020、U87、U343(示さない))は、BCNUで処理した場合に、適切なFANCD2モノユビキチン化を受けた。(e)HT15細胞株において、FANCD2モノユビキチン化を受けないことは、BCNUに対する感受性の増加と相関した。生存率を、Y軸にプロットした。

【特許請求の範囲】
【請求項1】
腫瘍性疾患を有する被験体が遺伝毒性の抗腫瘍剤に応答するかどうかを予測する方法であって、被験体由来の試料中のFANC D2含有フォーカスの大きさまたは数を決定することを含み、ここで、試料中の前記フォーカスの数または大きさが、対照被験体由来の試料中の前記フォーカスの数または大きさの約70%未満である場合に、被験体は遺伝毒性の抗腫瘍剤に応答すると予測される方法。
【請求項2】
前記フォーカスの数または大きさが、モノユビキチン化FANC D2に特異的な抗体を使用して決定される、請求項1に記載の方法。
【請求項3】
被験体から試料を採取する前に、被験体が遺伝毒性の抗腫瘍剤に曝露される、請求項1に記載の方法。
【請求項4】
前記曝露が、治療上有効な用量以下である、請求項3に記載の方法。
【請求項5】
前記曝露が、治療上有効な用量の約50%以下である、請求項3に記載の方法。
【請求項6】
前記フォーカスの数または大きさを決定する前に、試料が遺伝毒性の抗腫瘍剤に曝露される、請求項1に記載の方法。
【請求項7】
腫瘍性疾患を有する被験体が遺伝毒性の抗腫瘍剤に応答するかどうかを予測する方法であって、被験体由来の試料中のFANC D2ポリペプチドのユビキチン化の程度を決定することを含み、ここで、試料中の前記FANC D2ポリペプチドのユビキチン化の程度が、対照被験体由来の試料と比較した時に約70%未満である場合に、被験体は遺伝毒性の抗腫瘍剤に応答すると予測される方法。
【請求項8】
FANC D2ポリペプチドのユビキチン化の程度が、モノユビキチン化FANC D2に特異的な抗体を使用したイムノブロット解析、ELISAまたはFACSを含む方法によって決定される、請求項7に記載の方法。
【請求項9】
FANC D2-LのFANC D2-Sに対する割合を決定する、請求項8に記載の方法。
【請求項10】
被験体から試料を採取する前に、被験体が遺伝毒性の抗腫瘍剤に曝露される、請求項7に記載の方法。
【請求項11】
前記曝露が、治療上有効な用量以下である、請求項10に記載の方法。
【請求項12】
前記曝露が、治療上有効な用量の約50%以下である、請求項10に記載の方法。
【請求項13】
ユビキチン化の程度を決定する前に、試料が遺伝毒性の抗腫瘍剤に曝露される、請求項7に記載の方法。
【請求項14】
遺伝毒性の抗腫瘍剤が、1,3-ビス(2-クロロエチル)-1-ニトロソウレア、ブスルファン、カルボプラチン、カルムスチン、クロラムブシル、シスプラチン、シクロホスファミド、ダカルバジン、ダウノルビシン、ドキソルビシン、エピルビシン、エトポシド、イダルビシン、イホスファミド、イリノテカン、ロムスチン、メクロレタミン、メルファラン、マイトマイシンC、ミトキサントロン、オキサリプラチン、テモゾロマイド、トポテカンおよび電離放射線からなる群より選択される、前記のいずれか1項の請求項に記載の方法。
【請求項15】
ファンコニ貧血DNA修復経路の阻害剤を同定する方法であって、
(a)細胞を試験化合物と接触させること;
(b)ステップ(a)の前に、後にまたは同時に、細胞を遺伝毒性の抗腫瘍化合物と接触させること;
(c)細胞内のFANC D2含有フォーカスを定量すること;ここで、前記フォーカスの量が対照細胞においてより少ない場合に、試験化合物はファンコニ貧血DNA修復経路の阻害剤として同定され、ここで、対照細胞は前記の遺伝毒性の抗腫瘍剤と接触したが、前記試験化合物とは接触しなかったものである;
(d)ステップ(c)で阻害剤として同定された試験化合物について、前記細胞内のFANC D2ポリペプチドのモノユビキチン化の程度を調べること;ここで、FANC D2ポリペプチドのモノユビキチン化の程度が前記対照細胞においてより低い場合に、試験化合物はファンコニ貧血DNA修復経路の阻害剤としてさらに同定される;
