説明

相関アンテナ素子および無相関アンテナ素子の組み合わせを使用するブラインド信号分離

M個の信号源によって提供される原信号を分離する通信装置は、M個の原信号の少なくともN個の異なる総和を受信するN個のアンテナ素子を備えるアンテナアレイを含む。ここで、NおよびMは1より大きい。N個のアンテナ素子は、M個の原信号の少なくともN個の異なる総和の1つを受信する少なくとも1つのアンテナ素子と、M個の原信号の少なくともN個の異なる総和の2つを受信する少なくとも2つの相関アンテナ素子と、を含む。少なくとも2つの相関アンテナ素子は、少なくとも1つのアンテナ素子と相関しない。受信機は、アンテナアレイに接続される。ブラインド信号分離プロセッサは、M個の原信号の少なくともN個の異なる総和を備える混合行列を形成し、かつその混合行列から所望の原信号を分離する受信機に接続される。その混合行列は、少なくともNに等しいまでの階数をもつ。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、信号処理の分野に関し、より詳細には、ブラインド信号分離(BSS:blind signal separation)技法を使用して原信号(source signal)の混合から所望の原信号を分離することに関する。
【背景技術】
【0002】
ブラインド信号分離(BSS)は、合成信号から原信号を再生することを含み、合成信号は、原信号の混合を含む。分離はしばしば、信号、信号源、および伝播チャネルが信号に与える影響についての限られた情報を用いて実行されるので、「ブラインド」である。
【0003】
一例は、よく知られた「カクテルパーティ」効果であり、パーティ会場にいる人は、会場内のすべての声の組合せの中から単一の声だけを聴き分けることができる。ブラインド信号源分離(blind source separation)は、特に、多くの周波数帯域が同じスペクトル内にしばしば共存し、数多くの無線周波のエミッタ(放射源)で入り乱れるセルラおよびパーソナル無線通信装置に適用できる。同一チャネルエミッタ(co-channel emitter)の問題は、Bluetooth(登録商標)およびその他のパーソナルエリアネットワークなどの低出力で認可不要な無線技術の発展に伴い、今後数年はひたすら悪化することが予想される。
【0004】
一般に使用されるブラインド信号分離技法は、主成分分析(PCA:principal component analysis)、独立成分分析(ICA:independent component analysis)、および特異値分解(SVD:singular value decomposition)の3つである。PCAは、原信号の1次および2次の積率(moment statistics)を含み、原信号の信号対雑音比が高い場合に使用される。さもなければ、PCA処理の後に原信号の3次および4次の積率が用いられる、ICAが使用される。SVDを使用することもでき、原信号をそれらの固有値に基づいて原信号の混合から分離する。
【0005】
適用されるブラインド信号分離技法に関係なく、様々な信号源からの原信号の異なる混合を受信するために、複数のセンサが使用される。各センサは、原信号の固有の和である原信号の混合を、出力する。一般に、チャネル係数(channel coefficient)および元の原信号はともに、受信機に知られていない。信号の固有の和は、混合行列(mixing matrix)を生成する(populate)ために使用される。その後、原信号の混合から所望の原信号を分離するため、適切なブラインド信号分離技法が、混合行列に適用される。
【0006】
例えば、特許文献1は、ICAを使用する、原信号の混合からの独立な原信号の分離を開示している。複数のセンサが、原信号の混合を受信し、プロセッサが、経時的に原信号の混合のサンプルを採取し、データセットを生成するために、各サンプルをデータベクトルとして保存する。各センサは、原信号の固有の和である原信号の混合を出力する。ICAモジュールは、原信号の混合内のその他の信号から独立な原信号を分離するために、データベクトルの独立成分分析を実行する。
【0007】
センサは、互いに空間的に引き離され、プロセッサは、データセットを生成するために、それぞれのセンサごとにただ1つのデータベクトルを生成する。特許文献1はまた、データセットを生成するために、センサの数Nが信号源の数M以上であること、すなわち、N≧Mであることも開示している。そのような実装に伴う問題は、信号源の数Mが増加した場合、センサの数Nも増加することである。小型ポータブル通信装置は、センサの数Nが大きいと、センサ用に利用できる十分な容積を持っていない。ユーザにとって、センサを通信装置の外側に取り付けることは問題である。
【0008】
特許文献2は、ブラインド信号分離を使用して信号を分離するための別の方法を開示している。開示されたブラインド信号分離技法は、干渉エミッタとガウス雑音の両方に起因する平均2乗誤差を最小化するハイブリッド行列−ペンシルアダプティブアレイ重み(hybrid matrix-pencil adaptive array weight)を用いて、混合行列を形成する。ハイブリッド重みは、信号対干渉プラス雑音比(signal to interference plus noise ratio)を最大化する。特許文献1と同様に、センサはまた、互いに空間的に引き離され、混合行列を生成するために、センサの数Nは、信号源の数M以上である。さらに、各センサは、単一の入力を混合行列に提供し、ポータブル通信装置のより大きな容積をもたらす。
【0009】
【特許文献1】米国特許第6,799,170号明細書
【特許文献2】米国特許第6,931,362号明細書
【特許文献3】米国特許出願公開第11/065,752号明細書
【特許文献4】米国特許第6,473,036号明細書
【発明の開示】
【発明が解決しようとする課題】
【0010】
上記の背景に鑑み、本発明の目的は、所望の原信号が原信号の混合から分離され得るように、ブラインド信号分離技法によって使用される原信号の混合を受信するコンパクトなアンテナアレイを備える通信装置を提供することである。
【課題を解決するための手段】
【0011】
本発明による上記およびその他の目的、特徴、および利点は、M個の信号源によって提供される原信号を分離する通信装置によって実現される。この通信装置は、M個の原信号の異なる総和を受信するためのアンテナアレイを備える。受信機または受信機アセンブリが、アンテナアレイに接続され、ブラインド信号分離プロセッサが、混合行列を形成するために、受信機に接続される。混合行列は、アンテナアレイによって受信されたM個の原信号の異なる総和を含む。その後、ブラインド信号分離プロセッサは、所望の原信号を混合行列から分離する。
【0012】
M個の原信号の異なる総和を混合行列に提供するために、空間的に引き離されたセンサを使用する代わりに、コンパクトなアンテナアレイを、代わりに使用することができる。ポータブル通信装置の場合、アンテナアレイはコンパクトさを保ちながら、2つ以上の入力を混合行列に提供するので、ブラインド信号分離技法を使用することができる。
【0013】
特に、アンテナアレイは、相関アンテナ素子と無相関アンテナ素子との組み合わせである場合がある。例えば、アンテナアレイは、M個の原信号の少なくともN個の総和を受信するN個のアンテナ素子を含む場合がある。ここで、NおよびMは1より大きい。N個のアンテナ素子は、M個の原信号のN個の異なる総和の少なくとも1つを受信する少なくとも1つのアンテナ素子と、M個の原信号のN個の異なる総和の少なくとも2つを受信する少なくとも2つの相関アンテナ素子と、を含む場合がある。少なくとも2つの相関アンテナ素子は、少なくとも1つのアンテナ素子と無相関である場合がある。ブランド信号分離プロセッサは、M個の原信号の少なくともN個の異なる総和を備える混合行列を形成することができる。混合行列は、少なくともNまでに等しい階数をもつことができる。
【0014】
アンテナ素子の数は、原信号の数に等しい場合、すなわちN=M、がある。または、アンテナ素子の数は、原信号の数より大きい場合、すなわちN>M、がある。他の構成としては、混合行列の階数がKに等しい場合に、K<Nである、ブラインド信号分離プロセッサが混合行列からM個の原信号のうちK個の原信号を分離する構成がある。
【0015】
少なくとも2つの相関アンテナ素子は、異なる偏波を有する場合がある。異なる偏波は互いに直交する場合がある。相関しており、かつ異なる偏波を有する少なくとも2つのアンテナ素子は、空間的に相関もしており、かつ3偏波がM個の原信号の3つの異なる総和を受信するためにサポートされるように異なる偏波を有する3つのアンテナ素子を含む場合がある。
【0016】
少なくとも2つの相関アンテナ素子は、フェーズドアレイを形成する少なくとも2つのアクティブアンテナ素子を含む場合がある。または、少なくとも2つの相関アンテナ素子は、スイッチビームアンテナを形成する少なくとも1つのアクティブアンテナ素子と少なくとも1つのパッシブアンテナ素子とを含む場合がある。
【0017】
M個の原信号の異なる総和を受信する場合、パターンとビームとの間に相違が生じることがある。1つの場合では、アンテナアレイは、M個の原信号の少なくともN個の異なる総和を受信するために、少なくともN個のアンテナビームを形成することができる。このとき、各アンテナビームは、最大利得ポイントから3dBの低下点をもち、信号経路の少なくとも1つの方向で信号除去(signal rejection)を可能にする。別の場合では、アンテナアレイは、M個の原信号のN個の異なる総和の少なくとも1つを受信するために、少なくとも1つのアンテナパターンを形成することができる。少なくとも1つのアンテナパターンは、最大利得ポイントから3dBの低下点を実質的にはもたず、信号経路のどの方向でも信号除去をもたらさない。
【0018】
M個の原信号の各総和は線形である。ブラインド信号分離プロセッサは、主成分分析(PCA)、独立成分分析(ICA)、および特異値分解(SVD)の少なくとも1つに基づいて、混合行列から所望の原信号を分離することができる。
【0019】
本発明の他の態様は、M個の信号源によって提供される原信号を分離する上述のような通信装置を動作させる方法を対象にする。その方法は、M個の原信号の少なくともN個の異なる総和を、アンテナアレイにて受信することを含むことができる。N個のアンテナ素子は、M個の原信号のN個の異なる総和の少なくとも1つを受信する少なくとも1つのアンテナ素子と、M個の原信号のN個の異なる総和の少なくとも2つを受信する少なくとも2つの相関アンテナ素子と、を含むことができる。少なくとも2つの相関アンテナ素子は、少なくとも1つのアンテナ素子と無相関である場合がある。この処理は、M個の原信号の少なくともN個の異なる総和を含む混合行列を形成すること、および混合行列から所望の原信号を分離することを含むことができる。混合行列は、少なくともNまでに等しい階数をもつ場合がある。
【発明を実施するための最良の形態】
【0020】
これ以降、本発明の好ましい実施形態が示された添付の図面を参照しながら、本発明の好ましい実施形態がより完全に説明される。しかし、多くの異なる形態で本発明を実施することができ、本明細書で説明される実施形態に限定されるものと解釈されるべきではない。むしろ、これらの実施形態は、本開示が徹底的かつ完全なものとなり、本発明の範囲を当業者に十分に伝えるように提供される。全体にわたって、同じ番号は、同じ要素を参照し、プライム付き表記は、代替的な実施形態における類似要素を指示するために使用される。
【0021】
通信ネットワークには、特定の通信装置に向けられた原信号が存在し、同一周波数帯域内で動作する他の通信装置に向けられた原信号も存在する。通信用には使用されないが、通信装置によって同様に受信される信号を生成する雑音源も、存在する。
【0022】
対象とする原信号の復号を容易にするため、ブラインド信号分離が、通信装置によって受信された信号を分離するために使用される。上で述べられたように、「ブラインド」という用語は、理想的な場合、信号の特性についての情報(knowledge)、または信号と通信チャネルとの間の相互作用によって生じた変形についての情報なしに、信号が分離され得るという事実を指している。実際の実装では、利用可能な情報はしばしば活用される。この場合、信号分離は、セミブラインドである。
【0023】
ブラインド信号分離に分類される3つの一般に使用される技法は、主成分分析(PCA)、独立成分分析(ICA)、および特異値分解(SVD)である。信号がいくつかの測定可能な特性について独立である限り、そしてそれらの信号の和が互いに線形独立であるならば、独立または所望の原信号を原信号の混合から分離するために、これらのブラインド信号分離技法の1つまたは複数を使用することができる。測定可能な特性はしばしば、信号の1次、2次、3次、または4次の積率のいくつかの組合せである。
【0024】
PCAは、信号を白色化し、1次および2次の積率を使用し、相関特性に基づいてデータセットを回転させる。原信号の信号対雑音比が高い場合、信号分離プロセスは、PCAまでで終りにすることができる。
【0025】
