説明

蒸気噴射式ガスタービンの蒸気漏れ検出装置

【課題】蒸気噴射式ガスタービンにおいて燃焼器へ水蒸気を供給するための蒸気バイパス系統における水蒸気の漏洩の有無を早期に検知することができる蒸気漏れ検出装置を提供すること。
【解決手段】蒸気漏れ検出装置7は、噴射蒸気圧力計61による測定値を圧力データP(i)として逐次読み込むと共に、噴射蒸気流量計62による測定値を流量データS(i)として逐次読み込む読込手段71と、所定の測定期間T3内に逐次読込みを行った複数の圧力データP(i)及び複数の流量データS(i)についてそれぞれ標準偏差Pd、Sdを求め、圧力データP(i)についての標準偏差Pdと流量データS(i)についての標準偏差Sdとの比率Sd/Pdが、所定の正常範囲を複数回継続して外れたときに、蒸気バイパス系統6に水蒸気Sの漏洩が生じたことを検出する判定手段72とを有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蒸気噴射式ガスタービンにおいて、排ガス蒸気ボイラから燃焼器への蒸気バイパス系統に、水蒸気の漏洩が生じたか否かを検出することができる蒸気漏れ検出装置に関する。
【背景技術】
【0002】
従来より、ガスタービンを用いて発電を行うと共に、ガスタービンから排気される排ガスの排熱を利用したコージェネレーションシステムが知られている。例えば、特許文献1の蒸気噴射式ガスタービン発電装置においては、燃焼器において、圧縮機によって圧縮した空気と燃料ガスとを用いて燃焼を行い、この燃焼ガスによってタービンを回転駆動すると共に、圧縮機及び発電機を駆動している。また、排熱回収ボイラにおいて、タービンの排熱を利用して水蒸気を発生させ、この水蒸気の一部を燃焼器へ噴射すると共に水蒸気の残部をプロセス蒸気として用いる工夫がなされている。例えば、特許文献1においては、燃焼器の失火を回避して、安定した運転を行うことができる蒸気噴射ガスタービンの制御方法が開示されている。
【0003】
しかしながら、上記従来の蒸気噴射式ガスタービンにおいては、燃焼器へ噴射蒸気の供給を行う経路において、水蒸気が漏洩したときには、この漏洩を早期に発見することはできなかった。すなわち、ガスタービンの出力は、空気の吸気温度、燃料ガスの供給量、噴射蒸気の供給量等に影響され、常に変化している。よって、従来の蒸気噴射式ガスタービンにおいては、水蒸気の漏洩による若干の出力低下は明確にはわからず、水蒸気の漏洩が多くなり、大きな出力低下になって初めて水蒸気の漏洩を検出することができていた。
【0004】
【特許文献1】特開2007−332817号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は、かかる従来の問題点に鑑みてなされたもので、蒸気噴射式ガスタービンにおいて燃焼器へ水蒸気を供給するための蒸気バイパス系統における水蒸気の漏洩の有無を早期に検知することができる蒸気漏れ検出装置を提供しようとするものである。
【課題を解決するための手段】
【0006】
本発明は、タービンホイールとコンプレッサホイールとを同一軸上に配設してなるガスタービンと、
燃料供給系統から受け取る燃料ガスと、上記コンプレッサホイールによって吸入、圧縮された圧縮空気とを用いて燃焼を行う燃焼器と、
該燃焼器による燃焼ガスによって回転する上記タービンホイールの回転を受けて発電を行う発電機と、
給水系統から受け取る給水と上記タービンホイールから受け取る排ガスとから、水蒸気を発生させる排ガス蒸気ボイラと、
該排ガス蒸気ボイラにおいて発生した水蒸気をプロセス蒸気として外部へ供給するための蒸気供給系統と、
該蒸気供給系統に配設し、上記排ガス蒸気ボイラにおいて発生する水蒸気の圧力を調整するためのプロセス蒸気制御弁と、
上記蒸気供給系統における上記プロセス蒸気制御弁の上流側位置と上記燃焼器とを接続し、上記蒸気供給系統における水蒸気の一部を上記燃焼器へ供給するための蒸気バイパス系統と、