(e)ステップ(d)で阻害剤としてさらに同定された試験化合物について、機能性ファンコニ貧血経路を有する試験細胞を、前記の試験化合物および前記の遺伝毒性の抗腫瘍剤と接触させること;
(f)遺伝毒性の抗腫瘍剤に対する試験細胞の感受性を測定すること;および
(g)試験細胞の薬剤に対する感受性を、第二の対照細胞のそれと比較すること;ここで、第二の対照細胞は試験細胞と同系であるが、ファンコニ貧血経路を欠損しており;ここで、試験細胞の感受性が第二の対照細胞の感受性と同程度である場合に、試験化合物がファンコニ貧血DNA修復経路の阻害剤としてさらに同定されること
を含む方法。
【請求項16】
ステップ(c)において、FANC D2含有フォーカスの数を決定する、請求項15に記載の方法。
【請求項17】
ステップ(c)において、FANC D2含有フォーカスの大きさを決定する、請求項15に記載の方法。
【請求項18】
ステップ(c)において、モノユビキチン化FNAC D2に特異的な抗体を使用して、FANC D2含有フォーカスを決定する、請求項15に記載の方法。
【請求項19】
ステップ(c)がハイスループット形式で実施される、請求項15に記載の方法。
【請求項20】
ステップ(d)におけるFANC D2ポリペプチドのモノユビキチン化の程度が、イムノブロット解析によって決定される、請求項15に記載の方法。
【請求項21】
試験細胞および第二の対照細胞の抗腫瘍剤に対する感受性が、1種以上の濃度の抗腫瘍剤を用いた場合の細胞生存を測定することによって決定される、請求項15に記載の方法。
【請求項22】
試験細胞が、FANC A、FANC B、FANC C、FANC D、FANC E、FANC F、FANC G、FANC LおよびATRプロテインキナーゼからなる群より選択されるタンパク質に障害を有する、請求項15に記載の方法。
【請求項23】
第二の対照細胞が、ファンコニ貧血経路の障害を回復するcDNAを用いて試験細胞をトランスフェクションすることによって調製される、請求項15に記載の方法。
【請求項24】
試験細胞および第二の対照細胞がヒト細胞である、請求項15に記載の方法。
【請求項25】
試験細胞および第二の対照細胞が卵巣細胞である、請求項15に記載の方法。
【請求項26】
試験細胞が、FANC Fを発現しない卵巣細胞であり、第二の対照細胞がFANC FをコードするcDNAによりトランスフェクションされた卵巣細胞である、請求項25に記載の方法。
【請求項27】
遺伝毒性の抗腫瘍剤が、1,3-ビス(2-クロロエチル)-1-ニトロソウレア、ブスルファン、カルボプラチン、カルムスチン、クロラムブシル、シスプラチン、シクロホスファミド、ダカルバジン、ダウノルビシン、ドキソルビシン、エピルビシン、エトポシド、イダルビシン、イホスファミド、イリノテカン、ロムスチン、メクロレタミン、メルファラン、マイトマイシンC、ミトキサントロン、オキサリプラチン、テモゾロマイド、トポテカンおよび電離放射線からなる群より選択される、請求項15に記載の方法。
【請求項28】
非ファンコニ貧血DNA修復経路の阻害剤を同定する方法であって、
(a)機能性ファンコニ貧血経路を有する試験細胞を、試験化合物および遺伝毒性の抗腫瘍剤に接触させること;
(b)試験細胞の遺伝毒性の抗腫瘍剤に対する感受性を測定すること;および
(c)試験細胞の薬剤に対する感受性を、対照細胞のそれと比較すること
を含み、
ここで、対照細胞は試験細胞と同系であるが、ファンコニ貧血経路を欠損しており;試験細胞の感受性が対照細胞の感受性より高い場合に、試験化合物が非ファンコニ貧血DNA修復経路の阻害剤として同定される;
前記方法。
【請求項29】
試験細胞および対照細胞の抗腫瘍剤に対する感受性が、1種以上の濃度の抗腫瘍剤を用いた場合の細胞生存を測定することによって決定される、請求項28に記載の方法。
【請求項30】