原信号の信号対雑音比が低い場合、原信号の3次および4次の積率を含む統計的属性に基づいて、ICAが原信号を分離する。原信号はガウシアンであるので、それらの3次および4次の積率は、1次および2次の積率に従属する。ICAおよびPCAの代替として、SVDが、原信号をそれらの固有値に基づいて原信号の混合から分離する。
【0026】
典型的なシナリオが、図1に示されており、複数の信号源20が、原信号22を送信する。原信号22は、個々の信号源20に関連付けられた生成アンテナビーム24に基づいた方向に送信される。複数の信号源20は、第1の信号源20(1)から第Mの信号源20(M)を含む。同様に、それぞれの原信号は、22(1)〜22(M)で参照され、対応するアンテナビームは、24(1)〜24(M)で参照される。無指向性アンテナパターンまたは指向性アンテナパターンの形でのより単純な実装が、通信ネットワークではしばしば利用される。
【0027】
通信装置30用のアンテナアレイ32は、信号源20から原信号22の線形組合せ(混合)を受信する。アンテナアレイ32は、複数のアンテナ素子34を備え、各アンテナ素子は、信号源20からの原信号22の少なくとも1つの線形組合せ(混合)を提供する。アンテナ素子34は、第1のアンテナ素子34(1)から第Nのアンテナ素子34(N)を含む。
【0028】
受信原信号22(1)〜22(M)は、最初に混合行列36に形成される。通信装置30は、混合行列内の原信号を分離する分離行列(separation matrix)38を決定するために、ブラインド信号分離技法を使用する。分離信号は、参照符号39によって表される。
【0029】
通信装置30は、受信原信号の集約または合成をそれらの特性についての情報なしにサンプリングすることによって、アンテナアレイ32によって受信された原信号の混合を一緒に抽出する。各アンテナ素子34の出力は、チャネルの、すなわち信号源20の出力とアンテナ素子34の出力の間の伝播経路のインパルス応答を用いて畳み込まれた後の原信号22の総和に、加法的ガウス雑音を加えたものとしてモデル化される。
【0030】
図2を参照しながら、M個の信号源20(1)〜20(M)によって提供される原信号を分離するための通信装置30がより詳細に説明される。アンテナアレイ32は、M個の原信号の少なくともN個までの異なる総和を受信するN個のアンテナ素子34(1)〜34(N)を含み、ここでNおよびMは1よりも大きい。アンテナアレイ32は、どれか特定の構成に限定されない。アンテナアレイ32は、1つまたは複数のアンテナ素子34を含むことができる。アンテナ素子34は、アンテナアレイ32が、以下より詳細に説明されるように、例えば、フェーズドアレイまたはスイッチビームアンテナを形成するように構成されることができる。
【0031】
送受信機40は、アンテナアレイ32にその下流で接続され、M個の原信号22の少なくともN個までの異なる総和を受け取る。プロセッサ42は、送受信機40の下流に存在する。プロセッサ42は、送受信機40から切り離して図示されているが、送受信機内に含めることもできる。送受信機40によって受信されるM個の原信号22の異なる総和は、混合行列36を生成するために使用される。混合行列36は、その後、プロセッサ42内の1つまたは複数のブラインド信号分離処理モジュール44、46、48によって処理される。
【0032】
ブラインド信号分離処理モジュールは、PCAモジュール44と、ICAモジュール46と、SVDモジュール48とを含む。これらのモジュール44、46、48は、ブラインド信号分離プロセッサ49の部分として構成されることができる。PCAモジュール44は、受信原信号の異なる総和の1次および2次の積率に基づいて動作し、一方、ICAモジュール46は、同じ信号の3次および4次の積率に基づいて動作する。SVDモジュール48は、受信原信号の異なる総和の固有値に基づいて、信号分離を実行する。
【0033】
混合行列36内の原信号を分離するため、PCAモジュール44によって最初に実行される相関処理は、原信号の異なる総和についての初期分離行列38(1)を決定し、その後、ICAモジュール46が、強化分離行列38(2)を決定する。信号がSVDモジュール48によって分離される場合、混合行列36内の受信原信号の異なる総和を分離するため、分離行列38(3)も決定される。
【0034】
各個々の分離行列38(1)〜38(3)からの分離信号は、参照番号39によって表される。その後、分離信号39は、どの信号が対象信号であり、どの信号が干渉であるかを決定するため、信号分析モジュール50による信号分析を受ける。アプリケーション依存処理モジュール52は、信号分析モジュール50からの信号出力を処理する。
【0035】
どの信号が対象信号であるかの決定は、復号された最終信号を常に必要としなくてもよい。例えば、アプリケーションは、干渉を識別し、それらを受信原信号の異なる総和から減算し、その後、低減された信号を波形復号器(waveform decoder)に供給することを要求することがある。この場合、対象信号は、最終的には除去されることになる信号である。
【0036】
PCAモジュール44に供給される情報は、信号xjの固有の和である。M個の独立な成分からなるN個の線形混合x1,...,xNが観測されることが仮定される。
【0037】
【数1】

【0038】
一般に、チャネル係数ajkと元の信号skは両方とも、送受信機40に知られていない。行列表記により、上記の等式の組は、x=Asとコンパクトに書き表されることができ、ここで、Aは混合行列である。統計的モデルx=Asは、ICAモデルとしても知られている。従来の技法は、チャネルの逆行列(inverse)を求めることを試みる:s=A-1x。
【0039】
ICAモジュール46は、分離行列Wと、y=W(As)=Wxとを決定する。ベクトルyは、スケーリングが変更された次数が未知のsのサブセットである。必ずしもすべての信号が分離可能ではない場合、より一般的な形式は、y=W(As)+Wn=Wx+Wnであり、ここで、追加のnの項は、識別不能な信号源に起因する残留雑音である。
【0040】
ICAモデルは生成的モデルである。それは、成分skを混合する処理によって観測データがどのように生成されるかを、ICAモデルが説明することを意味する。独立成分は潜在的変数であり、それは、独立成分が直接には観測され得ないことを意味する。また、混合行列Aも未知であると仮定される。観測されるすべては、ランダムベクトルxだけであり、Aおよびsは、xに基づいて推定される。
【0041】
ICAのスタートポイントは、成分skが統計的に独立であることの仮定にある。さらに、独立成分skが多くても1つの成分しかガウス分布に従わないことが仮定される。1つの信号しかガウス分布に従わないという制限は、ガウス信号の3次の積率は0であり、4次の積率はガウス信号の間では区別不能であるという事実による。
【0042】
簡略化のため、未知の混合行列Aは、正方行列(square)であると仮定される。したがって、独立成分の数は、観測される混合の数と等しい。しかし、この仮定を時には緩和することができる。信号skがいくつかの測定可能な特性で統計的に独立である限り、分離行列Wを決定することができる。
【0043】
混合行列Aの階数は、いくつの信号が実際に分離され得るかを決定する。例えば、階数4をもつ混合行列は、4個の原信号が分離され得ることを意味する。理想的には、混合行列Aの階数は、信号源の数Mと少なくとも等しくあるべきである。階数が大きくなるほど、分離され得る信号も多くなる。信号源の数Mが増加するにつれて、必要とされるアンテナ素子の数Nも増加する。「背景技術」セクションで説明された特許文献1および2はともに、アンテナ素子の数Nが信号源の数M以上、すなわちN≧Mであり、それ以外の場合は、信号を分離するためにブラインド信号分離以外の技法が使用されることを開示している。
【0044】
信号の線形独立和を生成する業界標準は、N個の無相関センサ、すなわち、互いに少なくとも波長分だけ離れて配置されたセンサを使用することである。波長は、通信装置30の動作周波数に基づく。N個のセンサは、空間的には無相関であるが、偏波および角度的には相関している。N個の無相関センサは、線形独立信号のN個の和を提供し、各センサは、混合行列Aへの単一の入力を提供する。
【0045】
混合行列A用に原信号の線形独立和を生成する異なる手法のロードマップまたはアウトラインが、図3を参照しながら最初に説明される。短い序文の後、各手法が、以下でより詳細に説明される。
【0046】
ロードマップの第1のセクションは、アンテナ構成を扱う。ブロック100は、無相関センサを表し、各センサは、単一の入力を混合行列Aに提供する。ブロック102は、無相関アンテナアレイを表し、アレイは、混合行列Aを生成するために複数の入力を提供する。ブロック104も、無相関アンテナアレイを表し、アンテナ素子の一部は相関し、アンテナ素子は、混合行列Aを生成するために異なる偏波を有する。ブロック100、102、104によって扱われるセンサとアンテナアレイの異なる組合せは、ブロック106で組み合わされ、ブロック116でさらに混合行列を生成する。
【0047】
ロードマップの第2のセクションは、第1のセクションで提供されたアンテナ構成に対する機能強化を扱う。機能強化は、さらに混合行列Aを生成するために、原信号の追加または置換された総和が集められるように行われる。ブロック108は、原信号の追加の総和を受信するためにアンテナパターンの仰角が変更されるアレイ偏向を含む。ブロック106の組合せのどれか1つを、アレイ偏向ブロック108で使用することができる。
【0048】
ブロック110で、混合行列Aを生成するために使用される原信号の総和のすべてが、相関するように(1次および2次の積率)、および/または統計的に独立する(3次および4次の積率)ように、経路選択が実行される。言い換えると、相関していない、および/または統計的に独立でない総和を置き換えるための、原信号の新しい総和を受信するために、入射信号が選択的に選択される。ブロック110は、ブロック106、108の組合せのどれか1つによって供給されることができる。ブロック108、110は、混合行列ブロック116に直接供給されることができる。
【0049】
ロードマップの第3のセクションは、ブロック116でさらに混合行列Aを生成する信号分割を扱う。例えば、ブロック112は、拡散符号を使用して、異なる総和信号を分割する。総和信号がk個の拡散符号を有する場合、特定の総和信号は、それに関連付けられたk個の総和信号を提供するために、処理されることができる。拡散符号は、ブロック106、108、110の出力と組み合わせて適用されることができる。ブロック114は、さらに混合行列を生成するため、異なる総和信号を同相(I)成分と直交(Q)成分とに分割する。したがって、IおよびQ成分は、消失行列(missing matrix)のための乗数2として振る舞い、ブロック106、108、110、112の出力と組み合わせて適用されることができる。
【0050】
ロードマップの最後のセクションは、ブロック116で形成される混合行列Aである。ロードマップに示されるように、混合行列Aは、上で説明されたブロックのどれか1つに基づいて、原信号の異なる総和を用いて生成されることができる。第1のセクションのアンテナアレイ構成の利点は、混合行列Aを生成するために、コンパクトなアンテナアレイが形成され得ることにある。第2および第3のセクションのアンテナアレイ構成の利点は、原信号の数Mより少ないN個のアンテナ素子が、原信号のM個またはより多くの総和を用いて混合行列を生成するために使用され得ることにある。
【0051】
ロードマップで説明されたアンテナ構成に鑑みて、M個の原信号の少なくともN個の異なる総和を受信するN個の相関アンテナ素子を備えるアンテナアレイが説明され、ここでNおよびMは1より大きい。一実施形態では、アンテナアレイは、図4に示されるようなスイッチビームアンテナ140である。
【0052】
スイッチビームアンテナアレイ140は、指向性アンテナパターンと無指向性アンテナパターンとを含む複数のアンテナパターンを生成する。スイッチビームアンテナアレイ140は、1つのアクティブアンテナ素子142と、1対のパッシブアンテナ素子144とを含む。アクティブアンテナ素子142およびパッシブアンテナ素子144の実際の数は、対象とされる応用例に応じて変化する。スイッチビームアンテナアレイのより詳細な説明のため、特許文献3が参照される。この特許出願は、本発明の譲受人に譲渡され、同出願の内容は、その全体が参照により本明細書に組み込まれる。
【0053】
各パッシブアンテナ素子144は、上側半分144aと下側半分144bとを含む。パッシブアンテナ素子144の上側半分144aは、リアクティブ負荷(reactive load)148を介して接地平面146に接続される。リアクティブ負荷148は、バラクタ(varactor)、伝送線路、またはスイッチを使用することによって、キャパシタンス対インダクタンスが変更可能な、可変リアクタンスである。リアクティブ負荷148を変化させることによって、放射パターンを変化させることができる。2つのパッシブアンテナ素子144が存在するので、4つの異なるアンテナパターンを形成することができる。
【0054】