該蒸気バイパス系統又は上記蒸気供給系統に配設し、上記排ガス蒸気ボイラにおいて発生した水蒸気の圧力を測定する噴射蒸気圧力計と、
上記蒸気バイパス系統に配設し、該蒸気バイパス系統を通過する水蒸気の流量を測定する噴射蒸気流量計と、
上記蒸気バイパス系統に配設し、上記燃焼器へ噴射する水蒸気の流量を調整するための噴射蒸気制御弁とを備えた蒸気噴射式ガスタービンにおいて、上記蒸気バイパス系統に水蒸気の漏洩が生じたか否かを検出することができる蒸気漏れ検出装置であって、
該蒸気漏れ検出装置は、上記噴射蒸気圧力計による測定値を圧力データとして逐次読み込むと共に、上記噴射蒸気流量計による測定値を流量データとして逐次読み込む読込手段と、
所定の測定期間内に逐次読込みを行った複数の上記圧力データ及び複数の上記流量データについてそれぞれ標準偏差又は分散値を求め、該圧力データについての標準偏差又は分散値と、該流量データについての標準偏差又は分散値との比率が、所定の正常範囲を一回又は複数回継続して外れたときに、上記蒸気バイパス系統に水蒸気の漏洩が生じたことを検出する判定手段とを備えていることを特徴とする蒸気噴射式ガスタービンの蒸気漏れ検出装置にある(請求項1)。
【0007】
本発明の蒸気漏れ検出装置は、蒸気噴射式ガスタービンにおいて燃焼器へ水蒸気を供給するための蒸気バイパス系統に水蒸気の漏洩が生じたか否かを検出することができるものである。
これを実現するために、本発明の蒸気噴射式ガスタービンにおいては、蒸気バイパス系統に配設した噴射蒸気圧力計及び噴射蒸気流量計を用いる。また、本発明の蒸気漏れ検出装置は、上記読込手段及び判定手段を備えており、噴射蒸気圧力計から読み込んだ圧力データ及び噴射蒸気流量計から読み込んだ流量データを用いて両者の標準偏差又は分散値(以下、標準偏差等という。)を求め、これらの比率より蒸気バイパス系統に水蒸気の漏洩が生じたか否かを検出することができるものである。
【0008】
本発明の蒸気漏れ検出装置は、蒸気噴射式ガスタービンの運転を行っている間は、ほぼ常時動作させておくことができる。そして、蒸気噴射式ガスタービンを運転する際には、プロセス蒸気制御弁の開度を調整し、これによって排ガス蒸気ボイラにおいて発生する水蒸気の圧力(蒸気供給系統及び蒸気バイパス系統における水蒸気の圧力)が所定の目標圧力に調整される。このとき、仮に噴射蒸気制御弁の開度が同じであったとしても、蒸気供給系統による水蒸気の供給先におけるプロセス蒸気の圧力の変化、排ガス蒸気ボイラへの給水系統からの給水の供給量と、排ガス蒸気ボイラへのタービンホイールからの排ガスの供給量及び供給温度とのバランスの変化等により、蒸気供給系統及び蒸気バイパス系統における水蒸気の圧力が変動し、これに伴い蒸気バイパス系統へ供給する水蒸気の流量も変動する。
【0009】
ここで、蒸気バイパス系統において水蒸気の漏洩が発生していないときには、蒸気バイパス系統における噴射蒸気(水蒸気)の圧力の変動により、蒸気バイパス系統における噴射蒸気(水蒸気)の流量も同様に変動し、その結果、噴射蒸気圧力計による測定値と噴射蒸気流量計による測定値との間には、ほぼ比例的な関係があると考えられる。その一方、蒸気バイパス系統において水蒸気の漏洩が発生したときには、蒸気バイパス系統における水蒸気の流量が増加する(噴射蒸気流量計による測定値が増加する)。その結果、蒸気バイパス系統における水蒸気の圧力が低下し(噴射蒸気圧力計による測定値が低下し)、プロセス蒸気制御弁が若干閉じる。そして、水蒸気の漏洩量が変わらなければこの状態のまま自然の圧力変動で噴射蒸気流量計による測定値が変動するが、噴射蒸気圧力計による測定値の変動量に対する、噴射蒸気流量計による測定値の変動量が大きくなる。
【0010】
そして、本発明の蒸気漏れ検出装置においては、蒸気バイパス系統において水蒸気の漏洩が発生したときに、この蒸気バイパス系統における水蒸気の圧力変化量と水蒸気の流量変化量との比率の変化に着目して、蒸気バイパス系統に水蒸気の漏洩が生じたか否かを検出する。