試験細胞が、FANC A、FANC B、FANC C、FANC D、FANC E、FANC F、FANC G、FANC LおよびATRプロテインキナーゼからなる群より選択されるタンパク質に障害を有する、請求項28に記載の方法。
【請求項31】
対照細胞が、ファンコニ貧血経路の障害を回復するcDNAを用いて試験細胞をトランスフェクションすることによって調製される、請求項28に記載の方法。
【請求項32】
試験化合物が請求項15に記載の方法を用いてファンコニ貧血経路を阻害しない、請求項28に記載の方法。
【請求項33】
試験細胞および対照細胞がヒト細胞である、請求項28に記載の方法。
【請求項34】
試験細胞および対照細胞が卵巣細胞である、請求項28に記載の方法。
【請求項35】
試験細胞がFANC Fを発現しない卵巣細胞であり、対照細胞がFANC FをコードするcDNAによりトランスフェクションされた卵巣細胞である、請求項34に記載の方法。
【請求項36】
腫瘍性疾患を治療する方法であって、治療が必要な被験体に:
(a)ファンコニ貧血経路の阻害剤;および
(b)遺伝毒性の抗腫瘍剤
の有効量の組み合わせを投与することを含む方法。
【請求項37】
遺伝毒性の抗腫瘍剤が、1,3-ビス(2-クロロエチル)-1-ニトロソウレア、ブスルファン、カルボプラチン、カルムスチン、クロラムブシル、シスプラチン、シクロホスファミド、ダカルバジン、ダウノルビシン、ドキソルビシン、エピルビシン、エトポシド、イダルビシン、イホスファミド、イリノテカン、ロムスチン、メクロレタミン、メルファラン、マイトマイシンC、ミトキサントロン、オキサリプラチン、テモゾロマイド、トポテカンおよび電離放射線からなる群より選択される、請求項36に記載の方法。
【請求項38】
ファンコニ貧血経路の阻害剤が、アルスターパウロン、(+-)13-HODE、ニフェジピン、ペニトレムA、ゲルダナマイシン、Go6976、ロイコトリエンB3、トリコスタチン-A、AG-370、マイトマイシンC、アマニチン(αアマニチン)、HNMPA-(AM)3、ヨウ化プロピジウム、DRB、オクラトキシン、Ca-074-Me、K252c、ワートマニン、アクチノマイシンD、AG213、BAPTA-AM、クルクミン、ピューロマイシン、ブメタニド、メチルアデニン(3-メチルアデニン)、H9、TPENおよびスペルミンNONOateからなる群より選択される、請求項36に記載の方法。
【請求項39】
ファンコニ貧血経路の阻害剤が、アルスターパウロン、クルクミンおよびH9からなる群より選択される、請求項36に記載の方法。
【請求項40】
ファンコニ貧血経路の阻害剤がクルクミンであり、遺伝毒性の抗腫瘍剤がカルボプラチンである、請求項36に記載の方法。
【請求項41】
前記組み合わせが、非経口的、経口的または直接的に腫瘍組織に投与される、請求項36に記載の方法。
【請求項42】
腫瘍性疾患を治療する方法であって、治療が必要な被験体に:
(a)ファンコニ貧血経路の阻害剤;および
(b)非ファンコニ貧血DNA損傷修復経路の阻害剤、
の有効量の組み合わせを投与することを含む方法。
【請求項43】
ファンコニ貧血経路の阻害剤が、アルスターパウロン、(+-)13-HODE、ニフェジピン、ペニトレムA、ゲルダナマイシン、Go6976、ロイコトリエンB3、トリコスタチン-A、AG-370、マイトマイシンC、アマニチン(αアマニチン)、HNMPA-(AM)3、ヨウ化プロピジウム、DRB、オクラトキシン、Ca-074-Me、K252c、ワートマニン、アクチノマイシンD、AG213、BAPTA-AM、クルクミン、ピューロマイシン、ブメタニド、メチルアデニン(3-メチルアデニン)、H9、TPENおよびスペルミンNONOateからなる群より選択される、請求項42に記載の方法。
【請求項44】
ファンコニ貧血経路の阻害剤が、アルスターパウロン、クルクミンおよびH9からなる群より選択される、請求項42に記載の方法。
【請求項45】
