説明

管内挿入式超音波探傷検査装置及び超音波探傷検査システム

【課題】ケーブルレスで水流圧のみでスムーズに管内を移動可能な挿入式超音波探傷検査装置及び超音波探傷検査システムを提供する。
【解決手段】水流圧によって管38内を移動しながら管内の異常の有無を検出する管内挿入式超音波探傷検査装置10において、管壁38に向けて超音波を発振し、反射した受信エコー信号を受信する超音波探触子11と、超音波探触子11にパルス信号を送出し、受信エコー信号を受信するパルス発生・受信部12と、受信エコー信号を蓄積する記憶部14と、パルス発生・受信部12におけるパルス信号の送出タイミングの制御及び記憶部14への受信エコー信号の書き込みの制御を行う制御部15と、各機器に電源を供給する電源供給部19とを含む超音波探傷手段と、複数に分割された超音波探傷手段を互いに接続するフレキシブル構造体25と、超音波探触子を管の略中央に保持する調芯治具26とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波探傷検査装置を管内移送するためのケーブルや、電源供給又は信号送受のためのケーブルを用いず、水流圧で超音波探傷検査装置を移送させながら管内の異常の有無を検出する管内挿入式超音波探傷検査装置及び超音波探傷検査システムに関するものである。
【背景技術】
【0002】
従来から、非破壊検査により管の異常を検出するために超音波探傷検査装置が用いられている。例えば、火力発電プラント等の熱交換器におけるボイラチューブ等の管は、内部に高温、高圧の流体を通すことになるので、管体の傷や割れ、減肉等を検査する必要がある。しかしながら、こういった火力発電プラント等の熱交換器におけるボイラチューブ等の管は、設置された後では周囲に各種構築物が存在することになるため、外部からの探傷、肉厚検査等が難しい。
【0003】
そこで、管内の検査に用いる超音波探傷検査装置として、特許文献1に開示されるような管内挿型超音波探触子が提案、実用化されている。図25に示すように、管内挿型超音波探触子70は、流水により管81内に挿入され、搬送ケーブル76により管81内を移送するようになっている。搬送ケーブル76の先端にはフレキシブルシャフト(バネコイル等の弾性材)73が接続されている。フレキシブルシャフト73には超音波探触子ホルダ72が取り付けられ、この超音波探触子ホルダ72に内蔵された超音波探触子本体71により管81内の減肉量、傷や割れ等を検出する。
【0004】
また、超音波探触子ホルダ72を管81の中心に保持するために、超音波探触子ホルダ72の前後に、それぞれ対向して配置される2つの弾性ワイヤ端部固定リング78、78と、その2つのリング78、78に両端が取り付けられ、周方向に第1の所定傾斜角および軸心に対し第2の所定傾斜角を有する複数の弾性ワイヤ(調芯治具)77とを備えるねじりかご式調芯具83が設けられている。ねじりかご式調芯具83には、その外径が管81の内径よりも小さくなるように調節する調節ナット80と、管壁への圧縮圧を略一定に保つためのコイル押バネ79とが取り付けられている。
【0005】
上記管内挿型超音波探触子70は、搬送ケーブル76で押し込まれることによって管81内を移送されながら管81の検査を行うものであり、その装置構成が特許文献2に開示されている。図26に示すように、この管内挿入式超音波探傷検査装置は、先端に挿入装置88が設けられた連結式の案内ロッド90を管寄せ85内に送り込む案内装置89、管寄せ85内に送り込まれた案内ロッド90の終端が結合され、先端に水浸用プローブヘッドが設けられたコイルバネ94を案内ロッド90内に送り込む送給装置91、およびコイルバネ94内に配設された超音波探傷用ケーブル95と、水ホース96の終端にそれぞれ接続された超音波探傷検査装置(Pulser/Receiver)97と、水ポンプ98とを備え、ボイラ管86を切断することなく、また大掛りな器材や大量の水を使用することなく、水ポンプ98で送り込まれる水と、送給装置91で管内に送り込まれるコイルバネ94とによって水浸用プローブヘッドを管内で移動させ、ボイラ管86内面の超音波探傷を行なうものである。
【0006】
また特許文献3には、信号送受のためのケーブルが接続され、管内に挿入して管壁の異常の有無を検出する超音波測定装置を水圧でスムーズに移動させるため、測定装置本体の前後に可控性を有する接続体を介して前部調芯移勤部材と後部調芯移動部材とを取り付ると共に、前部調芯部材の前方に前部円錐形案内子を、後部調芯部材の後方に後部円錐形案内子をそれぞれ設け、かつ、前部円錐形案内子と後部円錐形案内子の円錐形底面が互いに向き合うように構成して、水圧を効率良く受けて超音波測定装置を効率良く移動させることができるようにした超音波測定装置が示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特許第3040641号公報
【特許文献2】特開平9−145687号公報
【特許文献3】実公昭62−45167号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上記した特許文献1乃至3は、超音波探触子を搬送ケーブルと水の力とを利用して少しずつ管内へ押し込んで移動させる構成となっており、熱交換器のボイラチューブ等のように長い管においては、これに対応した長い搬送ケーブルが必要となる。
また、搬送ケーブルに限らず、管内に挿入された超音波探傷検査装置に電源を供給するための電源ケーブル、又は超音波探傷検査装置の制御信号や受信エコー信号等の送受のための信号ケーブルも配置すると、さらにケーブル重量が大きくなり、ケーブルの設置コストが増大する。また、これらのケーブルを巻き取るために巻取り装置が必要であるが、ケーブルが長いと装置が大型になるとともにハンドリングが難しく、検査に熟練と人員を要する。
さらにまた、配管のベンド部(曲がり部)が増えるとケーブルとの接触抵抗が増え、ケーブルの流動抵抗が大きいため、これを押し込む水ポンプは大きな力を必要とし、ポンプが大型化する。
【0009】
そのため本発明においては、超音波探触子への電源供給や信号の送受のためのケーブル、又は超音波探傷検査装置の管内移送のためのケーブルを用いることなく、管内挿入式超音波探傷検査装置を水流圧だけでスムーズに管内を移動できるようにした管内挿入式超音波探傷検査装置及び超音波探傷検査システムを提供することが課題である。
【課題を解決するための手段】
【0010】
上記の課題を解決するために、本発明の管内挿入式超音波探傷検査装置は、水流圧によって管内を移動しながら前記管内の異常の有無を検出する管内挿入式超音波探傷検査装置において、前記管内から管壁に向けて超音波を発振し、前記管壁で反射した受信エコー信号を受信する超音波探触子と、前記超音波探触子にパルス信号を送出し、前記超音波探触子から受信エコー信号を受信するパルス発生・受信部と、前記パルス発生・受信部で受信した受信エコー信号を蓄積する記憶部と、前記パルス発生・受信部における前記パルス信号の送出タイミングの制御及び前記記憶部への前記受信エコー信号の書き込みの制御を行う制御部と、前記パルス発生・受信部に電源を供給する電源供給部とを含む超音波探傷手段と、複数に分割された前記超音波探傷手段を互いに接続するフレキシブル構造体と、前記超音波探触子を前記管の略中央に保持する調芯治具とを備えることを特徴とする。
【0011】