具体的には、蒸気漏れ検出装置における読込手段は、噴射蒸気圧力計による測定値を圧力データとして逐次読み込むと共に、噴射蒸気流量計による測定値を流量データとして逐次読み込む。このとき、蒸気漏れ検出装置は、圧力データ及び流量データを所定の計測間隔(サンプリングタイム)で逐次読み込み、記憶することができる。
【0011】
そして、蒸気漏れ検出装置における判定手段は、所定の測定期間内に逐次読込みを行った複数の圧力データ及び複数の流量データについてそれぞれ標準偏差等を求める。このとき、蒸気バイパス系統において水蒸気の漏洩が発生したときには、流量データの標準偏差等は圧力データの標準偏差等に比べて大きくなる。そして、判定手段は、圧力データについての標準偏差等と流量データについての標準偏差等との比率が、所定の正常範囲を外れたときに、蒸気バイパス系統に水蒸気の漏洩が生じたことを検出することができる。
なお、上記比率は、圧力データについての標準偏差等に対する流量データについての標準偏差等の値として求めることができる。この場合には、判定手段は、比率の値が所定の正常範囲としての所定値を超えたときに、蒸気バイパス系統に水蒸気の漏洩が生じたことを検出することができる。
【0012】
そして、本発明の蒸気漏れ検出装置においては、上記圧力データ及び流量データについての標準偏差等に基づいて蒸気バイパス系統における水蒸気の漏洩の有無を検出することにより、この漏洩の有無を早期に検知することができる。これにより、水蒸気の漏洩が発生したエネルギー効率の悪い状況で蒸気噴射式ガスタービンを運転することがなくなり、蒸気噴射式ガスタービンのエネルギー効率を向上させることもできる。
以上のように、本発明の蒸気漏れ検出装置によれば、蒸気噴射式ガスタービンにおいて燃焼器へ水蒸気を供給するための蒸気バイパス系統における水蒸気の漏洩の有無を早期に検知することができる。
【発明を実施するための最良の形態】
【0013】
上述した本発明の蒸気噴射式ガスタービンの蒸気漏れ検出装置における好ましい実施の形態につき説明する。
本発明において、上記判定手段は、上記測定期間よりも短い所定の予備測定期間毎に、該予備測定期間内に逐次読込みを行った複数の上記圧力データ及び複数の上記流量データについてそれぞれ偏差二乗和を求めると共に、上記圧力データ及び上記流量データについて、上記測定期間内における複数の上記予備測定期間の偏差二乗和の合計を用いて、上記標準偏差又は分散値をそれぞれ求めるよう構成することが好ましい(請求項2)。
【0014】
この場合には、蒸気噴射式ガスタービンにおいて、制御不能な受動的変化(蒸気供給系統による水蒸気の供給先における水蒸気の圧力の変化、排ガス蒸気ボイラへの給水系統からの給水の供給量と、排ガス蒸気ボイラへのタービンホイールからの排ガスの供給量及び供給温度とのバランスの変化、プロセス蒸気制御弁の開度の調整等)が存在するだけでなく、上記噴射蒸気制御弁の開度を調整したことによる能動的変化が存在するときであっても、圧力データ及び流量データのそれぞれについて標準偏差等を精度よく求めることができる。
【0015】
すなわち、上記能動的変化があるときには、圧力データの値及び流量データの値は、大きく変動する。このとき、所定の測定期間内に逐次読込みを行った複数の圧力データ及び複数の流量データについてそれぞれ単純に標準偏差等を求めると、能動的変化による影響が、圧力データについての標準偏差等と流量データについての標準偏差等との比率に反映されてしまう可能性が高い。
これに対し、圧力データについての偏差二乗和の合計を用いて圧力データの標準偏差等を求めると共に、流量データについての偏差二乗和の合計を用いて流量データの標準偏差等を求めることにより、上記能動的変化による影響が、圧力データについての標準偏差等と流量データについての標準偏差等との比率に反映されてしまうことを抑制することができる。
【実施例】
【0016】