非ファンコニ貧血DNA損傷修復経路の阻害剤が、PARP阻害剤、DNA-PK阻害剤、mTOR阻害剤、ERCC1阻害剤、ERCC3阻害剤、ERCC6阻害剤、ATM阻害剤、XRCC4阻害剤、Ku80阻害剤、Ku70阻害剤、XPA阻害剤、CHK1阻害剤およびCHK2阻害剤からなる群より選択される、請求項42に記載の方法。
【請求項46】
前記組み合わせが、非経口的、経口的または直接的に腫瘍組織に投与される、請求項42に記載の方法。
【請求項47】
腫瘍性疾患を治療する方法であって、治療が必要な被験体に:
(a)ファンコニ貧血経路の阻害剤;
(b)非ファンコニ貧血DNA損傷修復経路の阻害剤;および
(c)遺伝毒性の抗腫瘍剤、
の有効量の組み合わせを投与することを含む方法。
【請求項48】
ファンコニ貧血経路の阻害剤が、アルスターパウロン、(+-)13-HODE、ニフェジピン、ペニトレムA、ゲルダナマイシン、Go6976、ロイコトリエンB3、トリコスタチン-A、AG-370、マイトマイシンC、アマニチン(αアマニチン)、HNMPA-(AM)3、ヨウ化プロピジウム、DRB、オクラトキシン、Ca-074-Me、K252c、ワートマニン、アクチノマイシンD、AG213、BAPTA-AM、クルクミン、ピューロマイシン、ブメタニド、メチルアデニン(3-メチルアデニン)、H9、TPENおよびスペルミンNONOateからなる群より選択される、請求項47に記載の方法。
【請求項49】
ファンコニ貧血経路の阻害剤が、アルスターパウロン、クルクミンおよびH9からなる群より選択される、請求項47に記載の方法。
【請求項50】
非ファンコニ貧血DNA損傷修復経路の阻害剤が、PARP阻害剤、DNA-PK阻害剤、mTOR阻害剤、ERCC1阻害剤、ERCC3阻害剤、ERCC6阻害剤、ATM阻害剤、XRCC4阻害剤、Ku80阻害剤、Ku70阻害剤、XPA阻害剤、CHK1阻害剤およびCHK2阻害剤からなる群より選択される、請求項47に記載の方法。
【請求項51】
遺伝毒性の抗腫瘍剤が、1,3-ビス(2-クロロエチル)-1-ニトロソウレア、ブスルファン、カルボプラチン、カルムスチン、クロラムブシル、シスプラチン、シクロホスファミド、ダカルバジン、ダウノルビシン、ドキソルビシン、エピルビシン、エトポシド、イダルビシン、イホスファミド、イリノテカン、ロムスチン、メクロレタミン、メルファラン、マイトマイシンC、ミトキサントロン、オキサリプラチン、テモゾロマイド、トポテカンおよび電離放射線からなる群より選択される、請求項47に記載の方法。
【請求項52】
前記組み合わせが、非経口的、経口的または直接的に腫瘍組織に投与される、請求項47に記載の方法。
【請求項53】
遺伝毒性の抗腫瘍剤による治療に対して患者を増感させる方法であって、本方法が、遺伝毒性の抗腫瘍剤を受容するが前記薬剤に耐性である被験体に、ファンコニ貧血経路の阻害剤を投与することを含む方法。
【請求項54】
ファンコニ貧血経路の阻害剤が、アルスターパウロン、(+-)13-HODE、ニフェジピン、ペニトレムA、ゲルダナマイシン、Go6976、ロイコトリエンB3、トリコスタチン-A、AG-370、マイトマイシンC、アマニチン(αアマニチン)、HNMPA-(AM)3、ヨウ化プロピジウム、DRB、オクラトキシン、Ca-074-Me、K252c、ワートマニン、アクチノマイシンD、AG213、BAPTA-AM、クルクミン、ピューロマイシン、ブメタニド、メチルアデニン(3-メチルアデニン)、H9、TPENおよびスペルミンNONOateからなる群より選択される、請求項53に記載の方法。
【請求項55】
ファンコニ貧血経路の阻害剤が、アルスターパウロン、クルクミンおよびH9からなる群より選択される、請求項53に記載の方法。
【請求項56】
遺伝毒性の抗腫瘍剤が、1,3-ビス(2-クロロエチル)-1-ニトロソウレア、ブスルファン、カルボプラチン、カルムスチン、クロラムブシル、シスプラチン、シクロホスファミド、ダカルバジン、ダウノルビシン、ドキソルビシン、エピルビシン、エトポシド、イダルビシン、イホスファミド、イリノテカン、ロムスチン、メクロレタミン、メルファラン、マイトマイシンC、ミトキサントロン、オキサリプラチン、テモゾロマイド、トポテカンおよび電離放射線からなる群より選択される、請求項53に記載の方法。