このように、パルス発生・受信部で受信した受信エコー信号は記憶部に蓄積し、且つパルス信号の送出タイミングの制御及び受信エコー信号の書き込みの制御は制御部で行い、いずれも管内挿入式超音波探傷検査装置内で行なうようにしたため、信号の送受を行なう信号ケーブルが不用となる。
また、パルス発生・受信部への電源の供給を管内挿入式超音波探傷検査装置内の電源供給部で行うようにしたため、電源を供給する電源ケーブルが不用となる。
さらに、超音波探傷手段を複数に分割して一つのブロックを軽量化及び小型化したため、加圧水による水流圧のみで円滑に管内挿入式超音波探傷検査装置を管内移送することが可能となり、搬送ケーブルが不用となる。
【0012】
したがって、本発明の管内挿入式超音波探傷検査装置によれば、信号ケーブル、電源ケーブル及び搬送ケーブルを備える必要がなくなるためケーブルレスとすることが可能となる。ケーブルレス化により、重量の大きい各種ケーブル、ケーブルの巻取り装置等が不用となり、管内挿入式超音波探傷検査装置の小型化、低コスト化が可能となる。
また、複数に分割された超音波探傷手段を互いにフレキシブル構造体で接続しているため、屈曲部においても管内を円滑に移動することが可能である。
さらに、超音波探触子を管の径方向に対して略中央に保持する調芯治具を備えているため、精度の高い超音波探傷が可能となる。
【0013】
なお、前記制御部は、複数種類の制御を一つの制御部で行うようにしてもいいし、各制御を別個に行う複数の制御部からなる集合体としてもよい。
また、前記記憶部に蓄積した受信エコー信号は、管内挿入式超音波探傷検査装置を管外に出した後に、有線又は無線回線を介して外部へ取り出してもよいし、管内挿入式超音波探傷検査装置が管内に挿入された状態で、無線により外部へ取り出してもよい。
【0014】
また、前記超音波探触子は、前記管の周方向に複数配置された振動子を有し、前記パルス発生・受信部は、前記複数の振動子に時間差をもって前記パルス信号を送出することが好ましい。
このように、複数の振動子を管の周方向に配置することで、水流方向(管の長さ方向)と管の周方向のいずれも超音波の探傷範囲となり、精度の高い超音波探傷検査を行なうことができる。また、一つの振動子を周方向に回転させながら超音波探傷する場合に比べて、回転駆動装置を設置する必要がなく小型化できる。また、駆動装置への電源供給が不用であるため電源供給部を小型化できる。
さらに、パルス発生・受信部が、複数の振動子に時間差をもってパルス信号を送出する構成としたため、振動子の数よりも少ない(例えば一つの)パルス発生・受信部で超音波探傷を行なうことが可能となり、パルス発生・受信部の小型化が図れる。
【0015】
また、前記超音波探傷手段は、前記パルス発生・受信部で受信した前記受信エコー信号をA/D変換するA/D変換部を含むことが好ましく、これにより記憶部に蓄積するデータ容量を小さくすることができ、且つデータの加工(信号処理)がし易くなる。
【0016】
また、前記制御部が、前記パルス発生・受信部におけるパルス信号の送出タイミングの制御と、前記記憶部への前記受信エコー信号の書き込みの制御と、前記A/D変換部でのA/D変換の制御とを行なうFPGA(Field Programmable Gate Array)であることが好ましい。
【0017】
FPGAは、多数の論理回路を一つの半導体チップに集積し、アレイ状にした集積回路である。またFPGAは、論理回路をユーザの手元(現場)でプログラミングにより定義又は変更できる。このFPGAが、パルス発生・受信部におけるパルス信号の送出タイミングの制御(プリアンプ受信も含むことが好ましい)と、記憶部への受信エコー信号の書き込みの制御と、A/D変換部でのA/D変換の制御とを行なうようにしたため、制御部を大幅に小型化することが可能となる。FPGAは、上記3つの制御に限定されず、データ回収命令を受けての通信の制御を含む、他の制御も行うようにしてもよい。
【0018】
さらに、前記フレキシブル構造体に取り付けられ、水流中における浮力を生じさせる浮きを備えることが好ましく、これにより、超音波探傷手段の重量による影響を最小限に抑えることができ、管内挿入式超音波探傷検査装置が管内を円滑に移動することが可能となる。
【0019】
また、前記超音波探傷手段の前記水流方向に沿った面に取り付けられたひげ状物を備えることが好ましく、このひげ状物により超音波探傷手段が水流圧を受け易くなり、管内挿入式超音波探傷検査装置の円滑な管内移送が可能となる。
【0020】
さらに、前記水流方向に対して垂直に、前記フレキシブル構造体に取り付けられた円盤を備えることが好ましく、この円盤により超音波探傷手段が水流圧を受け易くなり、管内挿入式超音波探傷検査装置の円滑な管内移送が可能となる。
【0021】
さらにまた、前記水流方向の最下流側に位置する前記超音波探傷手段に、線状体により接続されたパラシュート状物又は円盤を備えることが好ましく、このパラシュート状物又は円盤により超音波探傷手段が水流圧を受け易くなり、管内挿入式超音波探傷検査装置の円滑な管内移送が可能となる。
【0022】
また、本発明の超音波探傷検査システムは、上記した管内挿入式超音波探傷検査装置と、前記管の外部に配置され、前記管内挿入式超音波探傷検査装置の前記記憶部に接続可能なインタフェース装置と前記インタフェース装置を介して前記記憶部から受け取るデータに基づいて前記管内の異常検出結果を出力する出力手段とを備えることを特徴とする。
【0023】
このように、インタフェース装置を介して、記憶部が蓄積されたデータをもとに管内の異常検出結果を管外部の出力手段に出力することにより、記憶部に蓄積されたデータを有効利用することが可能となる。また、このデータをもとに様々な信号処理を行なうことが可能となり、所望の異常検出結果を簡単に出力することができる
【0024】
また、前記管内挿入式超音波探傷検査装置は、前記管壁の内面で反射した第1受信エコー信号と前記管壁の外周面で反射した第2受信エコー信号との時間差から前記管壁の肉厚を算出する算出部を備え、前記算出部で算出した前記管壁の肉厚を前記記憶部に蓄積し、前記記憶部に蓄積した前記管壁の肉厚を、前記インタフェースを介して前記出力手段で出力することが好ましい。
このように、管内挿入式超音波探傷検査装置の算出部で管壁の肉厚を算出することにより、管外部の出力手段が管壁の肉厚を算出するためのプログラムを有していなくてもよく、汎用性が高い。
なお、管壁の肉厚は、第1受信エコー信号と第2受信エコー信号との時間差と相関しており、互いに換算可能であるため、管壁の肉厚の代替として時間差のみを算出してこれを記憶部に蓄積してもよい。また、算出部は、制御部に含まれていてもよい。
【0025】
また、前記管壁の内面で反射した第1受信エコー信号と前記管壁の外周面で反射した第2受信エコー信号とを、前記インタフェース装置を介して前記記憶部から受け取り、前記第1受信エコー信号と前記第2受信エコー信号との時間差から前記管壁の肉厚を算出する信号処理手段を備え、前記信号処理手段で算出した前記管壁の肉厚を前記出力手段で出力することが好ましい。
このように、管外部の信号処理手段で管壁の肉厚を算出することにより、管内挿入式超音波探傷検査装置の算出部が不用となり、管内挿入式超音波探傷検査装置の装置構成を簡素化できる。
【0026】
また、前記超音波探触子は周方向に複数配置された振動子を有し、前記記憶部は前記管壁の肉厚を前記複数の振動子ごとに蓄積し、前記管壁の周方向に複数配置された前記振動子に対応する、前記管壁の周方向に沿った複数点における前記肉厚の最小値を選択し、この最小値を前記管壁の長さ方向位置に対応させて出力することが好ましい。