3つのアンテナパターンを、信号xjの固有の和を受信するために使用することができる。第4のパターンは、その他の3つの線形組合せであり、そのため、混合行列Aへの入力としては使用可能ではない。その結果、3つのアンテナ素子を利用して、信号xjの3つの固有の和が、混合行列Aに入力される。スイッチビームアンテナの利点は、3つの素子142、144を使用することによって、階数3の混合行列がサポートされ得ることにある。
【0055】
別の実施形態では、図5に示されるように、アンテナアレイは、フェーズドアレイ160を形成するように、N個の相関アクティブアンテナ素子を備える。フェーズドアレイ160は、複数のアクティブアンテナ素子162と、アクティブアンテナ素子に結合された複数の重み制御構成要素164とを備える。重み制御構成要素164は、合成ビームを形成するために、受信信号の振幅および/または位相を調整する。
【0056】
スプリッタ/コンバイナ166およびコントローラ168が、重み制御構成要素164に接続される。フェーズドアレイ160のより詳細な説明のため、特許文献4が参照される。この特許は、本発明の譲受人に譲渡され、同特許の内容は、その全体が参照により本明細書に組み込まれる。
【0057】
アクティブアンテナ素子162の数は、同じ階数をもつ混合行列Aをサポートする。信号源の数Mがアクティブアンテナ素子162の数Nに等しい、すなわちM=Nであるとしても、アクティブアンテナ素子162は空間的および偏波的に相関しているので、波長より大きく離して配置される無相関アンテナ素子を使用する従来の手法と比べて、フェーズドアレイ160はコンパクトである。
【0058】
他の実施形態では、ブラインド信号分離プロセッサ49が、M個の原信号のうちK個を混合行列から分離するように、混合行列の階数は、K<Nとして、Kとすることができる。以下でより詳細に説明されるように、NはMより大きくてもよい。
【0059】
スイッチビームアンテナ140とフェーズドアレイ160の両方で、それぞれのアンテナ素子142、144、162の間の距離は、有利な前後比(back to front ratio)を可能にするように設定される。これは、これらのアンテナアレイの従来の使用は、希望しない信号を除去し(すなわち、後方アプローチ)、希望する信号を強める(すなわち、前方アプローチ)ことだからである。
【0060】
しかし、混合行列を作成する目的では、ゴールは、信号の異なる和を生成することである。対象の信号は、本出願では、干渉よりも実際には常に低く、それでもまだ分離されることができる。目的のこの著しい相違のため、アンテナ素子の間の距離は、具体的な分離に必ずしも関係しない。
【0061】
アンテナ素子は、互いにより遠くても、またはより近くてもよく、従来的には「悪い」前後比を用いてパターンを生成し、それでもまだ混合行列用の使用にとって非常に適していることができる。実際、そのようなパターンは、ブラインド信号源分離アプリケーションでは、しばしばより優れている。その理由は、良い前後比が、前方を所望信号、および/または後方を干渉に向け続けるための、信号方向の追跡を必要とすることにある。様々な方向で相違を有するが、依然として著しい利得を有するパターンを使用することによって、そのような信号の追跡は必要とされない。
【0062】
アンテナビームは、最大利得ポイントから3dBの低下点をもつとして定義することができる。したがって、信号経路の少なくとも1つの方向で信号除去を可能にする。同様に、アンテナパターンは、最大利得ポイントから3dBの低下点を実質的にはもたないとして定義することができ、信号経路のどの方向でも信号除去をもたない。
【0063】
多くの応用例では、素子間の特定の距離からのばらつきは、全体的なアンテナアレイのサイズを大幅に減少させることができる。その他の応用例では、追跡問題を軽減しながら、ある程度の追加信号の無相関を獲得するために、素子間の距離を大きくすることが実際には望ましいことがある。
【0064】
別の実施形態では、図6に示されるように、アンテナアレイ180は、M個の原信号の少なくともN個の異なる総和を受信するため、N個のアンテナ素子を備える。N個のアンテナ素子のうち少なくとも2つ182a、182bは、M個の原信号のN個の異なる総和のうち少なくとも2つを受信するため、相関しており、異なる偏波を有し、NおよびMは1より大きい。
【0065】
アレイ180のその他のアンテナ素子184a、184bは、アンテナ素子182a、182bに対して相関していることも、または無相関であることもできる。偏波アンテナ素子184a、184bの別の対が図示されているが、これらの素子は、代わりに同じ偏波を有することもできる。さらに、これらの素子は、互いに無相関であることもできる。
【0066】
アンテナ素子182a、182bの異なる偏波は、互いに直交することができる。別の構成では、アンテナ素子182a、182bは、M個の原信号の3個の異なる総和を受信するための3偏波(tri-polarization)をサポートするように、第3の素子182cを含む。
【0067】
以下の説明は、混合行列Aを生成するための偏波の使用を支援する。3つの異なる偏波をもつアンテナ素子182a、182b、182cは、3つの線形かつ独立な信号和を受信する。図7に示されるようなx、y、z軸の定義および関係が使用される。例えば、以下の関係が存在する。
【0068】
【数2】

【0069】
簡略化した仮定は、信号は直線偏波をもち、信号は線形独立であり、各々が直交軸上にある3つの線形アンテナ素子が存在するというものである。例えば、アンテナ素子182aはx軸上に、アンテナ素子182bはy軸上に、アンテナ素子182cはz軸上にある。
【0070】
3つの線形アンテナ素子182a、182b、182cの各々を直交軸上に位置付けることによって、計算が簡略化される。実際の配備では、アンテナ素子182a、182b、182cは、厳密に直交している必要はなく、共通点で交わる必要もない。この仮定の除去は、一般的な結論を無効にせず、むしろ階数不足が生じる状況を変化させる。
【0071】
以下の定義が適用され、数字の下付き文字は、信号1、2、3との関連を示す。
1,S2,S3:アンテナ素子に入射する信号
θ1,θ2,θ3:信号のXY平面電界角度
φ1,φ2,φ3:信号のZ軸電界角度
x,Xy,Xz:アンテナ素子に入射する信号の和の内積
【0072】
したがって、ベクトル成分は以下のようになる。
x y z
素子「x」: 1 0 0
素子「y」: 0 1 0
素子「z」: 0 0 1
1係数:cos(θ1)sin(φ1) sin(θ1)sin(φ1) cos(φ1)
2係数:cos(θ2)sin(φ2) sin(θ2)sin(φ2) cos(φ2)
3係数:cos(θ3)sin(φ3) sin(θ3)sin(φ3) cos(φ3)
【0073】
各アンテナ素子と信号の内積(X・Y=x12+y12+z12)を取ることで、素子において合算される相対電界成分が決定される。これらの値は、混合行列を生成するために使用される。
【0074】
【数3】

【0075】
ここで
【0076】
【数4】

【0077】
である。
【0078】
階数不足状況がこれから説明される。行列式が0に等しい場合、混合行列は階数不足である。これは以下の場合に生じる。
1)θ1=θ2=θ3
「x」および「y」素子は、3つの信号のすべてから同じ寄与を受けている。
【0079】
【数5】

【0080】
別の階数不足の場合のため、表のエントリの任意の組合せに180°を追加する。これらは、信号がアンテナ素子の十分な組合せによって独立に和を取られていない場合である。
3)すべての個々の和は、1または2につき0に等しくないが、
【0081】
【数6】

【0082】
である。
【0083】
これは、信号間の分離の小さな立体角(solid angle)、信号のほぼ等しい偏波、整列しているがアレイの相反する側から到来する信号、または両方の素子に対する同じエネルギーレベルを生じさせる信号入射のその他のいくつかの非常に可能性の低い偶発自体を含意する。
【0084】
上で説明されたように、ロードマップの第1のセクションは、アンテナ構成を扱う。無相関センサを含む上で説明されたアンテナ構成は、M個の原信号の和信号を混合行列に提供するため、様々な異なる構成において組み合わされることができる。
【0085】
ここで図8を参照すると、M個の信号源によって提供される原信号を分離する通信装置200が説明される。アンテナアレイ202は、M個の原信号の少なくともN個の異なる総和を受信するための、N個のアンテナ素子を備え、NおよびMは1より大きい。
【0086】
N個のアンテナ素子は、M個の原信号のN個の異なる総和のうちの少なくとも1個を受信するための少なくとも1個のアンテナ素子204と、M個の原信号のN個の異なる総和のうちの少なくとも2個を受信する少なくとも2個の相関アンテナ素子206とを含む。2個の相関アンテナ素子206は、アンテナ素子204とは無相関である。アンテナアレイは、素子の相関、無相関、および偏波について様々な組合せで、追加のアンテナ素子を含むことができる。
【0087】
受信機210は、M個の原信号の少なくともN個の異なる総和を受け取るために、アンテナアレイ202に接続される。ブラインド信号分離プロセッサ212は、M個の原信号の少なくともN個の異なる総和を含む混合行列214を形成するために、受信機に接続される。混合行列は、最大で少なくともNに等しい階数をもち、ブラインド信号分離プロセッサ212は、混合行列Aから所望の原信号216を分離する。
【0088】
ロードマップの第2のセクションは、第1のセクションで提供されたアンテナ構成に対する機能増強を扱う。この機能増強は、混合行列Aをさらに生成するための原信号の追加用または置換用の総和が収集されるように行われる。
【0089】
1つの機能増強は、追加のアンテナ素子を付け加える必要なく、混合行列Aによって使用される信号の追加の和を受信するためのアレイ偏向を含む。アレイ偏向は、方位角および/または仰角方向によってアンテナパターンを制御することを含む。
【0090】
アレイ偏向を使用するM個の信号源によって提供される原信号を分離するための通信装置240が、図9を参照しながら説明される。アンテナアレイ242は、M個の原信号のN個の異なる総和を受信するためのN個の初期アンテナパターンを生成するN個のアンテナ素子244を備える。アンテナアレイ242はまた、N個の初期アンテナパターンのうちの少なくとも1個の仰角を選択的に変更して、少なくとも1個の追加のアンテナパターンを生成し、その結果、そのアンテナパターンによってM個の原信号の少なくとも1個の追加の異なる総和が受信されるようにするために、仰角コントローラ246も備える。
【0091】
受信機248は、アンテナアレイ242に接続され、N個の初期アンテナパターンを使用して、M個の原信号のN個の異なる総和を受信し、少なくとも1個の追加のアンテナパターンを使用して、M個の原信号の少なくとも1個の追加の異なる総和も受信する。
【0092】
ブラインド信号分離プロセッサ250は、M個の原信号のN個の異なる総和と、M個の原信号の少なくとも1個の追加の異なる総和とを含む混合行列252を形成するために、受信機248に接続される。混合行列は、Nに追加のアンテナパターンを使用して受信されるM個の原信号の追加の異なる総和の数を加えた数に等しい階数をもつ。プロセッサ250は、混合行列から所望の原信号254を分離する。
【0093】
一般に、混合行列の階数を増やすのに適した信号和を提供するアンテナアレイ手段は、偏向機構(deflection mechanism)と一緒に利用されることができる。偏向は、各アンテナアレイ手段ごとに、混合行列に使用可能な2つの異なる信号和を生成する。したがって、この技法の利用によって2倍の乗数効果(multiplier effect)が得られる。
【0094】
アレイ偏向がアンテナに関連付けられたK個の異なる領域にセグメント化される場合、K個の領域の各々は、2つの独立した偏向領域と、混合行列への入力とを提供することができる。例えば、アンテナアレイがそれ独自でN個の総和を提供することができ、K個の異なる偏向領域が存在する場合、混合行列内の信号和の数は、2×K×Nとなることができる。
【0095】
説明の目的で、図4に示されたスイッチビームアンテナ100’が、アンテナパターンが仰角について上方または下方に傾けられることができるように修正された、図10が参照される。特に、パッシブアンテナ素子104’の各上側半分104a’は、リアクティブ負荷108’を介して接地平面106’に接続される。パッシブアンテナ素子104’の各下側半分104b’も、リアクティブ負荷108’を介して接地平面106’に接続される。パッシブアンテナ素子104’のリアクタンスは、パッシブアンテナ素子を長くする、または短くする効果をもつ。パッシブアンテナ素子104’の電気的長さを、誘導性負荷は長くし、容量性負荷は短くする。
【0096】
アンテナビームが、上側半分104a’のリアクティブ負荷108’と下側半分104b’のリアクティブ負荷118’の比に基づいて、仰角について上方および下方に傾けられる。比を調整することによって、アンテナパターンは、図11に示されるように、上向き97または下向き99を指すことができる。アンテナパターンの仰角が混合信号を受信するように調整された場合、少なくとも1つの追加の階数が、混合行列Aに追加される。アレイ偏向を使用することで、アンテナ素子の数Nを増やす必要なしに、混合行列Aのためのより多くの信号を受信することができる。
【0097】