以下に、本発明の蒸気噴射式ガスタービンの蒸気漏れ検出装置にかかる実施例につき、図面を参照して説明する。
本例の蒸気噴射式ガスタービン1は、図1に示すごとく、以下のガスタービン2、燃焼器3、燃料供給系統31、発電機25、排ガス蒸気ボイラ4、給水系統43、蒸気供給系統5、プロセス蒸気制御弁51、蒸気バイパス系統6、噴射蒸気圧力計61、噴射蒸気流量計62及び噴射蒸気制御弁63を有している。
ガスタービン2は、燃焼器3によって生じた燃焼ガスG1によって回転するタービンホイール21と、タービンホイール21の回転を受けて回転することによって空気A1を吸い込み、圧縮した圧縮空気A2を燃焼器3へ供給するコンプレッサホイール22とを同一軸上に配設してなる。
【0017】
同図に示すごとく、燃料供給系統31は、燃焼器3へ所定流量の燃料ガスFを供給するよう構成されている。燃焼器3は、燃料供給系統31から受け取る燃料ガスFと、コンプレッサホイール22によって吸入、圧縮された圧縮空気A2とを用いて燃焼を行うよう構成されている。また、燃焼器3には、ガスタービン2における作動ガスを増加させるために、蒸気バイパス系統6から水蒸気Sが噴射される。
発電機25は、コンプレッサホイール22の出力軸に接続してあり、コンプレッサホイール22の回転を受けて発電を行うよう構成されている。排ガス蒸気ボイラ4は、タービンホイール21から受け取る排ガスG2を用いて運転する排ガスボイラ41と、排ガスボイラ41により気液分離を行って水蒸気Sを発生させる蒸気ドラム42と、タービンホイール21から受け取る排ガスG2の排熱を利用して給水W1を予熱して予熱給水W2を作り出す給水系統43としてのエコノマイザ43とを有している。
【0018】
図1に示すごとく、蒸気供給系統5は、排ガス蒸気ボイラ4の蒸気ドラム42において発生した水蒸気Sをプロセス蒸気S1として外部へ供給するよう構成されている。プロセス蒸気制御弁51は、蒸気供給系統5に配設してあり、排ガス蒸気ボイラ4の蒸気ドラム42において発生する水蒸気Sの圧力を調整するよう構成されている。蒸気バイパス系統6は、蒸気供給系統5におけるプロセス蒸気制御弁51の上流側位置と燃焼器3とを接続し、蒸気供給系統5における水蒸気Sの一部を燃焼器3へ噴射するよう構成されている。
噴射蒸気圧力計61は、蒸気バイパス系統6に配設してあり、排ガス蒸気ボイラ4の蒸気ドラム42において発生した水蒸気Sの圧力を測定するよう構成されている。噴射蒸気流量計62は、蒸気バイパス系統6に配設してあり、蒸気バイパス系統6を通過する水蒸気Sの流量を測定するよう構成されている。噴射蒸気制御弁63は、蒸気バイパス系統6に配設してあり、燃焼器3へ噴射する水蒸気Sの流量を調整するよう構成されている。
【0019】
図1、図2に示すごとく、本例の蒸気漏れ検出装置7は、噴射蒸気圧力計61による測定値と噴射蒸気流量計62による測定値とを用いて、蒸気バイパス系統6に水蒸気Sの漏洩が生じたか否かを検出するよう構成されている。
蒸気漏れ検出装置7は、以下の読込手段71と判定手段72とを、コンピュータによる演算処理によって実現するよう構成してある。読込手段71は、噴射蒸気圧力計61による測定値を圧力データP(i)(i=1〜m)として逐次読み込むと共に、噴射蒸気流量計62による測定値を流量データS(i)(i=1〜m)として逐次読み込むよう構成されている。また、判定手段72は、所定の測定期間T3内に逐次読込みを行った複数の圧力データP(i)及び複数の流量データS(i)についてそれぞれ標準偏差Pd、Sdを求めるよう構成されている。そして、判定手段72は、圧力データP(i)についての標準偏差Pdと流量データS(i)についての標準偏差Sdとの比率Sd/Pdが、所定の正常範囲を複数回継続して外れたときに、蒸気バイパス系統6に水蒸気Sの漏洩が生じたことを検出するよう構成されている。
【0020】
以下に、本例の蒸気噴射式ガスタービン1の蒸気漏れ検出装置7につき、図1〜図7を参照して詳説する。