このように、管壁の周方向に沿った複数点における肉厚の最小値を選択することにより、管壁周囲で最も減肉が進んでいる部位を基準として異常検出することができ、管壁の減肉を確実に検出できる。また、肉厚の最小値を管壁の長さ方向位置に対応させて出力することにより、管のどの位置で減肉が進んでいるかが把握しやすくなる。
なお、測定した肉厚における管壁の長さ方向位置は、測定時間と相関しており、互いに換算可能であるため、長さ方向位置として測定時間を用いてもよい。
【0027】
さらに、前記第1受信エコー信号の高さの変動幅が予め設定されたしきい値よりも大きい場合に、この第1受信エコー信号に対応する前記肉厚を除外するノイズ処理手段を備えることが好ましい。
このように、第1受信エコー信号の高さの変動を算出し、この変動幅が予め設定されたしきい値よりも大きくなる場合に第1受信エコー信号に対応する前記肉厚を除外することにより、ノイズの影響を受けた可能性のある信号を除去して精度の高い異常検出を行なうことが可能となる。
【0028】
さらにまた、前記管壁の特徴部における基準エコー信号に基づいて、前記受信エコー信号の測定時間から前記肉厚に対応する前記管壁の長さ方向位置を割り付けることが好ましい。
前記特徴部とは、例えば、管の屈曲部や突合せ溶接部である。この特徴部では、特徴部以外の部位とは異なるエコー信号が受信される。したがって、これを基準エコー信号とし、この基準エコー信号に基づいて受信エコー信号の測定時間から管壁の肉厚に対応する管壁の長さ方向位置を割り付けることにより、簡単に且つ精度よく測定位置が求められる。
【発明の効果】
【0029】
以上記載のように本発明によれば、信号ケーブル、電源ケーブル及び搬送ケーブルを備える必要がなくなるためケーブルレスとすることが可能となる。ケーブルレス化により、重量の大きい各種ケーブル、ケーブルの巻取り装置等が不用となり、管内挿入式超音波探傷検査装置の小型化、低コスト化が可能となる。
また、複数に分割された超音波探傷手段を互いにフレキシブル構造体で接続しているため、屈曲部においても管内を円滑に移動することが可能である。
さらに、超音波探触子を管の略中央に保持する調芯治具を備えているため、精度の高い超音波探傷が可能となる。
【図面の簡単な説明】
【0030】
【図1】本発明の実施形態に係る管内挿入式超音波探傷検査装置の側面図である。
【図2】超音波探触子に用いられる帯型可塑性振動子の配置を説明する模式図である。
【図3】防水構造体とフレキシブルシャフトを示す断面図である。
【図4】本発明の実施形態に係る超音波探傷検査システムのブロック図である。
【図5】第1受信エコー信号と第2受信エコー信号を説明する図である。
【図6】第1受信エコー信号と第2受信エコー信号の波形を示す図である。
【図7】浮きを付加した管内挿入式超音波探傷検査装置の部分側面図である。
【図8】ひげ状物を付加した管内挿入式超音波探傷検査装置の部分側面図である。
【図9】防水構造体の外径を増大させた管内挿入式超音波探傷検査装置の部分側面図である。
【図10】調芯治具を有する管内挿入式超音波探傷検査装置の部分側面図である。
【図11】円盤を有する管内挿入式超音波探傷検査装置の部分側面図である。
【図12】パラシュート状物又は円盤を有する管内挿入式超音波探傷検査装置の部分側面図である。
【図13】水流かく乱部材を有する管内挿入式超音波探傷検査装置の部分側面図である。
【図14】窪みを有する管内挿入式超音波探傷検査装置の部分側面図である。
【図15】凹凸部を有する管内挿入式超音波探傷検査装置の部分側面図である。
【図16】摩擦低減部材を有する管内挿入式超音波探傷検査装置の部分側面図である。
【図17】位置情報認識手段を有する管内挿入式超音波探傷検査装置の全体構成図である。
【図18】位置情報認識手段を有する管内挿入式超音波探傷検査装置の部分側面図である。
【図19】音波送信器が装着されたボイラチューブを示す側面図である。
【図20】音波情報と、受信信号情報の模式図である。
【図21】受信結果と、測定位置を示す図である。
【図22】位置情報を確認するグラフである。
【図23】エンコーダ記憶装置を有する管内挿入式超音波探傷検査装置の部分側面図である。
【図24】図23とは別のエンコーダ記憶装置を有する管内挿入式超音波探傷検査装置の部分側面図である。
【図25】従来の管内挿入式超音波探傷検査装置の側面図である。
【図26】従来の管内挿入式超音波探傷検査装置をボイラチューブに適用した図である。
【発明を実施するための形態】
【0031】
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
【0032】
図1は本発明の実施形態に係る管内挿入式超音波探傷検査装置の側面図である。
管内挿入式超音波探傷検査装置10は、水ポンプ(不図示)により管(管壁)38内に送り込まれた加圧水により形成された水流39によって管38内を移動しながら、管38内の異常の有無を検出する。また、管内挿入式超音波探傷検査装置10は、管38内を移送するためのコイルバネ等を用いたケーブル、電源供給のためのケーブル、又は信号送受のためのケーブルを用いずにケーブルレスで超音波探傷検査を行なうものである。
【0033】
管内挿入式超音波探傷検査装置10は、主に、超音波探触子(センサ)11、パルス発生・受信部(Pelser/Receiver)12、A/D変換部13と記憶部(メモリ)14と制御部15を含むPCユニット16、昇圧回路17と電池18を含む電源供給部19を含む超音波探傷手段と、この超音波探傷手段が複数に分割された各超音波探傷手段を収容する防水構造体20と、複数の防水構造体20を互いに接続するフレキシブルシャフト(フレキシブル構造体)25と、超音波探触子を管38の径方向の略中央に保持する調芯治具26とを備える。
【0034】
超音波探触子11は、パルス信号が印加されると管壁38に向けて超音波を発振し、管壁38で反射した受信エコー信号を受波するとその超音波の強度に応じて受信エコー信号を出力する。この超音波探触子11は、音響/電気可逆的変換素子を有し、例えば電歪素子又は磁歪素子、あるいはこれらの複合体等からなる振動子を一又は複数有する。
複数の振動子を有する超音波探触子11を用いる場合、図2(A)に示すように、管壁38の周方向に角度をずらして複数の振動子31を配置することが好ましい。
【0035】
管内挿入式超音波探傷検査装置10は水流圧のみで管38内を移動するため、超音波探触子11の姿勢を制御することが難しいが、複数の振動子31を管壁38の周方向に複数配置することで、スキャン範囲30が管壁38の周方向に複数存在することとなり、超音波探触子11を回転させることなく管壁38の周方向の異常を検出することが可能となる。また、一つの振動子を周方向に回転させながら超音波探傷する場合に比べて、回転駆動装置を設置する必要がなく小型化できる。また、駆動装置への電源供給が不用であるため電源供給部を小型化できる。
さらに、パルス発生・受信部12が、複数の振動子に時間差をもってパルス信号を送出する構成とすることが好ましく、これにより振動子の数よりも少ない(例えば一つの)パルス発生・受信部12で超音波探傷を行なうことが可能となり、パルス発生・受信部12の小型化が図れる。
【0036】