この具体的な実装は、リアクタンス118’によって個別に制御される2つの異なる偏向領域を有する。アレイのパターン生成能力は、3つの独立パターンであり、したがって、混合行列を生成するために使用されることができる信号和の数は、12(2×2×3)である。
【0098】
アンテナビームアレイを仰角についてどのように調整するかをより詳細に開示する特許文献3が参照される。アレイ偏向技法は、上で説明されたアンテナアレイ実施形態のいずれにも、または接地平面相互作用(ground plane interaction)に感受性のあるその他の任意のアンテナアレイにも適用されることができる。
【0099】
仰角コントローラの別の実施形態は、図12に示されるように、アンテナ素子274の接地平面272に結合される制御可能RFチョーク(RF choke)270に基づく。当業者であれば容易に理解されるように、アンテナ素子274に関連付けられたアンテナパターンは、RFチョーク270を制御することによって、仰角について動かされる。
【0100】
M個の信号源によって提供される原信号を経路選択に基づいて分離する通信装置300が、図13を参照しながら説明される。これは、上で説明されたアレイ偏向に対する機能増強と同様に、ロードマップの第1のセクションで提供されたアンテナ構成に対する別の機能増強である。通信装置300は、M個の原信号の少なくともN個の異なる総和を受信するための少なくともN個のアンテナビームを形成するために、N個のアンテナ素子304を備え、NおよびMは2より大きい。
【0101】
コントローラ306は、少なくともN個のアンテナビームを選択的に形成するために、アンテナアレイに接続される。受信機アセンブリ308は、M個の原信号の少なくともN個の異なる総和を受信するために、アンテナアレイ302に接続される。ブラインド信号分離プロセッサ310は、M個の原信号の少なくともN個までの異なる総和を含む混合行列312を形成するために、受信機アセンブリ308に接続される。
【0102】
ブラインド信号分離プロセッサ310はまた、M個の原信号の異なる総和が相関しているかまたは統計的に独立であるかを決定し、どちらでもない場合、混合行列312内の相関しておらずかつ統計的に独立もしていないM個の原信号の異なる総和を置き換えるためのM個の原信号の新しい異なる総和を受信するために、コントローラ306と協力して、異なるビームを形成する。その後、所望の原信号314が、混合行列312から分離される。
【0103】
レイク受信機(rake receiver)は、マルチパスフェージングの効果を打ち消すように設計された無線受信機である。レイク受信機は、個々のマルチパス成分に対して同調するように各々をわずかに遅延させた複数の独立受信機を使用することによって、これを行う。レイク受信機は、大部分のタイプの無線アクセスネットワークによって使用され得る。レイク受信機は、拡散符号タイプの変調にとって特に有益であることが知られている。特定の入射信号経路を選択するその能力によって、レイク受信機は、ブラインド信号分離処理に供給される経路を変更する手段として適したものとなっている。
【0104】
当業者であれば容易に理解されるように、上で説明されたようにN個のアンテナビームを選択的に形成することは、すべての無線アクセスネットワークに適用することができる。CDMAシステムの場合、受信機アセンブリ308は、N個のレイク受信機316を備える。各レイク受信機316は、それに接続されるそれぞれのアンテナ素子によって受信されるM個の原信号のN個の異なる総和の各1つごとにk個の異なるマルチパス成分を選択するために、k個のフィンガを備える。この構成では、ブラインド信号分離プロセッサ310は、混合行列312を形成するために、N個のレイク受信機316に接続される。混合行列312は、M個の原信号の少なくともN個の異なる総和の少なくともkN個までのマルチパス成分を含み、混合行列は、最大でkNに等しい階数をもつ。
【0105】
特に、CDMA波形が伝播する場合、発信源から目的地までに、CDMA波形はしばしばマルチパスに遭遇する。レイク受信機316は特に、数多くのこれら個々の場合を捕捉し、より堅牢な信号復号のためにそれらを結合するように設計される。元の信号は各経路に沿って伝播する間、その特性が経路固有の特性によって変更される。いくつかの状況では、受信信号の相関および/または統計的特性に対する変更が十分に大きく、その結果、それらを、分離可能な信号ストリームとして扱うことができる。修正されたレイク受信機316を、各変更されたストリームを抽出し、それを一意的入力として混合行列312に供給するために使用することができる。階数を増やすこの手段は、常に利用可能であるとは限らないが、それが必要とされる可能性が最も大きい高マルチパス環境で利用可能である傾向にある。
【0106】
レイク受信機316は、異なる経路を利用することができるが、任意の変調技法に適用可能なより一般的な手法は、図13を参照しながら説明されたような、ビーム形成である。ビーム形成は、所望の信号強化ばかりでなく、所望の信号除去のためにも使用されるので、レイク受信機316とは異なっている。しかし、重要なのは、除去された信号が、実際には受信機に向けられた信号の別のバージョンであり得ることである。しかし、十分な階数をもつ混合行列312を作成するために、受信機アセンブリ308は、同じ信号の数多くのこれら独特の伝播経路バージョンを検出することを必要とする。
【0107】
ロードマップの第3のセクションは、混合行列Aをさらに生成する信号分割を扱う。1つの手法では、総和信号は、拡散符号を使用して分割される。別の手法では、総和信号は、同相(I)/直交(Q)モジュールを使用して分割される。
【0108】
拡散符号を使用する信号分割が、図14を参照しながら説明される。例示された通信装置400は、M個の原信号の少なくともN個の異なる総和を受信するためにN個のアンテナ素子404を含むアンテナアレイ402を備える。符号逆拡散器(code despreader)406が、M個の原信号の少なくともN個の異なる総和を復号するために、N個のアンテナ素子404に接続される。N個の異なる総和の各1つは、関連付けられたM個の原信号のk個の異なる総和を提供するために、k個の符号を含む。
【0109】
受信機アセンブリ408は、M個の原信号の少なくともkN個の異なる総和を受信するために、符号逆拡散器406に接続される。ブラインド信号分離プロセッサ410は、M個の原信号の少なくともkN個の異なる総和を含む混合行列412を形成するために、受信機アセンブリ408に接続される。混合行列412は、最大でkNに等しい階数をもつ。ブラインド信号分離プロセッサ410は、混合行列412から所望の原信号414を分離する。
【0110】
受信信号の変調に応じて、上で説明された信号分割を、アンテナ素子の数Nを増やすことなく、混合行列Aの階数を増やすために使用することができる。CDMA IS−95、CDMA2000、およびWCDMAは、拡散符号が使用される拡散スペクトル通信システムの例である。共通の特徴は、データをより広い周波数帯域に拡散させるために、固有の符号が各信号と一緒に処理されることである。
【0111】
同じ拡散符号が、受信信号和(所望信号、非所望信号、および未知の雑音源)と一緒に処理される。これは、所望信号をその元の周波数帯域幅に再現させ、一方で、干渉は広い周波数帯域に拡散される。
【0112】
上に列挙されたCDMAの実装は、実際には同じ周波数帯域を同時に使用する多くの信号ストリームを有する。各信号ストリームは、理想的には他のすべてと直交する符号を使用する。この条件が復号器で満たされる場合、それは、対象信号だけが逆拡散されることを意味する。和の第Kの信号の符号が逆拡散用に使用される場合、結果の受信信号和xkは、振幅が増大されたsk項と、無変化またはより低い値のk−1個の項とから大部分は構成される。
【0113】
CDMA信号間にはしばしば何らかの相関が存在し、そのため、所望信号とともに、干渉信号もいくらかは再現される。これはしばしば、個々の信号によって経験される遅延が原因であり、信号のマルチパス発生も原因である。非所望信号のいくつかは、特にCDMA信号は、値が増大する。その増大は、所望信号の場合ほど著しくはないが、それでも全体的な雑音値を増大させ、この結果、信号対雑音比を低下させる。
【0114】
逆拡散信号式の形式および信号自体は、ブラインド信号分離処理の基準を満たす。事実、逆拡散符号の1つが通信装置400によって受信された各既知信号に個別に適用される場合、ICAモデル要件を満たす個別の総和が得られる。
【0115】
したがって、もちろん各々が線形独立な有効値を生成すると仮定した場合、混合行列に利用可能な行入力が既知符号と同じだけ多く存在する。適当な状況下で、これは、符号の数より大きな値まで混合行列を増大させることを可能にする。例えば、N個のアンテナ素子とM個の符号は、NM個の行列の行を提供することができる。
【0116】
説明の目的で、3つの符号が既知であると仮定され、3つの既知符号は直交性を保っている。符号逆拡散器406において、混合行列Aは、各ストリームが3つの既知符号によって逆拡散された後のアンテナストリームに各々が帰される、上の3行と、下の3行を有する。非対角要素の0値は、符号の直交性による。第4、第5、および第6列の入力は、同じインデックスの未知信号の一般的なケースのためのものである。
【0117】
【数7】

【0118】
第4、第5、および第6列の入力に対応する信号は、既知符号の他の経路のバージョン、または未知符号の他のセル信号とすることができる。また、1つの信号は、ガウシアンとすることができ、他の信号は、単一ガウス信号として出現するように中心極限定理(central limit theorem)に従うCDMA信号群、例えば、リリース4チャネル(release 4 channel)である。言い換えると、十分な量の非ランダム信号が、結局はガウス信号になる。干渉は、非ガウス信号源か、またはネットワークに未知の高々1つのガウス信号とすることができる。
【0119】
符号逆拡散器406で既知符号を逆拡散した後、ブラインド信号分離プロセッサ410は、階数6の混合行列412を受け取る。6という階数は、3つの符号が既知であるために係数3を乗じられる2個のアンテナ素子に基づいて導き出される。
【0120】
6個の信号がブラインド信号分離プロセッサ410に適用され、階数6をもつ混合行列412が形成される。ブラインド信号分離プロセッサ410は、チャネルによって変更された受信信号x=Asだけから分離行列Wを決定する。例示された例では、6個の信号が分離可能である。
【0121】
ブラインド信号分離プロセッサ410は、復号される信号を選択する。例えば、干渉信号は除かれることができ、所望信号のすべてのバージョンが選択される。選択信号は、復調のために復調器モジュールに与えられる。復調器は、同じ信号のマルチパスバージョンを合成する周知の等化技法を使用する。
【0122】
より一般的なケースでは、簡略化のため上では0として示された非対角要素の値は、実際には非0とすることができる。これは、符号化信号間の相関特性が理想的ではないより普通のケースである。これは、各分離信号への追加雑音を表す。しかし、先に示されたように、行列の階数は、これらの信号を分離するのに十分であり、そのため、それらの値は、ブラインド信号分離処理の後では、著しく低下させられる。これは、雑音の減少、信号対雑音比の増大、およびシャノンの法則によって示されるようにチャネル容量の増大をもたらす。
【0123】
ここで図15を参照すると、アンテナ素子の数Nを増やすことなく、混合行列Aの階数を増やす他の手法は、受信混合信号を同相(I)成分と直交(Q)成分に分離することである。コヒーレントなRF信号のIおよびQ成分は、振幅は同じだが、位相が90度だけ離れた成分である。
【0124】
通信装置500は、M個の原信号の少なくともN個の異なる総和を受信するN個のアンテナ素子504を含むアンテナアレイ502を備える。それぞれの同相/直交モジュール506は、各アンテナ素子504の下流に存在し、受信されたM個の原信号のN個の異なる総和の各1つを同相/直交成分セットに分離する。
【0125】
受信機アセンブリ508は、各同相/直交モジュール506の下流に存在し、M個の原信号の少なくともN個の異なる総和の少なくともN個の同相/直交成分セットを受け取る。ブラインド信号分離プロセッサ510は、受信機アセンブリ508の下流に存在し、M個の原信号の少なくとも2N個の異なる総和を含む混合行列512を形成する。各同相/直交成分セットは、混合行列512に2つの入力を提供する。混合行列512は、最大で2Nに等しい階数をもち、ブラインド信号分離プロセッサ510は、混合行列512から所望原信号514を分離する。
【0126】
アンテナ素子502の下流のそれぞれの同相/直交モジュール506の1つが、図16に示されている。アンテナ素子502で受信された混合信号は、1対のミキサ520によって分割される。IおよびQ成分は、90度位相がずれた同一の基準信号が与えられる2つの同期検出器を用いて、中間周波数(IF)信号を別の周波数範囲に変換することによって、一般に生成される。IおよびQ信号は一緒に、IF信号に含まれる位相情報を保存し、それによって、正の周波数をもつ信号が負の周波数をもつ信号から識別されることを可能にする。
【0127】