図1に示すごとく、本例の蒸気噴射式ガスタービン1は、燃焼器3において燃料ガスF、圧縮空気A2及び水蒸気Sを用いて燃焼を行い、この燃焼ガスG1によってガスタービン2を作動させて発電機25による発電を行うと共に、ガスタービン2からの排ガスG2を用いて排ガス蒸気ボイラ4によって水蒸気Sを発生させるよう構成されている。
蒸気供給系統5及び蒸気バイパス系統6は、いずれも配管によって構成されている。
本例の噴射蒸気圧力計61は、蒸気バイパス系統6における上流側位置(蒸気供給系統5に接続される位置に近い位置)に配設してあり、噴射蒸気流量計62は、蒸気バイパス系統6において噴射蒸気圧力計61の配設位置よりも下流側位置に配設してある。
【0021】
また、本例の噴射蒸気制御弁63は、蒸気バイパス系統6において噴射蒸気流量計62の配設位置よりも下流側位置(噴射蒸気流量計62と燃焼器3との間の位置)に配設してある。
蒸気ドラム42には、この蒸気ドラム42内の水蒸気Sの圧力を測定するためのドラム圧力計44が配設してある。本例のプロセス蒸気制御弁51は、ドラム圧力計44による測定値がほぼ一定になるよう、開度を調整するよう構成されている。
【0022】
本例の蒸気漏れ検出装置7における判定手段72は、上記測定期間T3よりも短い所定の予備測定期間T2毎に、予備測定期間T2内に逐次読込みを行った複数の圧力データP(i)について偏差二乗和Pv(j)(j=1〜n)を求めると共に、予備測定期間T2内に逐次読込みを行った複数の流量データS(i)について偏差二乗和Sv(j)(j=1〜n)を求めるよう構成されている。そして、判定手段72は、測定期間T3内における複数の予備測定期間T2の圧力データP(i)の偏差二乗和Pv(j)の合計を用いて、圧力データP(i)についての標準偏差Pdを求めると共に、測定期間T3内における複数の予備測定期間T2の流量データS(i)の偏差二乗和Sv(j)の合計を用いて、流量データS(i)についての標準偏差Sdを求めるよう構成されている。
【0023】
本例の蒸気漏れ検出装置7における読込手段71は、所定のサンプリング期間(サンプリング時間)T1毎に、圧力データP(i)及び流量データS(i)を読み込むよう構成されている。また、本例の蒸気漏れ検出装置7における判定手段72は、サンプリング期間T1の整数倍である所定の予備測定期間(演算時間)T2毎に、圧力データP(i)の偏差二乗和Pv(j)及び流量データS(i)の偏差二乗和Sv(j)を求めるよう構成されている。また、本例の判定手段72は、予備測定期間T2の整数倍である所定の測定期間(判定時間)T3毎に、圧力データP(i)の標準偏差Pd及び流量データS(i)の標準偏差Sdを求め、これらの比率Sd/Pdが所定の異常判定値Aよりも大きいか否かを検出するよう構成されている。本例のサンプリング期間T1は1分とし、本例の予備測定期間T2は10分とし、本例の測定期間T3は60分とした。
【0024】
次に、上記蒸気漏れ検出装置7を用いて、上記蒸気噴射式ガスタービン1における蒸気バイパス系統6における水蒸気Sの漏洩の有無を検出する動作につき、図2のフローチャートを参照して説明する。
蒸気噴射式ガスタービン1の運転を行う際には、燃焼器3における燃焼を行ってガスタービン2の運転を開始し、発電機25による発電を開始する。そして、蒸気漏れ検出装置7は、発電機25における発電出力が、所定の設定値以上になったか否かを判定し(図2のステップS101)、この発電出力が所定の設定値以上になったときには、蒸気漏れの有無の検出を開始し、異常診断のカウントを開始する(S102)。このカウントは、上記サンプリング期間T1の経過を計測するサンプリング用カウントC1と、上記予備測定期間T2の経過を計測する予備測定期間用カウントC2と、上記測定期間T3の経過を計測する測定期間用カウントC3とがある。
【0025】