特に、複数の振動子を配置する場合、図2(B−1)、(B−2)に示すような帯型可塑性振動子33を用いることが好ましい。帯型可塑性振動子33は、可塑性を有し、曲面に沿って屈曲可能な振動子である。例えば図示するように、超音波探触子11の中心部35にその曲率を合わせて帯型可塑性振動子33を4つ配置し、それぞれのスキャン範囲34を90度とすることで、中心部35の周囲360度を一度にスキャンできる。なお、図2(B−1)、(B−2)は、説明を分かりやすくするため4つの帯型可塑性振動子33を2つに分けて示しており、実際には中心部35の周囲に90度ずつ角度を異ならせて4つ配置している。図示は帯型可塑性振動子33を4つ配置した例を示したが、帯型振動子33の対応角度に応じて複数配置する。
【0037】
図1を参照して、パルス発生・受信部12は、パルス信号を発生し、超音波探触子11に対してパルス信号を印加するとともに、超音波探触子11から出力した受信エコー信号を受信する。このパルス発生・受信部12は、パルス信号を発生する信号発生部と、受信エコー信号を受信する信号受信部とを含む。信号発生部は、例えば、内部に基本信号を発生するクロック生成器を有し、基本信号の周波数を基に、予め設定された周波数データが表す周波数のパルス信号を出力するパルス発生器と、発生したパルス信号を複数の振動子ごとに遅延させる遅延回路と、遅延がかけられたパルス信号を高電圧に変換して超音波探触子11に印加する増幅回路とを有する。これらは、後述する制御部15により制御される。また、複数の振動子を有する超音波探触子11を用いる場合には、これに応じたチャンネル数を有するパルス発生・受信部12を用いる。
【0038】
PCユニット16は、A/D変換部13と記憶部14と制御部15を一つの基板上に搭載した構成を図示しているが、この構成に限定されるものではなく、これらを別個に搭載した構成、又はいずれか2つを搭載した構成としてもよい。なお、A/D変換部13を有していない構成としてもよい。
A/D変換部13は、パルス発生・受信部12で受信した受信エコー信号をアナログ波形からデジタル信号に変換する。
記憶部14は、A/D変換部13でデジタル変換した受信エコー信号を蓄積する。A/D変換部13を有していない場合は、アナログ波形を記憶してもよい。
【0039】
制御部15は、少なくともパルス発生・受信部12におけるパルス信号の送出、及び記憶部14への受信エコー信号の書き込みを制御する。制御部15は、複数種類の制御を一つの制御部15で行うようにしてもいいし、各制御を別個に行う複数の制御部15からなる集合体としてもよい。
さらに、例えばA/D変換部13によるA/D変換の制御等を制御してもよい。好ましくは、これらの制御を一つの制御部15で制御可能としたFPGA(Field Programmable Gate Array)を用いる。FPGAは、多数の論理回路を一つの半導体チップに集積し、アレイ状にした集積回路である。またFPGAは、論理回路をユーザの手元(現場)でプログラミングにより定義又は変更できる。このFPGAが、パルス発生・受信部12におけるパルス信号の送出タイミングの制御(プリアンプ受信も含むことが好ましい)と、記憶部14への受信エコー信号の書き込みの制御と、A/D変換部13でのA/D変換の制御とを行なうようにしたため、制御部15を大幅に小型化することが可能となる。FPGAは、上記3つの制御に限定されず、データ回収命令を受けての通信の制御を含む、他の制御も行うようにしてもよい。
【0040】
電源供給部19は、昇圧回路17と電池18を含む。昇圧回路17は、パルス発生・受信部12、PCユニット16へ電池18の電力を分配する。電池18は電力の供給をON/OFFする電源スイッチを備えていてもよい。
【0041】
上記した超音波探傷手段は、複数に分割されて防水構造体20に収容されている。図1には、超音波探触子11とパルス発生・受信部12とPCユニット16と昇圧回路17と電池18とに分割した例を示したが、これに限定されるものではなく、検査対象である管38の径に基づき防水構造体20の径を設定し、この防水構造体20に収容されるように適宜、超音波探傷手段を分割することが好ましい。
【0042】
図3に示すように、防水構造体20は、例えばPP樹脂などの水より軽量な材料によって円形状、楕円形状、又は多角柱形状に形成され、防水構造として内部に空気を閉じ込められるようになっている。これにより、管内挿入式超音波探傷検査装置10が水中に浮いた状態で搬送され、管38内面に突起等があっても摩擦を生じにくくなる。
この防水構造体20は、分割された超音波探傷手段を収容する空間22を含む収容部21と、収容部21の一端を塞ぐ蓋部23とを有している。収容部21の空間22は蓋部23により密閉され、水が浸入することがないように構成される。
複数の防水構造体20は、互いにフレキシブルシャフト25で接続される。フレキシブルシャフト25は、PVCのような軟質ゴム等の可撓性材料で形成される。このフレキシブルシャフト25は、防水構造体20との接続部がねじ状に形成されていてもよく、さらに防水構造を有していてもよい。
【0043】
図1を参照して、調芯治具26は、超音波探触子11が管38の径方向に対して略中央に位置するように超音波探触子11を保持する。図示には超音波探触子11を収容した防水構造体20の前後に設けているが、この位置に限定されるものではなく、他の防水構造体20の近傍に設けても良い。調芯治具26は、例えば、図25に示すように、複数の男性ワイヤからなるねじりかご式調芯具を用いてもよい。
また、フレキシブルシャフト25の端部に、先端ガイド27を設けていてもよい。先端ガイド27は、管内挿入式超音波探傷検査装置10の進行方向に垂直な面に対して傾斜した面、又は曲面を有し、管38の屈曲部(ベンド部)を進行する際に、管内挿入式超音波探傷検査装置10が円滑に管38内を通過できるように案内する。
【0044】
このように、パルス発生・受信部12で受信した受信エコー信号は記憶部14に蓄積し、且つパルス信号の送出タイミングの制御及び受信エコー信号の書き込みの制御は制御部15で行い、いずれも管内挿入式超音波探傷検査装置10内で行なうようにしたため、信号の送受を行なう信号ケーブルが不用となる。
また、パルス発生・受信部12への電源の供給を管内挿入式超音波探傷検査装置10内の電源供給部19で行うようにしたため、電源を供給する電源ケーブルが不用となる。
さらに、超音波探傷手段を複数に分割して一つの防水構造体20を軽量化及び小型化したため、加圧水による水流圧のみで円滑に管内挿入式超音波探傷検査装置10を管内移送することが可能となり、搬送ケーブルが不用となる。
【0045】
したがって、本実施形態の管内挿入式超音波探傷検査装置10によれば、信号ケーブル、電源ケーブル及び搬送ケーブルを備える必要がなくなるためケーブルレスとすることが可能となる。ケーブルレス化により、重量の大きい各種ケーブル、ケーブルの巻取り装置等が不用となり、管内挿入式超音波探傷検査装置10の小型化、低コスト化が可能となる。
また、複数に分割された超音波探傷手段を互いにフレキシブルシャフト25で接続しているため、ベンド部においても管内を円滑に移動することが可能である。
さらに、超音波探触子11を管の径方向に対して略中央に保持する調芯治具26を備えているため、精度の高い超音波探傷が可能となる。
【0046】
次に、図4を参照して、本実施形態に係る管内挿入式超音波探傷検査装置10の信号の流れを、管外機器1の構成を含めて説明する。図4には各機器の機能を示している。