受信混合信号をIおよびQ成分に分離することによって、混合行列のサイズは、係数2だけ増やされる。IおよびQ成分が異なるデータストリームとともに符号化される限り、アンテナ素子で受信される混合信号を、2個の異なる混合信号に分割することができる。
【0128】
差分符号化(differential encoding)の場合、IおよびQが線形性要件を満たすかどうかを決定するために、変調の性質が分析されることを必要とする。例えば、GSMの場合、GMSK符号化が適切なフィルタリングとともに使用される場合、線形であると仮定でき、BPSK符号化であるかのように受信機で処理されることができることが示された。BPSKはブラインド信号分離処理のための要件を満たすので、説明されたI/Qプロセスを使用することができる。
【0129】
IおよびQ成分は、混合行列Aを生成するために、上で説明されたアンテナアレイ実装形態のいずれとも一緒に使用されることができる。IおよびQが使用される場合、混合行列Aは、2倍の数のアンテナ素子が使用されたかのように生成されることができる。別の例は、2個のアンテナ素子(係数2)の、偏波が等しくない無相関の状態での(係数2×2)、IおよびQ成分と組み合わせた(係数2×2×2)使用とすることができ、その結果、8個の独立の混合信号和が生成される。
【0130】
より多くの信号和を生成するために、この機構を、アンテナアレイ偏向技法と一緒に使用することもできる。これらの和の各々を、次にIおよびQ成分に分割することができる。
【0131】
本発明の別の態様は、同じRFチャネルの複数使用を利用するための多入力多出力(MIMO:Multiple Input and Multiple Output)アンテナ技法に関する。干渉キャンセレーションのための受信機処理技法は、信号伝達の堅牢性および対応するデータレートの向上を達成するために、アンテナダイバーシチを使用することよりもむしろ、パターンダイバーシチ(pattern diversity)を利用することによって、必要とされるアンテナの数を最小限に抑える。
【0132】
アンテナアレイは、受信機経路に変更可能な重み付けを有する。これらの重みが変更されると、受信アンテナパターンが変更される。ブラインド信号分離(BSS)についてよく文書化された技法と類似の技法を使用することによって、複数の干渉からの信号を含む受信データから、所望信号を抽出することができる。
【0133】
パターンがどのように形成されるかに関わらず、図17に示されるように、MIMOを実装した受信構造におけるアンテナダイバーシチのパターンダイバーシチによる置き換えが可能である。K個のパターンの数は、理想的にはN個のアンテナ素子の数に等しい。しかし、K個のパターンは、従来技術で必要とされたN個のアンテナ素子より少ないL個のアンテナ素子を用いて生成される。既存のアンテナアレイMIMOの実装と同様に、MおよびKは、すべての送信されるM個の空間チャネルがK個の受信機パターンによって識別可能である場合にのみ等しい。これは一般に固定送信機および受信機の場合に限られるので、受信機パターンまたは送信機アンテナの余分が、最低限のKまたはMの空間利得(spatial gain)を達成するために必要である。マルチユーザ検出処理技法が、受信機システムにおいてデータチャネルを分離し出すために利用される。混合行列を作成するための上で説明されたすべての方法を、この実装の一部として使用することができる。
【0134】
本発明の別の態様は、符号間干渉(ISI)に関する。ISIを低減するためにフーリエ変換を使用する場合の制限は、図18で与えられる構成によって対処される。以下のブロックが、ISIを低減するフーリエ変換方法を改善するために送信側に追加される。すなわち、ビタビ符号化、反復/パンクチュアリング(repetition/puncturing)、およびブロック冗長インターリービング(block redundancy interleaving)が、送信側に追加される。受信側では、以下のブロック、すなわち、BSS干渉除去(BSS interference removal)、ブロックデインターリービング(block de-interleaving)、逆反復/デパンクチュアリング(de-repetition/de-puncturing)、およびビタビ復号が追加される。
【0135】
「ビタビ符号化」は、データ復号プロセスにおいて不正確を克服する堅牢な冗長性を有する。ターボ符号化(turbo coding)などの代替形態による符号化も適用可能である。「反復またはパンクチュアリング」は、ソースデータレートと送信データレートの間のデータブロックマッチングを可能にする。「ブロックインターリービング」は、適切な復号の確率を最大化するように、順番に到着するソースデータをランダム化し、伝播チャネル状態に対する強度を改善する。これは、ブロック誤りよりもランダム分散誤りから、はるかに効果的にデータストリームを再生できるビタビ復号器の前でブロック誤りを分散させることによって、例えば深刻なフェードに起因するブロック誤りを導入する(introduce)。「BSS干渉除去」は、時間領域に変換し戻す前に、信号を対象信号に還元する。
【0136】
結果の周波数領域信号が、一様である可能性が低い既知の統計的特性を有するとすると、非一様分散(PARのレベル)に対処する最良の方法は、(周波数にわたって信号レベルを等化するために)FETの出力において非線形マッパ(non-linear mapper)を、およびIFFTへの入力において逆変換を追加することである。
【0137】
加えて、現実的なシナリオでは、この信号は一般に変調され、送信周波内にまとめられるので、変調器、アップコンバータ、ダウンコンバータ、復調器の追加が、図を完成させる。送信波形の間の境界において不連続が存在する。これは複数の方法で緩和されることができる。1つは、波形の間にガードバンド(guard band)を追加することであり、ガードバンドにおいては、生成される周波数成分を最小化するように、波形の間で曲線が補間される。混合行列を作成するための上で説明されたすべての方法を、この実装の一部として使用することができる。
【0138】
本発明の別の態様は、レイヤ空間通信(layer space communication)をサポートするパターンダイバーシチに関する。ここで図19を参照すると、好ましい実施形態では、送信機は、タイムスロットベースで各レイヤ空間ストリームについて電力レベルを変化させる。したがって、ストリームは、様々な電力レベルで受信機に到達し、それが、BSS分離処理に適した行列の生成にとって適切な受信信号の相違を提供する。すべての出力電力調整は送信機で行われるので、受信機におけるL個のアンテナ素子の数は1であり、パターン生成ハードウェアまたはソフトウェアは、受信機では必要とされない。
【0139】
この手法はまた、信号間で適切に異なるパターン輪郭を生成する際に、到達信号の間のわずかな角度の相違がもはや問題ではないという点で、従来技術に対処する。
【0140】
別の実施形態では、所望送信機から以外の著しい干渉が存在する。単一のそのような干渉が存在する場合、干渉と変化する所望送信機の波面の間の相違は、BSS処理にすべての信号を分離させるのに十分である。2つ以上の著しい干渉が存在する場合、行列の階数は、十分でないことがある。システム性能を、受信機において追加のパターン変化を生成することによって改善することができる。これは好ましい実施形態からの逸脱であるが、それでも以前より著しくわずかなパターンしか必要とせず、したがって、受信機においてそれほど込み入った実装を必要としない。
【0141】
別の実施形態では、複数のデータストリームが、1つの電力増幅器を介し、単一のアンテナ素子を介した送信のために一緒に足し合わされる。タイムスロットベースでは、和信号の間の相対的な電力レベルは、受信機におけるBSS復号にとって適切な方式で変化する。この手法の利点は、合成信号内の個々の信号ストリームが同じ伝播経路効果を経験することであり、それは、送信機と受信機の間で相対的な信号関係が維持されることを意味する。これは、受信機において非常に堅牢な復号状況を提供する。
【0142】
この概念は、複数の個々の信号和が異なるアンテナ素子を介して送信されることができる点で拡張可能である。したがって、堅牢な信号分離を、マルチパスダイバーシチ利得および/または空間容量利得とともに獲得することができる。理想的には一定であるピーク対平均信号電力比の問題に対処するため、和信号の電力を、一定に近い電力レベルを維持する方式で調整することができる。混合行列を作成するための上で説明されたすべての方法を、この実装の一部として使用することができる。
【0143】
本発明の別の態様は、複数の同時送信機をサポートする波状パターン(undulating pattern)に関する。ここで図20を参照すると、アクセスポイントに送信する複数の装置が、それらのRFパターンを変調する。したがって、対象アクセスポイントと非対象アクセスポイントは、送信信号の異なる電力レベルバージョンを受信する。これは、BSSが信号を分離するのに必要な情報を提供する。
【0144】
変調は、送信電力を変化させるのと同じほど単純にすることができる。これは、パターン輪郭と独立に行われることができ、そのため、無指向性もしくは扇形パターンが、またはビーム形成パターンさえも、使用することができる。送信ビームのボアサイト(bore sight)を変更するなどのその他の技法を使用することができる。
【0145】
最も効果的な手法は、整列タイムスロットを送信機に使用させることである。タイミングは、装置の内部クロックを使用することによって、またはアクセスポイントによって送信される共通タイムマークに同期させることによって、設定することができる。信号が受信機に到達する時についてミスアラインメント(misalignment)が存在すると、信号を分離するBSS能力に性能低下を生じさせる。装置への距離を決定することによって、または時間遅延を測定することによって、アラインメントを調整することができる。その後、タイミングを早めまたは遅らせるための技法を、アクセス装置によって使用することができる。
【0146】
信号受信利得変化がともに、それらをターゲットとみなし、その他の場合には干渉とみなすBSS装備アクセスポイントによって使用されるとすると、整列する適切な受信機が変化することがある。全体的なネットワーク協調が存在しない場合、対象受信機は、整列されるべきである。全体的なネットワーク協調が存在する場合、最良の手法は、干渉として除去するために信号をより簡単にしながら、対象受信機における分離にとって十分な整列を依然として提供することであることを、測定が示すことがある。
【0147】
RF電力レベル変調技法を使用しない他の信号源が存在する場合、従来の信号除去技法が使用されることができる。受信機は、BSSに適した行列の階数を増やすために、パターンまたはその他の手段を使用することもできる。後者の手段が利用される場合であっても、引き出される行列情報の程度が、アクセスポイント受信機で実施されるオーバヘッドを大きく低下させる。混合行列を作成するための上で説明されたすべての方法を、この実施の一部として使用することができる。
【0148】
本発明の別の態様は、処理および電力ドレイン(power drain)を最適化するために、BSSのRF復号を調整することに関する。対象ストリームを復号するために分離される必要がある信号の数が減少される。一般に、復号行列の階数が、分離される最も重要な信号の数を決定し、残りの信号は雑音として扱われる。したがって、この値は、復号される信号を含めた最小値である必要がある。信号対雑音比が許容可能な復号誤り率を可能にするように雑音成分を低減するため、場合によっては、より高い最小値が必要とされることがある。
【0149】
図21は、受信機のみの動作の実装を示している。図22は、図21のスーパーセットであり、送信機から受信機へのデータ、および任意選択で受信機から送信機へのデータも含む。
【0150】
行列を満たす選択肢(option)が、動作にとって必要な階数を超える場合、アンテナアレイ制御は、利用される選択肢の数を減らすことができる。利用可能な組からのいくつかの選択は、その他のものより望ましいことがあり、最適な選択は、より低い行列階数を可能にする。この組は、試行錯誤技法(例えば、選択肢kを使用した結果と使用しない結果との比較)によって、または条件および結果のヒストリカル追跡によって、様々な選択肢からの信号をその他の選択肢と比較して検査することによって決定されることができる。どの方法または方法の組合せが使用されるかは、既知の条件およびヒストリカルな証拠によって与えられる有効性に基づいても決定されることができる。
【0151】
カバレージが重なり合う領域において生じるように、装置が複数の信号源からの有効信号の範囲内にあることが知られている場合、最高電力の信号が、著しく異なる方向から到来すると予測されることができる。したがって、選択肢は、それらの方向において著しい信号差を与えるように選択されるべきである。
【0152】
符号化に関して、誤り訂正符号化は、原復号ストリーム(raw decoded stream)において許容され得る誤り率を決定する。原誤り率(raw error rate)は、行列を満たす選択肢のサブセットの関数でもあるので、これらの設定の間にはトレードオフが存在する。符号器と復号器の間のフィードバックおよびコントロールループを、最適な相互設定を選択するために使用することができる。