次いで、蒸気漏れ検出装置7は、サンプリング用カウントC1が所定のサンプリング期間T1(本例では1分)になったか否かを判定し(S103)、サンプリング用カウントC1がサンプリング期間T1になるまで、上記S102及びS103を繰り返す。
そして、サンプリング用カウントC1がサンプリング期間T1になったときには、蒸気漏れ検出装置7は、噴射蒸気圧力計61により測定した水蒸気Sの圧力を圧力データP(i)として読み込むと共に、噴射蒸気流量計62により測定した水蒸気Sの流量を流量データS(i)として読み込む(S104)。
【0026】
次いで、蒸気漏れ検出装置7は、予備測定期間用カウントC2が所定の予備測定期間T2(本例では10分)になったか否かを判定し(S105)、予備測定期間用カウントC2が予備測定期間T2になるまで上記S102〜S105を繰り返す。また、予備測定期間用カウントC2が予備測定期間T2でないとき(S105の判定がNoのとき)には、蒸気漏れ検出装置7は、サンプリング用カウントC1をゼロに初期化する(S106)。
【0027】
次いで、予備測定期間用カウントC2が予備測定期間T2になったときには、蒸気漏れ検出装置7は、この予備測定期間T2の間に逐次読込みを行った圧力データP(i)及び流量データS(i)(本例では、1分毎の10個のデータ)のそれぞれについて偏差二乗和Pv(j)、Sv(j)を求める(S107)。そして、蒸気漏れ検出装置7は、この偏差二乗和Pv(j)、Sv(j)を保存する。
【0028】
ここで、上記圧力データP(i)の偏差二乗和Pv(j)は、以下の計算式(数1)によって求めることができる。ここで、mは、予備測定期間T2内におけるサンプリングのデータ数(本例ではm=10)を示し、P(i)は、予備測定期間T2内における各サンプリング時点の圧力データP(i)の値を示し、Pvは、予備測定期間T2内における圧力データP(i)の平均値と、予備測定期間T2内における各サンプリング時点の圧力データP(i)の値との差分を二乗したものの合計によって示される。
【0029】
【数1】

【0030】
また、上記流量データS(i)の偏差二乗和Sv(j)は、以下の計算式(数2)によって求めることができる。ここで、mは、予備測定期間T2内におけるサンプリングのデータ数(本例ではm=10)を示し、S(i)は、予備測定期間T2内における各サンプリング時点の流量データS(i)の値を示し、Svは、予備測定期間T2内における流量データS(i)の平均値と、予備測定期間T2内における各サンプリング時点の流量データS(i)の値との差分を二乗したものの合計によって示される。
【0031】
【数2】

【0032】
次いで、蒸気漏れ検出装置7は、測定期間用カウントC3が所定の測定期間T3(本例では60分)になったか否かを判定し(S108)、測定期間用カウントC3が測定期間T3になるまで上記S102〜S108を繰り返す。また、測定期間用カウントC3が測定期間T3でないとき(S108の判定がNoのとき)には、蒸気漏れ検出装置7は、予備測定期間用カウントC2をゼロに初期化すると共に(S109)、サンプリング用カウントC1をゼロに初期化する(S106)。
【0033】
次いで、上記S102〜S109を繰り返した後、測定期間用カウントC3が測定期間T3になったときには、蒸気漏れ検出装置7は、上記算出を行った複数の予備測定期間T2における圧力データP(i)の偏差二乗和Pv(j)(本例では、1分毎の10サンプルの偏差二乗和Pv(j))を合計し、これをサンプル数(m×n=60)で割って、圧力データP(i)に基づく標準偏差Pdを求める(S110)。また、このとき、蒸気漏れ検出装置7は、上記算出を行った複数の予備測定期間T2における流量データS(i)の偏差二乗和Sv(j)(本例では、1分毎の10サンプルの偏差二乗和Sv(j))を合計し、これをサンプル数(m×n=60)で割って、流量データS(i)に基づく標準偏差Sdを求める(S110)。
【0034】