最初に、パルス発生・受信部12によりパルス信号を超音波探触子11に送出する。パルス発生・受信部12は、制御部15により制御される。複数のチャンネルを有する場合、パルス発生・受信部12は各チャンネルごとに時分割でパルス信号を送出する。超音波探触子11は、各チャンネルの振動子より管壁38に超音波を発振し、管壁38で反射した受信エコー信号を各チャンネルの振動子で受信する。
超音波探触子11で受信した各チャンネルの受信エコー信号は、1チャンネルのパルス発生・受信部12で順番に受信され、増幅される。
【0047】
増幅された受信エコー信号は、A/D変換部13にてアナログ−デジタル変換される。アナログ−デジタル変換された受信エコー信号はエコー高さを表す。このエコー高さと、これに対応するチャンネル情報とを記憶部14に記憶する。また、記憶部14には、管壁38の肉厚データを記憶してもよい。管壁38の肉厚は、超音波探触子11で発振した超音波が管38の内面で反射した第1受信エコー信号S1と、管38の外周面で反射した第2受信エコー信号B1との受信時間の差から得られる。
【0048】
図5及び図6に示すように、第1受信エコー信号S1と第2受信エコー信号B1との受信時間の差は、管38の肉厚に対応しているため、第1受信エコー信号S1と第2受信エコー信号B1の時間差を肉厚データとして記憶してもよいし、第1受信エコー信号S1と第2受信エコー信号B1の時間差を換算し、換算結果を肉厚データとして記憶してもよい。なお、第1受信エコー信号S1と第2受信エコー信号B1の時間差は以下のように求められる。計測ゲート回路に予めしきい値を設定しておき、このしきい値を超えるエコー信号が計測クロック(カウンタ)に入力される。計測クロックでは、しきい値を超える1発目と2発目の受信エコー信号(ここではS1とB1)を検出した時、S1−B1間のクロック数をカウントする。このカウント値が管38の肉厚に対応する。さらに第1受信エコー信号S1と第2受信エコー信号B1の時間差から肉厚を換算する場合、管内挿入式超音波探傷検査装置10に算出部(不図示)を設けていてもよい。算出部は、制御部15に含まれていてもよい。
【0049】
A/D変換部13によるアナログ−デジタル変換、記憶部14による書き込みは制御部15により制御される。パルス発生・受信部12、A/D変換部13、記憶部14には、電池18からの電力が昇圧回路17により分配されて供給されている。
【0050】
超音波探傷検査が終了した後、記憶部14に蓄積されたデータは、管外機器1に移される。管外機器1は、インタフェース装置2と外部処理装置3とを有する。
インタフェース装置2は、記憶部14に蓄積されたデータを回収し、回収したデータを外部処理装置3に送る。インタフェース装置2は、データ回収通信ソフトを備えていてもよい。
記憶部14からのデータ回収は、有線又は無線回線により行なわれる。具体的には、管内挿入式超音波探傷検査装置10が、記憶部14に対してデータ通信可能に接続されたコネクタを有しており、インタフェース装置2にこのコネクタが接続され、記憶部14のデータを回収する。なお、コネクタは、記憶部14に直接設けられていなくてもよく、電池18に設けても良い。この場合、記憶部14から電池18のコネクタまでデータを送受信可能なケーブルを配置する。
【0051】
外部処理装置2は、記憶手段4と、出力手段5と、信号処理手段6と、ノイズ処理手段7とを含む。なお、外部処理装置2は、中央処理装置
(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、入出力インタフェース(I/Oインタフェース)及び表示画面等を有するマイクロコンピュータで構成されるものであり、上記各手段はこれらにより実行される機能を示したものである。
【0052】
記憶手段4は、管内挿入式超音波探傷検査装置10の記憶部14から回収したデータを記憶する。さらに、信号処理手段6やノイズ処理手段7で演算された結果を記憶してもよい。
出力手段5は、管内挿入式超音波探傷検査装置10の記憶部14からインタフェース装置1を介して回収したデータに基づいて、管38内の異常検出結果を出力する。出力する異常検出結果は、記憶部14に蓄積されたデータそのものであってもよいし、各種演算処理を施されたデータであってもよい。好ましくは、出力手段5では、管38の長さ方向位置に対応する管壁の肉厚分布を画像出力する。
【0053】
信号処理手段6は、記憶手段4に記憶されたデータをもとに各種演算処理を行う。例えば、以下(1)〜(3)の演算処理を行う。
(1)管38の長さ方向に対する受信エコー信号の測定位置を求める。
この測定位置は、後述する図17〜図24に示すように、管内挿入式超音波探傷検査装置10に設けられた位置情報認識手段により求めてもよい。
【0054】
また、測定位置を求める別の方法として、管壁38の特徴部における基準エコー信号に基づいて、受信エコー信号の測定時間から肉厚に対応する管38の長さ方向位置を割り付けてもよい。管壁38の特徴部とは、管38の屈曲部や突合せ溶接部等である。管38の特徴部では、特徴部以外の管壁38とは異なる受信エコー信号が受信される。この受信エコー信号を基準エコー信号とする。なお、ベンド部では、受信エコー信号が受信されない場合もある。したがって、基準エコー信号は無受信の状態を含むものとする。
測定された時系列の受信エコー信号から基準エコー信号を抽出し、基準エコー信号が測定された位置から、管内挿入式超音波探傷検査装置10の速度に基づいて受信エコー信号の管長さ方向位置を求めることができる。また、基準エコー信号が2つ以上測定される場合、特徴部2箇所の間で受信エコー信号を均等に割り付けることにより受信エコー信号の管長さ方向位置を求めることもできる。
【0055】
(2)第1受信エコー信号と第2受信エコー信号の時間差を算出し、管壁38の肉厚に換算する。換算した肉厚は管38の長さ方向位置に対応させて出力手段5で出力する。
(3)超音波探傷手段が複数チャンネルを有する場合、管壁38の周方向に複数配置された振動子に対応する、管壁38の周方向に沿った複数点における肉厚の最小値を選択し、この最小値を管38の長さ方向位置に関連付ける。肉厚の最小値は、管38の長さ方向位置に対応させて出力手段5で出力する。
【0056】
このように、管外機器1の信号処理手段6で管壁38の肉厚を算出することにより、管内挿入式超音波探傷検査装置10の算出部が不用となり、管内挿入式超音波探傷検査装置10の装置構成を簡素化できる。
また、信号処理手段6にて、管壁38の周方向に沿った複数点における肉厚の最小値を選択することにより、管壁38周囲で最も減肉が進んでいる部位を基準として異常検出することができ、管壁38の減肉をより確実に検出できる。また、肉厚の最小値を管壁38の長さ方向位置に対応させて出力することにより、管38のどの位置で減肉が進んでいるかが把握しやすくなる。
【0057】
ノイズ処理手段7は、測定された受信エコー信号からノイズを除去する。具体的には、ノイズ処理は以下のように行なう。管内挿入式超音波探傷検査装置10のパルス発生・受信部12で受信される第1受信エコー信号の高さは受信電圧に対応しており、記憶部15にはこの第1受信エコー信号の高さが時系列で蓄積されている。例えば管38の内面にスケール等が付着していると、第1受信エコー信号の高さが低くなる。したがって、ノイズ処理手段7により、第1受信エコー信号の高さが、予め設定されたしきい値よりも低い場合等のように、第1受信エコー信号の高さの変動幅がしきい値よりも大きい場合に、この第1受信エコー信号に対応する肉厚を除外する。第1受信エコー信号の代わりに第2受信エコー信号の変動幅に基づいてノイズ処理を行ってもよい。