【0153】
受信機が電力制限される状況にはないと分かっている場合(例えば、線間電圧(line voltage)による電力)、復号器は、その行列階数を増やすことができる。これは複数の目的で使用されることができる。より高い階数により雑音を低減させ、これが信号対雑音比を高め、次に誤り率を低下させる。雑音を低減させることは、送信データレートを高めるため、誤り訂正符号化を縮小するため、またはリンクの全体的信頼性を改善するために使用されることができる。
【0154】
行列を満たす負担を受信機に移すことも、送信機の負担を減らし、これを、受信機と送信機の間にコントロールループが存在する場合に利用することができる。反対に、バッテリを使用する装置は、より堅牢に供給された装置に階数生成の増大についてネゴシエーションを試みることができる。
【0155】
タイミング設定を変更することによって、大多数の堅牢な動作は、復号行列がすべてのシンボルについて再計算されることを必要とする。しかし、しばしば、可干渉時間(coherence time)は、シンボルの数を超え、その結果、可干渉時間よりわずかに速いレートで測定が必要とされるに過ぎない。復号行列決定事象を減らすことが、電力およびプロセッサオーバヘッドを節約する。
【0156】
1つの事象から別の事象で行列の変化を監視することが、どれだけ頻繁に復号行列が再計算されなければならないかを決定するために使用される。広帯域システムでは、サブチャネルは、しばしば個別の可干渉時間を有する。各サブチャネルは、それ独自の復号行列と関連する測定レートを有することができる。これは、1つの非常に大きな復号行列を最速の必要レートで再計算する必要を取り除く。一般に、サブ復号行列のための測定の和は、1つの大きな復号行列を使用する場合よりも小さい。
【0157】
パターン送信に関して、送信源がパターンを生成する場合、受信機は、十分な行列階数を提供するため、行列充填受信選択肢(matrix fill receive option)を調整することができる。受信機は、その値を、送信機によって通知された送信特性、受信ストリームおよび復号データの測定、または送信源とネゴシエートした設定に関する情報に基づかせることができる。ネゴシエーションが行われる場合、送信源のリソース制限も考慮され、その結果、一方が、他方の負荷を軽減するために、より高い負荷を引き受け得ることが可能である。
【0158】
行列解法技法に関して、一般に、復号行列は、1つの計算から次の計算であまり変化しない。したがって、前の値を、解の反復決定へのシードとして使用することができ、このことが、ゼロからの決定よりもプロセッサ集中性を低くする。行列が最初から大きい場合、解が未知の状態から決定される場合であっても、反復復号が通常はより速い。これは、階数が大きく、相当に満たされた行列を解くためのよく知られた方法である。
【0159】
一般に、利用可能な構成要素、リビジョンコードレベル(revision code level)、適切な機器、および妥当な動作に影響するその他の要因に応じて、上のすべての組合せが可能である。混合行列を作成するための上で説明されたすべての方法を、この実装の一部として使用することができる。
【0160】
本発明の別の態様は、効果的なエリアカバレージをサポートする波状パターンに関する。パターン送信に関して、基本的考えは、インフラストラクチャサイトにおいて扇形カバレージパターン(sectored coverage pattern)を使用するというものである。利用されるセクタ(sector)の実際の数は、容量ニーズおよび関連するコスト要因とともに変化する。実際の実装は、単一のセクタから任意の多数まで様々であり得る。セクタ自体を、方位角もしくは仰角平面、または方位角および仰角平面において、細分することができる。セクタ化を使用する主要な利点は、ビーム形成方法のようにリンクの他端で装置を追跡する必要を緩和することにある。したがって、1つのセクタのカバレージ領域を離れて別のセクタに移ることは、従来のハンドオフの状況に還元される。
【0161】
従来技術は、BSS信号分離処理に適したパターン変化を生成する受信機を有する。対照的に、送信機は、適切なBSS復号器環境が少なくとも部分的に存在するように技法を利用する。いくつかの実装では、これは受信機が波状パターンを生成する必要がないことを意味する。その他の実施形態では、これは波状パターンの数が著しく減らされることを意味する。
【0162】
一実施形態は、1つの送信点のためのものである。この実施形態は、領域内のその他の送信源も動作しているかどうかが未知である状況に対処する。図23を参照すると、送信パターン輪郭は、受信機に知られたタイミング順で起伏(undulated)させられる。
【0163】
送信パターンの変化は、送信シンボルの分割と一致するようにタイミングが取られる。ボアサイトを動かす代わりに、パターンの輪郭が変化させられ、各タイムスロットごとに一定に保たれる。したがって、カバレージエリアは変化せず、取り組まなければならないような見越し追跡(foresight tracking)問題は存在しない。
【0164】
受信機は、変化する送信輪郭に起因する波面電力レベルの変化を経験する。したがって、BSS行列は、異なる相対利得値における様々な信号ストリームの差を用いて生成される。
【0165】
受信された優勢な信号がすべて、波状信号を使用する1つまたは複数の送信機からのものである場合、受信機は、単に各パターン変化の間にサンプルを取り、結果のデータを使用して、BSS信号分離用の行列を生成する。
【0166】
波状信号を使用する送信機と波状信号を使用しないその他の送信機の混合が存在する場合、受信機は、従来の信号分離技法を使用して、それらを説明する(account for)ことができる。例えば、ビーム形成およびマルチユーザ検出などの方法を使用することができる。しかし、BSS方法が通常はより堅牢である。実際の場合、受信機は、パターン変形を実施し、BSS行列の階数を分離される信号の数より大きく増やすのに十分な追加のパターンを生成する。
【0167】
例えば、BSS復号器の実装について、3つの信号を有する3つの輪郭が送信機によって送信され、その他に送信される信号が2つ存在する場合、受信機は、互いに対して干渉を分離するために少なくとも2つの輪郭を生成する必要がある。これは、送信機がそれ独自の組を生成しない場合に必要とされるよりも輪郭3つ分だけ少なく、そのため、受信機の実装負荷は常に軽減される。
【0168】
送信機が信号経路に沿って単一のストリームを送信している場合、パターン輪郭の組は、回転性であるまたは異なっている必要はない。これは、受信機で検出される信号が、すべてのその他の受信信号に対して変化させられているためである。したがって、送信機は、輪郭の形を変化させる必要よりもむしろ、全体的パターンについての簡単な電力変化を利用することができる。受信機において1つのその他のストリームが合算されるだけの場合、BSSは、1つは振幅が一定であったとしても、それらを分離することができる。これは、電力ディザ源(power dithering source)がその動作に必要な変化を提供するためである。2つ以上の他のストリームが受信される場合、受信機自体がその他の分離手段を使用するか、またはそれ独自の波状パターン生成能力をもたない限り、それらは単一のグループ化された干渉としてBSSには見える。
【0169】
次に、受信モードにあるパターン送信機が説明される。複数パターン輪郭のBSS処理は信号分離の優れた方法であるので、送信パターンを生成するために使用される同じ技法も、複数の受信機値を生成するために使用することができる。したがって、送信がすでにサポートされている場合のBSS受信のためのコスト要因だけが、BSS処理のオーバヘッドである。
【0170】
ここで、送信機へのユーザ機器受信機フィードバックが説明される。必ずしも厳格に必要とはされないが、ユーザ機器受信機からのフィードバック情報を、リンクの全体的動作を改善するために使用することができる。例えば、受信機は、パターン輪郭の各変化が有益なデータを提供する程度を決定することができる。この情報は、送信機にフィードバックされる。その後、送信機は、リンクを改善するために、電力をより少なく利用するために、またはその他の通信リンクとよりわずかしか干渉しないようにするために、その動作を調整することができる。調整のいくつかは、各パターンのどれをどの順序で使用するか、および信号送信の最中にいくつ変化を起こすか(すなわち、M個の輪郭からN個の輪郭への変更)についてとすることができる。シンボル当たりの輪郭変化の調整は、最良性能のために受信機に伝えられる必要がある。
【0171】
第2の実施形態は、上で説明された手法を使用することが知られた複数の送信点を含む。複数送信機サイト実装のための受信機動作は、基本的に単一サイトのためのものと同じである。相違は、各送信機によって生成されるパターンが、BSS信号分離のために受信機でカウントされ得ることである。
【0172】
しかし、調整された送信パラメータの性質に関する情報をネットワークから受信することによって、より堅牢な動作を得ることができる。例えば、必要なパターンの数を指示する行列の階数を、調整することができる。したがって、受信機のパターン生成は、利用可能な場合、この情報ごとに調整される。ネットワーク広域無線資源管理(network wide radio resource management)は、ネットワーク広域パターン使用、方位、電力レベル、およびタイミングを確立するために、ユーザ機器からフィードバックされた情報を利用することができる。混合行列を作成するための上で説明されたすべての方法を、この実装の一部として使用することができる。
【0173】
本発明の別の態様は、CDMA信号分離を支援するためのBSSおよびパターン波動(pattern undulation)に関する。信号を効果的に分離するBSSアルゴリズムの場合、xi受信信号は、各個別信号に関連付けられた相対的に異なる重み付け係数を用いてアンテナで受信された信号の集約でなければならない。これは、送信機、受信機、または両方の位置で行われることができる。重み付け係数は、送信エンドまたは受信エンドで変更される場合、チップごとに、または連続チップの組ごとに変更されることができる。基本要件は、集約信号は、少なくとも分離する信号が存在するのと同じ回数だけシンボルごとに調整されることである。
【0174】
図24は、周波数についてシンボルが12回変化させられる(12チップ)場合を示している。変化させられるパラメータは、4チップの間は一定に保たれる。シンボルあたり3回の変化は、3つの異なる信号が集約受信信号から分離され得ることを意味している。
【0175】
送信機が信号経路に沿って単一のストリームを送信する場合、パターン輪郭の組は、回転性であるまたは異なっている必要はない。これは、受信機で検出される信号が、すべてのその他の受信信号に対して変化させられているためである。したがって、送信機は、輪郭の形を変化させる必要よりもむしろ、全体的パターンについての簡単な電力変化を利用することができる。受信機において1つのその他のストリームが合算されるだけの場合、BSSは、1つは振幅が一定であったとしても、それらを分離することができる。これは、電力ディザ源がその動作に必要な変化を提供するためである。2つ以上の他のストリームが受信される場合、受信機自体がその他の分離手段を使用するか、またはそれ独自の波状パターン生成能力をもたない限り、それらは単一のグループ化された干渉としてBSSには見える。
【0176】
必ずしも厳格に必要とはされないが、ユーザ機器受信機からのフィードバック情報を、リンクの全体的動作を改善するために使用することができる。例えば、受信機は、パターン輪郭の各変化が有益なデータを提供する程度を決定することができる。この情報は、送信機にフィードバックされる。その後、送信機は、リンクを改善するために、電力をより少なく利用するために、またはその他の通信リンクとよりわずかしか干渉しないようにするために、その動作を調整することができる。電力プロフィールを変更する多くの方法が存在するが、調整のいくつかは、各パターンのどれをどの順序で使用するか、シンボル送信の最中にいくつ変化を起こすか、および個々のリンクに合わせて電力をどのように変調またはディザする(dither)かについてとすることができる。シンボル当たりの輪郭変化の調整は、最良性能のために受信機に伝えられる必要がある。
【0177】
実際の電力増幅器(PA)は、線形動作範囲で最も適切に利用される。大きなピーク対平均電力比によって、線形動作の動作範囲は縮小され、PAについての縮小された線形動的制御範囲を生じさせる。したがって、送信機と受信機との間の動作距離は縮小されてしまう。電力が利用される送信パラメータである場合、この問題を、複数の手法によって緩和することができる。
【0178】
これらの手法は、2つ以上のシンクが同じ増幅器によって給電される場合、すべての信号の電力の和が一定に維持されるような方式で、BSS変化が同期させられ得ることを含む。言い換えると、いくつかの送信の増大は、その他の減少によって相殺される。電力がチップレートに近い値で変調される場合、超過電力はしばしば、誘導される波動が小さい減結合保存要素(decoupling storage element)によって吸収されることができる。超過電力は、散逸負荷(dissipation load)に送られることができる。