【請求項57】
遺伝毒性の抗腫瘍剤が、ファンコニ貧血経路の阻害剤と同時に投与される、請求項53に記載の方法。
【請求項58】
遺伝毒性の抗腫瘍剤による治療に対して患者を増感させる方法であって、本方法が、
(a)遺伝毒性の抗腫瘍剤を受容するが前記薬剤に耐性である被験体に、ファンコニ貧血経路の阻害剤を投与すること;および
(b)非ファンコニ貧血DNA修復経路の阻害剤を被験体に投与すること
を含む方法。
【請求項59】
ファンコニ貧血経路の阻害剤が、アルスターパウロン、(+-)13-HODE、ニフェジピン、ペニトレムA、ゲルダナマイシン、Go6976、ロイコトリエンB3、トリコスタチン-A、AG-370、マイトマイシンC、アマニチン(αアマニチン)、HNMPA-(AM)3、ヨウ化プロピジウム、DRB、オクラトキシン、Ca-074-Me、K252c、ワートマニン、アクチノマイシンD、AG213、BAPTA-AM、クルクミン、ピューロマイシン、ブメタニド、メチルアデニン(3-メチルアデニン)、H9、TPENおよびスペルミンNONOateからなる群より選択される、請求項58に記載の方法。
【請求項60】
ファンコニ貧血経路の阻害剤が、アルスターパウロン、クルクミンおよびH9からなる群より選択される、請求項58に記載の方法。
【請求項61】
非ファンコニ貧血DNA損傷修復経路の阻害剤が、PARP阻害剤、DNA-PK阻害剤、mTOR阻害剤、ERCC1阻害剤、ERCC3阻害剤、ERCC6阻害剤、ATM阻害剤、XRCC4阻害剤、Ku80阻害剤、Ku70阻害剤、XPA阻害剤、CHK1阻害剤およびCHK2阻害剤からなる群より選択される、請求項58に記載の方法。
【請求項62】
遺伝毒性の抗腫瘍剤が、1,3-ビス(2-クロロエチル)-1-ニトロソウレア、ブスルファン、カルボプラチン、カルムスチン、クロラムブシル、シスプラチン、シクロホスファミド、ダカルバジン、ダウノルビシン、ドキソルビシン、エピルビシン、エトポシド、イダルビシン、イホスファミド、イリノテカン、ロムスチン、メクロレタミン、メルファラン、マイトマイシンC、ミトキサントロン、オキサリプラチン、テモゾロマイド、トポテカンおよび電離放射線からなる群より選択される、請求項58に記載の方法。
【請求項63】
遺伝毒性の抗腫瘍剤が、ファンコニ貧血経路の阻害剤およびDNA修復経路の阻害剤と同時に投与される、請求項58に記載の方法。
【請求項64】
腫瘍性疾患を有する被験体が遺伝毒性の抗腫瘍剤に対して応答するかどうかを決定するためのキットであって、FANC D2-Lに特異的な抗体、それらのパッケージング材料、および請求項1に記載の方法を実施するための説明書を含むキット。
【請求項65】
非ファンコニ貧血経路の阻害剤を同定するためのキットであって、請求項28に記載の試験細胞および対照細胞、ならびにそれらのためのパッケージング材料を含むキット。
【請求項66】
前記試験細胞および前記対照細胞が卵巣細胞である、請求項65に記載のキット。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate


【公表番号】特表2008−545965(P2008−545965A)
【公表日】平成20年12月18日(2008.12.18)
【国際特許分類】
【出願番号】特願2008−513749(P2008−513749)
【出願日】平成18年5月24日(2006.5.24)
【国際出願番号】PCT/US2006/020390
【国際公開番号】WO2006/127978
【国際公開日】平成18年11月30日(2006.11.30)
【出願人】(591183991)ダナ−ファーバー キャンサー インスティテュート,インコーポレイテッド (17)
【氏名又は名称原語表記】DANA−FARBER CANCER INSTITUTE, INCORPORATED
【Fターム(参考)】