このノイズ処理手段7によりノイズ処理を行った後に、上記した信号処理手段6により各種演算処理を行うことが好ましい。
【0058】
このように、第1受信エコー信号又は第2受信エコー信号の変動を算出し、この変動幅が予め設定されたしきい値よりも大きくなる場合に第1受信エコー信号第2受信エコー信号に対応する管壁38の肉厚を除外することにより、ノイズに該当する信号を除去して正確な異常検出を行なうことが可能となる。
さらに、外部処理装置2は、キャリブレーション機能、A−スコープ表示機能、厚さ表示機能、測定開始命令機能、測定終了命令機能、データ回収命令機能を含んでいてもよい。
【0059】
以上、本発明の実施形態に係る管内挿入式超音波探傷検査装置10及び超音波探傷検査システムの一例について詳細に説明したが、本発明はこれに限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
以下に、本実施形態の変形例を示す。変形例1〜10は、管内挿入式超音波探傷検査装置10の水流圧による管内移動を容易化する構成を示し、変形例11は、受信エコー信号の管長さ方向位置を検出する位置情報認識手段を備えた構成を示す。
【0060】
(変形例1)
図7は、変形例1を示し、浮き28を付加した管内挿入式超音波探傷検査装置10の側面図である。なお、図7において、管内挿入式超音波探傷検査装置10のうち、電源供給部19、調芯治具27は省略している。
浮き28は、水流39中における浮力を生じさせ、超音波探傷手段を収容した防水構造体20が水に沈まないようにして、防水構造体20が管38と摩擦を起こして抵抗が生じることを防止する。浮き28には、例えば、比重が水より軽い樹脂等で形成した容器に空気を封入したものや、軽量の木材で形成したものが用いられる。
【0061】
この浮き28は、防水構造体20又はフレキシブルシャフト25に取り付けられるが、好ましくは、防水構造体20の径が大きくならないようにフレキシブルシャフト25側に取り付けるとよい。さらに好ましくは、浮き28は、水流方向39の上流側に付加するとよい。このように、上流側に浮き28があると、下流側の防水構造体20が水流圧で管壁38に押し付けられることなく、管内挿入式超音波探傷検査装置10を円滑に移動させることができる。また、浮き28は、管38の径方向の略中心に位置することが好ましい超音波探触子11の近傍、あるいは重量の重い電池18の近傍に取り付けることが好ましい。
【0062】
このように、フレキシブルシャフト25に、水流中における浮力を生じさせる浮き28を取り付けることにより、超音波探傷手段の重量による影響を最小限に抑えることができ、管内挿入式超音波探傷検査装置10が管38内を円滑に移動することが可能となる。
【0063】
(変形例2)
図8は、変形例2を示し、ひげ状物41を付加した管内挿入式超音波探傷検査装置10の部分側面図である。この管内挿入式超音波探傷検査装置10は、水流方向39に沿った防水構造体20の面にひげ状物41が取り付けられている。ひげ状物41は、比重が水より軽い材料で形成されることが好ましく、例えば炭素繊維が用いられる。このひげ状物41は、防水構造体20に植立しても接着してもよい。またその長さは、水流39に対する抗力を増やせる長さであれば特に限定されないい。ひげ状物41を取り付ける防水構造体20は、超音波探触子11を収容した防水構造体20であることが好ましく、これにより超音波探触子11を管38の径方向の略中心に位置させることが可能となる。
【0064】
このように、防水構造体20の面にひげ状物41を取り付けることにより、水流39に対する抗力が増加し、管内挿入式超音波探傷検査装置10の管内移動を円滑にすることができる。また、ひげ状物41を管壁38に接触させることによって、防水構造体20を管38の径方向の略中心に位置させたり、防水構造体20と管38とが摩擦抵抗が生じないようにすることができる。
【0065】
(変形例3)
図9は、変形例3を示し、防水構造体20の外径を増大させた管内挿入式超音波探傷検査装置10の部分側面図である。この管内挿入式超音波探傷検査装置10は、水流方向39に直交する断面における防水構造体20の外径を増大する。例えば、防水構造体20が円形状又は楕円形状の場合、管壁38に向けて径を増大する。防水構造体20が多角柱状の場合、管38におけるベンド部を通過可能な範囲で最大径部を増大する。
【0066】
外径を増大する防水構造体20は、複数の防水構造体20のうち少なくとも一以上のものとする。特に、外径を増大する防水構造体20は、超音波探触子11を収容した防水構造体20であることが好ましく、これにより超音波探触子11を管38の径方向の略中心に位置させることが可能となる。
このように、防水構造体20の外径を増大することで、防水構造体20が水流39から受ける水流圧が大きくなり、より円滑に管内挿入式超音波探傷検査装置10を移動させることができる。
【0067】
(変形例4)
図10は、変形例4を示し、調芯治具42を有する管内挿入式超音波探傷検査装置10の部分側面図である。この管内挿入式超音波探傷検査装置10は、超音波探触子11を管38の径方向の略中央に位置させるための調芯治具42を複数有し、さらに、それぞれの調芯治具42が受ける水流圧の合計が大きくなるようにして水流39に対する抗力を増大させたものである。調芯治具42は、図10に示すように、フレキシブルシャフト25から管壁38に放射状に伸びる弾性ワイヤを有するものや、図25に示すように、傾斜角をもってフレキシブルシャフト25及び防水構造体20に取り付けられる複数の弾性ワイヤを有しているもの等が用いられる。
このように、調芯治具42を複数設けることによって水流圧が増加するため、管内挿入式超音波探傷検査装置10を円滑に管内移動させることができる。
【0068】
(変形例5)
図11は、変形例5を示し、円盤43を有する管内挿入式超音波探傷検査装置10の部分側面図である。この管内挿入式超音波探傷検査装置10は、円盤43がフレキシブルシャフト25に取り付けられている。円盤43は、水流方向39に直交する面に平行な面又は略平行な面を有し、フレキシブルシャフト25に複数取り付けられていてもよい。円盤43は調芯治具42とは異なり、管38におけるベンド部を通過可能な径以下の直径とすることが必須であり、必然的に水流圧を受ける面積は小さくなるが、この円盤43を複数設けることで、水流圧に対する抗力を増やすことができ、管内挿入式超音波探傷検査装置10の管内移動が円滑になる。
【0069】
(変形例6)
図12は、変形例6を示し、パラシュート状物44又は円盤45を有する管内挿入式超音波探傷検査装置10の部分側面図である。この管内挿入式超音波探傷検査装置10は、水流方向39の最下流側にある防水構造体20に、軽比重の材料で型持ちするように形成したパラシュート状物44を、又は円盤45を軽量のワイヤ等の線状体で接続して水流圧を有効に利用できるようにしたものである。
【0070】