ここで、上記圧力データP(i)に基づく標準偏差Pdは、以下の計算式(数3)によって求めることができる。ここで、Pv(j)は、各予備測定期間T2における圧力データP(i)の偏差二乗和Pv(j)の値を示し、nは、測定期間T3内における偏差二乗和Pv(j)のデータ数(本例ではn=6)を示す。
【0035】
【数3】

【0036】
また、上記流量データS(i)に基づく標準偏差Sdは、以下の計算式(数4)によって求めることができる。ここで、Sv(j)は、各予備測定期間T2における流量データS(i)の偏差二乗和Sv(j)の値を示し、nは、測定期間T3内における偏差二乗和Sv(j)のデータ数(n=6)を示す。
【0037】
【数4】

【0038】
次いで、蒸気漏れ検出装置7は、診断指標として、流量データS(i)に基づく標準偏差Sdと圧力データP(i)に基づく標準偏差Pdとの比率Sd/Pdを求め、診断指標Sd/Pdが所定の異常判定値Aよりも大きいか否かを判定する(S111)。このとき、Sd/PdがA以下であるときには、蒸気漏れはないとして、測定期間用カウントC3をゼロに初期化し(S112)、上記S102〜S112を繰り返す。なお、測定期間用カウントC3をゼロに初期化するときには、予備測定期間用カウントC2及びサンプリング用カウントC1もゼロに初期化する(S109、S106)。
【0039】
一方、Sd/PdがAよりも大きくなったとき(S111の判定がYesになったとき)には、Sd/PdがAよりも継続してN回(例えば、N=2〜10と設定することができる。)繰り返し大きくなったか否かを判定する(S113)。そして、Sd/PdがAよりも継続してN回繰り返し大きくなったとき(S113の判定がYesになったとき)には、蒸気漏れ検出装置7は、蒸気バイパス系統6において蒸気漏れがあったことを検知し、蒸気漏れ発生警報を発することができる(S114)。
【0040】
なお、蒸気漏れ検出装置7は、圧力データP(i)の標準偏差Pd及び流量データS(i)の標準偏差Sdを求める代わりに、圧力データP(i)の分散値及び流量データS(i)の分散値を求め、これらの分散値の比率が、N回繰り返して所定の異常判定値Aよりも大きくなったときに蒸気漏れがあったことを検知することもできる。
【0041】
本例の蒸気漏れ検出装置7は、蒸気噴射式ガスタービン1の運転を行っている間は、ほぼ常時動作させておくことができる。そして、蒸気噴射式ガスタービン1を運転する際には、プロセス蒸気制御弁51の開度を調整し、これによって排ガス蒸気ボイラ4において発生する水蒸気Sの圧力(蒸気供給系統5及び蒸気バイパス系統6における水蒸気Sの圧力)が所定の目標圧力に調整される。このとき、仮に噴射蒸気制御弁63の開度が同じであったとしても、蒸気供給系統5による水蒸気Sの供給先におけるプロセス蒸気S1の圧力の変化、排ガス蒸気ボイラ4の蒸気ドラム42へのエコノマイザ43からの予熱給水W2の供給量と、排ガス蒸気ボイラ4の排ガスボイラ41へのタービンホイール21からの排ガスG2の供給量及び供給温度とのバランスの変化等により、蒸気供給系統5及び蒸気バイパス系統6における水蒸気Sの圧力が変動し、これに伴い蒸気バイパス系統6に供給される水蒸気Sの流量も変動する。
【0042】
ここで、蒸気バイパス系統6において水蒸気Sの漏洩が発生していないときには、蒸気バイパス系統6における噴射蒸気(水蒸気)Sの圧力の変動により、蒸気バイパス系統6における噴射蒸気(水蒸気)Sの流量も同様に変動し、その結果、噴射蒸気圧力計61による測定値と噴射蒸気流量計62による測定値との間には、ほぼ比例的な関係があると考えられる。その一方、蒸気バイパス系統6において水蒸気Sの漏洩が発生したときには、蒸気バイパス系統6における水蒸気Sの流量が増加する(噴射蒸気流量計62による測定値が増加する)。その結果、蒸気バイパス系統6における水蒸気Sの圧力が低下し(噴射蒸気圧力計62による測定値が低下し)、プロセス蒸気制御弁51が若干閉じる。そして、水蒸気Sの漏洩量が変わらなければこの状態のまま自然の圧力変動で噴射蒸気流量計62による測定値が変動するが、噴射蒸気圧力計61による測定値の変動量に対する、噴射蒸気流量計62による測定値の変動量が大きくなる。