【0179】
2次元または3次元におけるパターンが、送信および受信アンテナの両方のために、フェーズドアレイアンテナの遅延および電力レベルの調整、切換可能負荷を有する寄生アンテナ素子、偏波の変更、パターンの偏向を生じさせる電力平面負荷の変更、素子または反射器の機械的動き、ならびに上記の任意のものの組合せを含む、多くの手段によって生成されることができる。混合行列を作成するための上で説明されたすべての方法は、この実施の一部として使用されることができる。
【0180】
本発明の別の態様は、複数の空間独立チャネル(spatial independent channel)のための単一の受信機に関する。スイッチ寄生アンテナ(switched parasitic antenna)を、複数の空間独立チャネルをベースバンド処理構造に提供するために、高速デジタイザおよびダウンコンバータに結合させることができる。複数の空間独立チャネルは、単一の低雑音増幅器(LNA)と、ミキサと、局部発振器(LO)と、低域通過フィルタ(LPF)と、アナログ/デジタルコンバータ(ADC)とによって提供される。
【0181】
これらの技法を用いて獲得される複数の空間独立チャネルは、様々な方法のいずれかによって処理されることができる。その例は、コヒーレント合成(coherent combining)、ブラインド信号分離(BSS)、または多入力多出力(MIMO)受信処理を含むことができる。
【0182】
図25に関係して、システム原理が以下で説明される。好ましい実施形態は、構成要素をインダクタおよびキャパシタに変更した単一のアンテナアレイから成る。帯域通過フィルタは、LNAに提供される周波数帯域および全RF電力の両方を制限する。LNAは、受信信号のための単なる低雑音増幅器ではない。ミキサおよびLOは、RF信号を中間周波数(IF)またはベースバンドDCのどちらかに下げて同調させる。どちらの実装もバックエンド処理と適合性がある。
【0183】
アンテナスイッチング、任意選択のLOスイッチング、およびデマルチプレクサスイッチングはすべて、信号のN個のチャネルがアンテナのN個のダイバーシチモードから生成されるように、同じデジタルシーケンス生成器によって駆動される。これは、LPFおよびADCに提供される単一のチャネルRF出力をミキサから生成する。
【0184】
図にはそのように示されていないが、ADCは、アンテナモード、任意選択のLOスイッチング、およびデマルチプレクサスイッチングを駆動するのと同じデジタルシーケンス生成器と同期する。搬送波周波数Fcと変調帯域Bを有する信号を考えると、デマルチプレクサは、パルス整形のためのインパルスを有するダウンサンプリング動作として働く。N個の素子を有するアレイの場合、ADCのサンプリング周波数は、少なくとも2×N×Bでなければならない。N個のサンプルごとに1つのみがベースバンドプロセッサ(BBP)内の復調チェーンに提供されるので、N個が必要とされる。ナイキストのサンプリング理論を満足するために、2×Bが必要とされる。したがって、このシステムによって受信される信号の帯域幅も、装置のスイッチング速度によって制限される。
【0185】
デマルチプレクサは、BBP内のN個の並列復調回路の各々にサンプルを交互に提供する。サンプル分配方式は、グループをなしてはならず、代わりに順次分配でなければならない。例えば、3つのアンテナダイバーシチ選択肢(左、右、全方向)が存在する場合、N=3である。1、2、3、4、5、6、7、8、9、10、11、12と番号付けられたADCからのサンプルは、第1の復調チェーンに1、4、7、10、第2の復調チェーンに2、5、8、11、第3の復調チェーンに3、6、9、12のように分配される。
【0186】
先に述べられたように、復調器は、コヒーレント合成、BSS、または2つの共通MIMO復調技法のどちらかの形態とすることができる。これは、N個の空間独立チャネルを期待する単一復調回路のN個の具体化または1つのパッケージとすることができる。コヒーレント合成は、ソフト決定の重み付け、またはハード決定の動作とすることができる。いくつかの実施制限が以下で説明される。それらは、信号対雑音比(SNR)の考慮、雑音指数(noise figure)、インピーダンス整合、および受信信号電力を含む。
【0187】
アンテナアレイが受信信号に一致した帯域幅を有すると仮定する場合、帯域内SNRは同じままである。しかし、帯域内信号エネルギーは、従来のアレイのものと比較してN2の係数だけ低減される。
【0188】
LNAはアンテナアレイの後の信号経路における最初の有効構成要素であるので、雑音指数は、スイッチアレイがPINダイオードで始まるときほど大きな問題ではない。デマルチプレクサの後の各チャネルは1/Nの信号電力を受け取るので、LNA利得要件は、ミキサの出力におけるのに匹敵する信号振幅を保持するために、10log10Nだけ増やされる。
【0189】
異なるアンテナ素子の間のスイッチングが、インピーダンス整合特性の変化をもたらす。RF経路に直接接続されるただ1つの素子として「アクティブ」アンテナ素子を常に有するアンテナ実装の場合、このようなことはない。その他の「寄生」アンテナ素子のみが、RF経路に影響を及ぼす。
【0190】
いくつかのMIMOおよびその他の並列経路送信方式と適合し得る代替的な実施形態は、LOを異なる搬送波周波数への同調、およびアンテナアレイの異なるダイバーシチモードへの切り換えを統合することである。これは、互いに同期して行われることも、または独立して行われることもできる。いずれは、それらは依然として同時に生じなければならないが、各々の状態(アレイモード対搬送波周波数)は、一致している必要はない。
【0191】
これは、2つの正規の(regular)802.11g波形が異なる搬送波で並列に送信される802.11g+波形を受信するために有益な実装である。この場合、LOにおいて上側および下側搬送波周波数の間で交互に切り替え、その後、異なるパターンについて、アンテナアレイの異なるダイバーシチモードを交互に切り換える。
【0192】
ミキサを、RF波形をIFまたはベースバンドDCにダウンコンバートするように設定することができる。これは、ADCのサンプリング要件のいくつかを変更する。意図的なエイリアシングおよびその他の技法が、IFアンダーサンプリングを実行し、依然として意図された情報内容を再生することができる。
【0193】
この手法はまた、受信および送信機能用のアンテナの2重使用も考慮する。衛星受信などのいくつかの応用例では、送信機能は必要とされない。受信および送信が同時ではない(WLAN、WiMAX、WCDMA−TDD、TD−SCDMAなどの)時分割複信システム、または(GSM/GPRSなどの)タイムスロットFDDシステムにおいて、送信モードが独立と見なされ得る場合、受信アンテナを多重化することができる。(CDMA2000またはWCDMA−FDDなどの)全2重FDDシステムの場合、送信機能は、別個のアンテナによって達成されることができる。これらのエアインタフェースはいずれも、任意の可能な復調器技法(コヒーレント合成、BSS、MIMO)を使用することができる。
【0194】
本発明の別の態様は、CDMA受信機処理に適用されるBSSに関する。アンテナ素子間に十分な離隔距離を有するアンテナアレイは、復号チェーンに供給するために適している。入手可能な文献の調査は、一般にこれが当業者の確信であることを示している。
【0195】
その他の文献は、単一アンテナ干渉キャンセレーション(SAIC:Single Antenna Interference Cancellation)技法と呼ばれるものについて説明している。BSSを利用するものは、階数2の行列を生成するために、相関しているおよび/または統計的に独立なIおよびQチャネルを変調が有することを必要とする。したがって、これらの復号器は、1つの干渉と所望信号を分離する。2つの干渉が存在する場合、既存のSAIC技法は実用的ではない。文献においては、これを「仮想」第2アンテナ(“virtual”second antenna)の使用と呼ぶ。
【0196】
従来技術を、既存技術手段および現在は文献で利用されていないその他の方法によって信号の独立和を獲得することによって、改良することができる。IおよびQ手段は、いくつかの無線アクセスネットワークでは実用的であるが、CDMA符号化にとっては適していないこともある。混合行列を作成するための上で説明されたすべての方法を、この実装の一部として使用することができる。
【0197】
これらの技法は、ICA使用可能行列の階数を増やし、ICAの適用が所望信号を抽出する可能性もより高めるが、それを保証することはできない。そのため、詳述されたばかりの技法を、適切な復号チェーンを選択するために依然として使用する必要がある。例えば、ICA処理が処理される信号和に過度に不都合であるならば、ICA処理から手を引く必要がある。
【0198】
第2の実施形態では、図26に示されるように、異なる復号チェーンが利用される。ノードAにおける信号セットの一例が、図27に示されている。明瞭とするため、単一の干渉が示されているが、同じ議論を、複数の干渉および増大した行列階数にも適用することができる。狭帯域干渉はノイズフロアを超え、所望のCDMA信号は、ノイズフロアより下にある。
【0199】
図28のノードBでは、干渉が抽出されている。「選択器」が、抽出信号が実際に干渉であるかどうかを決定する。干渉が存在しない場合、信号は選択されない。信号が所望信号の特性を有する場合、それは選択されない。1つまたは複数の干渉が選択された場合、それらは「反転器」に与えられる(ノードC)。ICA抽出は受信信号を反転することも、または反転しないこともでき、受信信号を一致させるために各信号が反転される必要があるかどうかに関する決定が必要である。
【0200】
干渉は、正しい振幅符号とともに、ノードDにおいて加算器の負の入力に与えられる。当業者であれば、もちろん、代替のしかし等価の実装が可能であることを理解しよう。例えば、純粋な加算器をこのステージにおいて利用することができ、信号が非反転波形で抽出された場合、反転器だけが利用される。元の受信信号(ノードA)の遅延バージョンが、他方の加算器入力に与えられる。遅延値は、ICA、選択、および「反転器」処理によって生じる遅延に等しい。当業者であれば、もちろん、代替のしかし等価の実装が可能であることを理解しよう。例えば、遅延および加算器の機能ブロックを、最小値が実現されるまで2つの信号をシフトし加算する最小化ブロックによって置き換えることができる。
【0201】
図29のノードDでは、干渉が取り除かれている。図30のノードEでは、レイク受信機が信号を逆拡散し、それが今ではベースバンド復号器に提供されることができる。この実施形態のさらなる詳細は、アンテナ構造によって集められる信号は、既存技術を機能強化するための先に説明された実施形態によって選択(options)を介して獲得されることができるというものである。
【0202】
図26に示された構造は、概説された本発明を実施する1つの方法に過ぎないことを理解されたい。適当な場合には「選択器」に信号を提供させないのではなく、むしろ前または後処理位置のどちらかで異なる経路を別々に(other the other)選択する従来技術の実装も使用することができる。トレードオフは、処理遅延、実装のコスト、全体的動作の堅牢性、およびある程度の設計者の選択に関係する。レイク受信機への提供の前に信号ストリームから干渉を減算するという基礎にある基本概念だけが、同じ発明に属するすべての変形において保持される必要がある。
【0203】
先の説明は干渉の完全な除去について示されたが、すべての干渉が除去されなくてもよいことを理解されたい。しかし、どのような干渉の除去も一般に、レイク復号器が改善された信号セットを処理するのであれば、従来技術にまさる改善性能を提供する。
【0204】
CDMA信号は、その性質により、逆拡散バージョンよりもガウシアンであり、ICAが検出するのはより困難である傾向にある。しかし、信号は依然としていくつかの統計的有意性を保持しているので、所望信号に関連付けられたいくつかのデータの除去も可能である。前と同じように、干渉の除去は通常は、はるかにより重要であり、レイク復号器に提供されるものの中の全体的利得。代替として、全体的復号プロセスは、プロセスへのインクリメンタル手法(incremental approach)を使用することによって、さらに機能強化されることができる。信号は包含または排除に関してより詳細に検査され得ること、ならびに/または除去される信号の数は段階的に増加または減少され得ること、および結果の改善または悪化の程度について測定された復号信号の完全性(integrity)を意味する。
【0205】
この実施形態のキーポイントは、ICAは、識別できる可能性が高い信号には使用され、識別および/または抽出がその間は困難なレイク処理前ではCDMA信号には使用されないことである。
【0206】