パラシュート状物44、円盤45は上記した変形例5と同様に、調芯治具42とは異なり、管38におけるベンド部を通過可能な径以下の直径とすることが必須であるが、パラシュート状物44は水流39を大きく受け止めて巻き込みが多くなり、水流39に対する抗力を増やすことができ、また円盤45は変形例5と同様に複数設けることで、水流39に対する抗力を増やすことができるから、管内挿入式超音波探傷検査装置10の管38における移動が円滑になる。
【0071】
(変形例7)
図13は、変形例7を示し、水流かく乱部材46を有する管内挿入式超音波探傷検査装置10の部分側面図である。この管内挿入式超音波探傷検査装置10は、防水構造体20の表面に水流をかく乱するシート状の水流かく乱部材46を貼り付けている。水流かく乱部材46は、毛布のように表面がざらざらしたシート状物であり、水流39をかく乱させて水流から受ける抵抗を増やす。
【0072】
水流かく乱部材46としては、上記した毛布のようなものでだけでなく、布状物に植毛した服ブラシのようなものを貼り付けてもよい。
このように、水流かく乱部材46を防水構造体20の表面に貼り付けて水流39をかく乱することによって、防水構造体20の近傍で水流39の一部が取り込まれ、取り込まれた水流が、主となる水流39に対する抗力となって管内挿入式超音波探傷検査装置10を押すことになり、管38内における管内挿入式超音波探傷検査装置10の移動が円滑になる。
【0073】
(変形例8)
図14は、変形例8を示し、窪み47を有する管内挿入式超音波探傷検査装置10の部分側面図である。この管内挿入式超音波探傷検査装置10は、防水構造体20の水流39が当たる側に窪み47を設けている。
このように、防水構造体20の水流39が当たる側に窪み47を設けることで、図12に示すようにパラシュート状物44を設けた場合と同様に、水流39の巻き込みが多くなり、圧力差が増大して水流圧を増やすことができ、管内挿入式超音波探傷検査装置10の管30内における移動が円滑になる。
【0074】
(変形例9)
図15は、変形例9を示し、凹凸部48を有する管内挿入式超音波探傷検査装置10の部分側面図である。この管内挿入式超音波探傷検査装置10は、水流方向39に沿った防水構造体20の面に、凹凸部48を設けて、水流圧を発生させるものである。
この凹凸部48は、例えば、同図に示すように円盤状のものや、防水構造体20自体に形成した凹凸部など、それによって流水を巻き込み、流体力を発生させるものであればどのような構造でもよく、このような凹凸部48を設けることで、管内挿入式超音波探傷検査装置10の管38内における移動が円滑になる。
【0075】
(変形例10)
図16は、変形例10を示し、摩擦低減部材49を有する管内挿入式超音波探傷検査装置10の部分側面図である。この管内挿入式超音波探傷検査装置10は、防水構造体20の管壁38に対向した面に、摩擦低減部材49が取り付けられている。摩擦低減部材49は、防水構造体20が管壁38に当接したときに生じる摩擦係数を小さくするものであり、例えば車輪状の回転具、ベアリング形状の回転具のように回転する部材、又はフッ素樹脂などの摩擦係数の小さい固定部材等が用いられる。
このように、摩擦低減部材49を有することで、防水構造体20が管壁38に当たっても、非常に小さな摩擦抵抗しか発生しないため、管内挿入式超音波探傷検査装置10の管38内における移動が円滑になる。
【0076】
(変形例11)
図17〜図24は、変形例11を示し、位置情報認識手段を備えた管内挿入式超音波探傷検査装置10を説明する図である。なお、ここでは一例として、ボイラチューブ38を測定対象とした場合を示している。
図17に示すように、音波50を発信する音波送信器51−1、51−2をボイラチューブ(管)38の両端の出入り口部38a、38bに設けている。また、図17及び図18に示すように、その音波50を受信する前方側受信器52−1と後方側受信器52−2とを管内挿入式超音波探傷検査装置10の超音波探触子11の前方側(図中では左側)と後方側(図中では右側)にそれぞれ設けている。
【0077】
音波50を受信した時間のデータは、記憶装置14−1、14−2に記憶させておき、測定の後で、肉厚データと整合させて、その位置を特定する。
なお、超音波探触子11がボイラチューブ38の径方向中央に位置できるようにする調芯治具26は、前述した図10に示した複数の弾性ワイヤからなるものを用いているが、これに限定されるものではない。
【0078】
図19は、音波送信器51−2が、ボイラチューブ38の端部38bに設けられた挿入ノズル55を介して装着されている状態を示している。
この変形例11では、記憶部を2台設けて、前方側の記憶部14−1と、後方側の記憶部14−2とで独立してその時間データを記憶するようにしているが、これに限定されるものではなく、1台で共用するようにしてもよい。
そして、受信された音波50から求められる時間差により、測定位置を特定することができる。すなわち、音波送信器51−1、51−2から同時に発信された音波50を、前方側受信器52−1及び後方側受信器52−2により受信し、その時間情報を記憶部14−1、14−2で記憶させるようにしている。
【0079】
次に、位置情報を取得する方法の一例について説明する。
図20は変形例11に係る音波情報と、受信信号情報の模式図である。図21はその受信結果と、測定位置を示す図である。図22は変形例11に係る位置情報を確認するグラフである。
まず、ボイラチューブ38の両端に設けた音波送信器51−1、51−2から音波50を一秒ごとに発信する。その発信された音波は、図20に示すように、前方側受信器52−1の受信信号の情報(T、T、・・・、T)として記憶部14−1に記憶するとともに、後方側受信器52−2の受信信号の情報(T、T、・・・T)として記憶部14−2に記憶する。
【0080】
その結果、前方側受信器52−1と後方側受信器52−2においては、図21に示すような時間信号が記憶される。
そして、Δtが0になるときには、ボイラチューブ38の長さは全長の1/2となり、Δtが最小又は最大となるときには、ボイラチューブ38の長さの全長となる。その関係を図21及び図22に示す。
検査が終了した後、音波50を受信した時間のデータと、肉厚測定データとを整合させて、ボイラチューブ38の探傷、肉厚検査等の情報の位置を特定することができる。
【0081】
また、図23に示すように、この変形例11を応用させた位置情報認識手段として、超音波探触子11の先端側にエンコーダ記憶装置61を設け、管38の内面にローラ形状の車輪状部材62を接触させることで計測するようにしてもよい。
なお、この際、管38内面の凹凸に対応するように、凹凸のローラ形状の車輪状部材とすることで、管38内面との接触摩耗を低減するようにしている。
車輪状部材62の回転速度より、距離を算出し、装置内の記憶装置に記憶させることで測定位置を特定することができる。
【0082】
さらに、図24に示すように、ローラ形状の車輪状部材62A及び62Bを二方向に装着させて、走行の安定性を向上させるようにしてもよい。
また、ばね63を利用することにより、管38内面へ微力な圧力をかけて管38内面へ接触させている。
【0083】
以上、種々述べてきたように本実施形態に係る管内挿入式超音波探傷検査装置10は、複数に分割した超音波探傷手段を、互いにフレキシブルシャフト25で接続した防水構造体20に収容し、超音波探触子11を管38の略中央に保持する調芯治具26を設けたことで、水流圧のみで管38内を容易に移動することができ、超音波探触子11への電源供給や信号送受のためのケーブル、及び管内移動のためのケーブルが不用となる。従って、長く高価なケーブルとケーブルの巻取り装置が不用になることで、ケーブルの輸送コスト、大型で大きな力のポンプ等が不用となってコスト削減が可能となり、さらに、巻取り装置、ポンプ等を設置するスペースが不用となるとともに、ハンドリングが簡単になるから検査に対する熟練も不用となって人員も削減でき、メンテナンスも簡単になる。
【0084】
また、コイルバネ等を用いたケーブルや電源供給や信号の送受のためのケーブルがなくなることで、配管のベンド部での接触抵抗が減り、かつ防水構造体20に浮き28や水流圧を受けやすくする構造又は部材を設けたり、防水構造体20に管壁38との接触摩擦を低減する部材を設けたりすることで、浮き28の付加により超音波探傷手段の重量がキャンセルされ、水流圧を受けやすくする構造又は部材を設けたり、管壁38との接触摩擦を低減する部材を設けることで、円滑に管内を移動する管内挿入式超音波探傷検査装置10を提供することができる。
【0085】
なお、本実施形態に係る管内挿入式超音波探傷検査装置10及び超音波探傷検査システムは、火力発電プラント等に具備されるボイラのボイラチューブに好適に用いられる。これは、本実施形態に係る管内挿入式超音波探傷検査装置10は、小型化が可能であるため、管径が小さく且つ管が長いボイラチューブにおいても、精度良く且つ円滑に超音波探傷検査を実施することができるものである。
【符号の説明】
【0086】
1 管外機器
2 インタフェース装置
3 外部処理装置
4 記憶手段
5 出力手段
6 信号処理手段
7 ノイズ処理手段
10 管内挿入式超音波探傷検査装置
11 超音波探触子(センサ)
12 パルス発生・受信部(P/R)
13 A/D変換部
14 記憶部(メモリ)
15 制御部
16 PCユニット
17 昇圧回路
18 電池
19 電源供給部
20 防水構造体
25 フレキシブルシャフト(フレキシブル構造体)
26 調芯治具
28 浮き
31、33 振動子
38 管(管壁)
39 水流

【特許請求の範囲】
【請求項1】
水流圧によって管内を移動しながら前記管内の異常の有無を検出する管内挿入式超音波探傷検査装置において、
前記管内から管壁に向けて超音波を発振し、前記管壁で反射した受信エコー信号を受信する超音波探触子と、前記超音波探触子にパルス信号を送出し、前記超音波探触子から受信エコー信号を受信するパルス発生・受信部と、前記パルス発生・受信部で受信した受信エコー信号を蓄積する記憶部と、前記パルス発生・受信部における前記パルス信号の送出タイミングの制御及び前記記憶部への前記受信エコー信号の書き込みの制御を行う制御部と、前記パルス発生・受信部に電源を供給する電源供給部とを含む超音波探傷手段と、
複数に分割された前記超音波探傷手段を互いに接続するフレキシブル構造体と、
前記超音波探触子を前記管の略中央に保持する調芯治具とを備えることを特徴とする管内挿入式超音波探傷検査装置。
【請求項2】
前記超音波探触子は、前記管の周方向に複数配置された振動子を有し、
前記パルス発生・受信部は、前記複数の振動子に時間差をもって前記パルス信号を送出することを特徴とする請求項1記載の管内挿入式超音波探傷検査装置。
【請求項3】
前記超音波探傷手段は、前記パルス発生・受信部で受信した前記受信エコー信号をA/D変換するA/D変換部を含むことを特徴とする請求項1又は2に記載の管内挿入式超音波探傷検査装置。
【請求項4】
前記制御部が、前記パルス発生・受信部におけるパルス信号の送出タイミングの制御と、前記記憶部への前記受信エコー信号の書き込みの制御と、前記A/D変換部でのA/D変換の制御とを行なうFPGA(Field Programmable Gate Array)であることを特徴とする請求項3記載の管内挿入式超音波探傷検査装置。
【請求項5】
前記フレキシブル構造体に取り付けられ、水流中における浮力を生じさせる浮きを備えることを特徴とする請求項1乃至4のいずれか一項に記載の管内挿入式超音波探傷検査装置。
【請求項6】
前記超音波探傷手段の前記水流方向に沿った面に取り付けられたひげ状物を備えることを特徴とする請求項1乃至5のいずれか一項に記載の管内挿入式超音波探傷検査装置。
【請求項7】
前記水流方向に対して垂直に、前記フレキシブル構造体に取り付けられた円盤を備えることを特徴とする請求項1乃至6のいずれか一項に記載の管内挿入式超音波探傷検査装置。
【請求項8】
前記水流方向の最下流側に位置する前記超音波探傷手段に、線状体により接続されたパラシュート状物又は円盤を備えることを特徴とする請求項1乃至7のいずれか一項に記載の管内挿入式超音波探傷検査装置。
【請求項9】
請求項1乃至8のいずれか一項に記載される管内挿入式超音波探傷検査装置と、
前記管の外部に配置され、前記管内挿入式超音波探傷検査装置の前記記憶部に接続可能なインタフェース装置と
前記インタフェース装置を介して前記記憶部から受け取る情報に基づいて前記管内の異常検出結果を出力する出力手段とを備えることを特徴とする超音波探傷検査システム。
【請求項10】
前記管内挿入式超音波探傷検査装置は、前記管壁の内面で反射した第1受信エコー信号と前記管壁の外周面で反射した第2受信エコー信号との時間差から前記管壁の肉厚を算出する算出部を備え、
前記算出部で算出した前記管壁の肉厚を前記記憶部に蓄積し、前記記憶部に蓄積した前記管壁の肉厚を、前記インタフェースを介して前記出力手段で出力することを特徴とする請求項9記載の超音波探傷検査システム。
【請求項11】
前記管壁の内面で反射した第1受信エコー信号と前記管壁の外周面で反射した第2受信エコー信号とを、前記インタフェース装置を介して前記記憶部から受け取り、前記第1受信エコー信号と前記第2受信エコー信号との時間差から前記管壁の肉厚を算出する信号処理手段を備え、
前記信号処理手段で算出した前記管壁の肉厚を前記出力手段で出力することを特徴とする請求項9記載の超音波探傷検査システム。
【請求項12】
前記超音波探触子は周方向に複数配置された振動子を有し、前記記憶部は前記管壁の肉厚を前記複数の振動子ごとに蓄積し、
前記管壁の周方向に複数配置された前記振動子に対応する、前記管壁の周方向に沿った複数点における前記肉厚の最小値を選択し、この最小値を前記管壁の長さ方向位置に対応させて出力することを特徴とする請求項10又は11に記載の超音波探傷検査システム。
【請求項13】
前記第1受信エコー信号の高さの変動幅が予め設定されたしきい値よりも大きい場合に、この第1受信エコー信号に対応する前記肉厚を除外するノイズ処理手段を備えることを特徴とする請求項10乃至12の何れか一項に記載の超音波探傷検査システム。
【請求項14】
前記管壁の特徴部における基準エコー信号に基づいて、前記受信エコー信号の測定時間から前記肉厚に対応する前記管壁の長さ方向位置を割り付けることを特徴とする請求項10乃至13の何れか一項に記載の超音波探傷検査システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate


【公開番号】特開2011−75384(P2011−75384A)
【公開日】平成23年4月14日(2011.4.14)
【国際特許分類】
【出願番号】特願2009−226599(P2009−226599)
【出願日】平成21年9月30日(2009.9.30)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】