本発明の別の態様は、パターンを介したブラインド信号分離のためのハイブリッド最小平均2乗誤差行列−ペンシル分離重み(hybrid minimum mean squared error matrix-pencil separation weight)に関する。線形独立総和信号を提供するために複数のセンサが必要とされる特許文献2が再び参照される。同文献は参照により本明細書に組み込まれる。上で説明されたアンテナアレイを複数のセンサの代わりに使用することができるが、特許文献2に開示される後処理は依然として適用可能である。
【0207】
先の説明および関連する図面で提示された教示の利点を有する本発明の多くの修正およびその他の実施形態が、当業者に思い浮かぶであろう。したがって、本発明は開示された具体的な実施形態に限定されない。さらに、修正および実施形態は添付の特許請求の範囲内に含まれることが意図されていることを理解されたい。
【図面の簡単な説明】
【0208】
【図1】本発明による、通信装置がそれぞれの信号源から所望および非所望の信号を受信する、典型的な動作シナリオのブロック図である。
【図2】図1に示された通信装置のより詳細なブロック図である。
【図3】本発明による、混合行列用に原信号の線形独立和を生成するための異なる手法のロードマップである。
【図4】本発明による、スイッチビームアンテナとして構成されるアンテナアレイのブロック図である。
【図5】本発明による、フェーズドアレイアンテナとして構成されるアンテナアレイのブロック図である。
【図6】本発明による、偏波化したアンテナ素子を用いて構成されるアンテナアレイのブロック図である。
【図7】本発明による、3偏波の使用を示す3次元プロットの図である。
【図8】本発明による、信号の異なる総和をブラインド信号分離処理に提供するための、相関および無相関アンテナ素子を含むアンテナアレイを備える通信装置のブロック図である。
【図9】本発明による、信号の異なる総和をブラインド信号分離処理に提供するための、アレイ偏向に基づいて動作する通信装置のブロック図である。
【図10】本発明による、アンテナパターンの仰角を選択的に変更する仰角コントローラを備えるスイッチビームアンテナのブロック図である。
【図11】方位角方向でのアンテナパターンと、その後、図9に示された仰角コントローラに応答して仰角方向で回転されたアンテナパターンとを示す、アンテナプロットの図である。
【図12】本発明による、仰角方向でアンテナパターンを回転させるために接地平面で形成されるRFチョークを有するアンテナ素子のブロック図である。
【図13】本発明による、信号の異なる総和をブラインド信号分離処理に提供するために、経路選択に基づいて動作する通信装置のブロック図である。
【図14】本発明による、信号の追加の総和をブラインド信号分離処理に提供するために、拡散符号に基づいて動作する通信装置のブロック図である。
【図15】本発明による、信号の追加の総和をブラインド信号分離処理に提供するために、同相/直交信号成分に基づいて動作する通信装置のブロック図である。
【図16】図15に示されたようなアンテナ素子に接続される同相/直交モジュールのより詳細なブロック図である。
【図17】本発明による、パターンダイバーシチに基づいて動作するMIMOシステムのブロック図である。
【図18】本発明による、符号間干渉に対処するフーリエ変換通信システムのブロック図である。
【図19】本発明による、送信機が各レイヤ空間ストリームについてタイムスロットベースで電力レベルを変化させる通信システムのブロック図である。
【図20】本発明による、同じアクセスポイントに送信する複数の送信機をサポートするために波状パターンが使用される通信システムのブロック図である。
【図21】本発明による、処理および電力ドレインを最適化する受信機のブロック図である。
【図22】その動作を送信機と調整する図21に示された受信機のブロック図である。
【図23】本発明による、受信機に知られたタイミング順で起伏させられる送信パターン輪郭のプロットの図である。
【図24】本発明による、シンボル期間が12回の変化をもち(12チップ)、変化させられるパラメータが4チップの間は一定に保たれるタイムラインの図である。
【図25】本発明による、複数の空間独立チャネルのための受信機のブロック図である。
【図26】本発明による、受信機復号チェーンのブロック図である。
【図27】図26のノードAに対応する振幅対周波数のプロットの図である。
【図28】図26のノードBに対応する振幅対周波数のプロットの図である。
【図29】図26のノードDに対応する振幅対周波数のプロットの図である。
【図30】図26のノードEに対応する振幅対周波数のプロットの図である。

【特許請求の範囲】
【請求項1】
M個の信号源によって提供される原信号を分離する通信装置であって、
前記通信装置は、
NおよびMが1より大きいとして、前記M個の原信号の少なくともN個の異なる総和を受信するN個のアンテナ素子を備えるアンテナアレイと、
前記アンテナアレイに接続され、前記M個の原信号の前記少なくともN個の異なる総和を受信する受信機と、
前記受信機に接続され、前記M個の原信号の少なくともN個の異なる総和を含む混合行列を形成するブラインド信号分離プロセッサであって、前記混合行列は、少なくともNまでに等しい階数をもち、前記ブラインド信号分離プロセッサは、前記混合行列から所望の原信号を分離する、ブラインド信号分離プロセッサと
を備え、
前記N個のアンテナ素子は、
前記M個の原信号の前記N個の異なる総和の少なくとも1つを受信する少なくとも1個のアンテナ素子と、
前記少なくとも1個のアンテナ素子と無相関であり、前記M個の原信号の前記N個の異なる総和の少なくとも2つを受信する少なくとも2個の相関アンテナ素子と
を備えたことを特徴とする通信装置。
【請求項2】
N=Mであることを特徴とする請求項1に記載の通信装置。
【請求項3】
K<Nとして、前記混合行列の前記階数はKであり、前記ブラインド信号分離プロセッサは、前記混合行列から前記M個の原信号のうちのK個を分離することを特徴とする請求項1に記載の通信装置。
【請求項4】
N>Mであることを特徴とする請求項1に記載の通信装置。
【請求項5】
前記少なくとも2個の相関アンテナ素子は、異なる偏波を有することを特徴とする請求項1に記載の通信装置。
【請求項6】
前記異なる偏波は、互いに直交することを特徴とする請求項5に記載の通信装置。
【請求項7】
前記少なくとも2個の相関アンテナ素子は、相関もしており、かつ前記M個の原信号の3個の異なる総和を受信するために3偏波がサポートされるように異なる偏波を有する、3個のアンテナ素子を含むことを特徴とする請求項1に記載の通信装置。
【請求項8】
前記少なくとも2個の相関アンテナ素子は、異なる偏波を有することを特徴とする請求項7に記載の通信装置。
【請求項9】
前記少なくとも1個のアンテナ素子も、前記M個の原信号の前記N個の異なる総和の少なくとも2つを受信する少なくとも2個の相関アンテナ素子を含むことを特徴とする請求項1に記載の通信装置。
【請求項10】
前記少なくとも2個の相関アンテナ素子は、フェーズドアレイを形成する少なくとも2個のアクティブアンテナ素子を含むことを特徴とする請求項1に記載の通信装置。
【請求項11】
前記少なくとも2個の相関アンテナ素子は、スイッチビームアンテナを形成する少なくとも1個のアクティブアンテナ素子と少なくとも1個のパッシブアンテナ素子とを含むことを特徴とする請求項1に記載の通信装置。
【請求項12】
前記アンテナアレイは、前記M個の原信号の前記少なくともN個の異なる総和を受信する少なくともN個のアンテナビームを形成し、各アンテナビームは、最大利得ポイントから3dBポイントの低下をもち、信号経路の少なくとも1つの方向で信号除去を可能にすることを特徴とする請求項1に記載の通信装置。
【請求項13】
前記アンテナアレイは、前記M個の原信号の前記N個の異なる総和の少なくとも1つを受信する少なくとも1つのアンテナパターンを形成し、前記少なくとも1つのアンテナパターンは、最大利得ポイントから3dBポイントの低下を実質的にはもたず、信号経路のどの方向でも信号除去をもたらさないことを特徴とする請求項1に記載の通信装置。
【請求項14】
前記M個の原信号の各総和は、線形であることを特徴とする請求項1に記載の通信装置。
【請求項15】
前記ブラインド信号分離プロセッサは、主成分分析(PCA)に基づいて、前記混合行列から前記所望の原信号を分離することを特徴とする請求項1に記載の通信装置。
【請求項16】
前記ブラインド信号分離プロセッサは、独立成分分析(ICA)に基づいて、前記混合行列から前記所望の原信号を分離することを特徴とする請求項1に記載の通信装置。
【請求項17】
前記ブラインド信号分離プロセッサは、特異値分解(SVD)に基づいて、前記混合行列から前記所望の原信号を分離することを特徴とする請求項1に記載の通信装置。
【請求項18】
アンテナアレイと、前記アンテナアレイに接続する受信機と、前記受信機に接続するブラインド信号分離プロセッサとを備え、M個の信号源によって提供される原信号を分離する通信装置を動作させる方法であって、
前記方法は、
前記M個の原信号の少なくともN個の異なる総和を前記アンテナアレイで受信するステップと、
前記M個の原信号の前記少なくともN個の異なる総和を前記受信機に提供するステップと、
前記受信機によって受信された前記M個の原信号の前記少なくともN個の異なる総和を前記ブラインド信号分離プロセッサによって処理するステップと
を備え、
前記処理するステップは、
前記M個の原信号の前記少なくともN個の異なる総和を含む混合行列を形成するステップであって、前記混合行列が少なくともNまでに等しい階数をもつステップと、
前記混合行列から所望の原信号を分離するステップと
を含み、
N個のアンテナ素子は、
前記M個の原信号の前記N個の異なる総和の少なくとも1つを受信する少なくとも1個のアンテナ素子と、
前記少なくとも1個のアンテナ素子と無相関である、前記M個の原信号の前記N個の異なる総和の少なくとも2つを受信する少なくとも2個の相関アンテナ素子と
を備えたことを特徴とする方法。
【請求項19】
N=Mであることを特徴とする請求項18に記載の方法。
【請求項20】
前記少なくとも2個の相関アンテナ素子は、異なる偏波を有することを特徴とする請求項18に記載の方法。
【請求項21】
前記異なる偏波は、互いに直交することを特徴とする請求項20に記載の方法。
【請求項22】
前記少なくとも2個の相関アンテナ素子は、相関もしており、かつ前記M個の原信号の3個の異なる総和を受信する3偏波がサポートされるように異なる偏波を有する、3個のアンテナ素子を含むことを特徴とする請求項18に記載の方法。
【請求項23】
前記少なくとも2個の相関アンテナ素子は、異なる偏波を有することを特徴とする請求項22に記載の方法。
【請求項24】
前記少なくとも1個のアンテナ素子も、前記M個の原信号の前記N個の異なる総和の少なくとも2つを受信する少なくとも2個の相関アンテナ素子を含むことを特徴とする請求項18に記載の方法。
【請求項25】
前記少なくとも2個の相関アンテナ素子は、フェーズドアレイを形成する少なくとも2個のアクティブアンテナ素子を含むことを特徴とする請求項18に記載の方法。
【請求項26】
前記少なくとも2個の相関アンテナ素子は、スイッチビームアンテナを形成する1個のアクティブアンテナ素子と少なくとも1個のパッシブアンテナ素子とを含むことを特徴とする請求項18に記載の方法。
【請求項27】
前記アンテナアレイは、前記M個の原信号の前記少なくともN個の異なる総和を受信する少なくともN個のアンテナビームを形成し、各アンテナビームは、最大利得ポイントから3dBポイントの低下をもち、信号経路の少なくとも1つの方向で信号除去を可能にすることを特徴とする請求項18に記載の方法。
【請求項28】
前記アンテナアレイは、前記M個の原信号の前記N個の異なる総和の少なくとも1つを受信する少なくとも1つのアンテナパターンを形成し、前記少なくとも1つのアンテナパターンは、最大利得ポイントから3dBポイントの低下を実質的にはもたず、信号経路のどの方向でも信号除去をもたらさないことを特徴とする請求項18に記載の方法。
【請求項29】
前記M個の原信号の各総和は線形であることを特徴とする請求項18に記載の方法。
【請求項30】
前記ブラインド信号分離プロセッサは、主成分分析(PCA)に基づいて、前記混合行列から前記所望の原信号を分離することを特徴とする請求項18に記載の方法。
【請求項31】
前記ブラインド信号分離プロセッサは、独立成分分析(ICA)に基づいて、前記混合行列から前記所望の原信号を分離することを特徴とする請求項18に記載の方法。
【請求項32】
前記ブラインド信号分離プロセッサは、特異値分解(SVD)に基づいて、前記混合行列から前記所望の原信号を分離することを特徴とする請求項18に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate


【公表番号】特表2008−515285(P2008−515285A)
【公表日】平成20年5月8日(2008.5.8)
【国際特許分類】
【出願番号】特願2007−533641(P2007−533641)
【出願日】平成17年9月23日(2005.9.23)
【国際出願番号】PCT/US2005/034060
【国際公開番号】WO2006/034424
【国際公開日】平成18年3月30日(2006.3.30)
【出願人】(596008622)インターデイジタル テクノロジー コーポレーション (871)
【Fターム(参考)】