【0043】
そして、本例の蒸気漏れ検出装置7においては、蒸気バイパス系統6において水蒸気Sの漏洩が発生したときに、この蒸気バイパス系統6における水蒸気Sの圧力変化量と水蒸気Sの流量変化量との比率の変化に着目して、蒸気バイパス系統6に水蒸気Sの漏洩が生じたか否かを検出する。
ところで、蒸気噴射式ガスタービン1の蒸気バイパス系統6における水蒸気Sの圧力及び流量においては、上述したように、上記制御不能な受動的変化X1が存在するだけでなく、上記噴射蒸気制御弁63の開度を意図的に調整したことによる能動的変化X2も存在する。
【0044】
ここで、図3は、横軸に時間をとり、縦軸に蒸気バイパス系統6における水蒸気Sの流量をとって、蒸気噴射式ガスタービン1の運転中における両者の関係を示すグラフである。同図に示すごとく、仮に噴射蒸気制御弁63の開度が同じであったとしても、蒸気バイパス系統6における水蒸気Sの圧力及び流量には、制御不能な受動的変化X1が生じる。また、燃焼器3への水蒸気Sの供給量を変更するために、噴射蒸気制御弁63の開度が調整されることにより、蒸気バイパス系統6における水蒸気Sの圧力及び流量には能動的変化X2も生じる。
【0045】
そして、上記能動的変化X2があるときには、圧力データP(i)の値及び流量データS(i)の値は、大きく変動する。このとき、所定の測定期間T3内に逐次読込みを行った複数の圧力データP(i)及び複数の流量データS(i)についてそれぞれ単純に標準偏差を求めると、能動的変化による影響が、圧力データP(i)についての標準偏差と流量データS(i)についての標準偏差との比率に反映される可能性が高い。
【0046】
これに対し、本例の蒸気漏れ検出装置7における判定手段72は、上記のごとく、所定の予備測定期間T2毎に、予備測定期間T2内のサンプリング期間T1毎に逐次読込みを行った複数の圧力データP(i)について偏差二乗和Pv(j)を求めると共に、予備測定期間T2内のサンプリング期間T1毎に逐次読込みを行った複数の流量データS(i)について偏差二乗和Sv(j)を求める。そして、判定手段72は、測定期間T3内における複数の予備測定期間T2の圧力データP(i)の偏差二乗和Pv(j)の合計を用いて、圧力データP(i)についての標準偏差Pdを求めると共に、測定期間T3内における複数の予備測定期間T2の流量データS(i)の偏差二乗和Sv(j)の合計を用いて、流量データS(i)についての標準偏差Sdを求める。
【0047】
これにより、蒸気バイパス系統6における水蒸気Sの圧力及び流量に能動的変化X2が存在する場合においても、蒸気漏れ検出装置7は、圧力データP(i)及び流量データS(i)のそれぞれについて標準偏差Pd、Sdを精度よく求めることができる。そして、上記能動的変化X2による影響が、圧力データP(i)についての標準偏差Pdと流量データS(i)についての標準偏差Sdとの比率Sd/Pdに反映されてしまうことを抑制することができる。
【0048】
そして、蒸気バイパス系統6において水蒸気Sの漏洩が発生したときには、流量データS(i)の標準偏差Sdは圧力データP(i)の標準偏差Pdに比べて大きくなる。このとき、判定手段72は、圧力データP(i)についての標準偏差Pdと流量データS(i)についての標準偏差Sdとの比率である上記診断指標(Sd/Pd)が異常判定値(A)をN回継続して超えたときには、蒸気バイパス系統6に水蒸気Sの漏洩が生じたことを検出することができる。
【0049】
また、本例の蒸気漏れ検出装置7においては、上記圧力データP(i)及び流量データS(i)についての標準偏差Pd、Sdに基づいて蒸気バイパス系統6における水蒸気Sの漏洩の有無を検出することにより、この漏洩の有無を早期に検知することができる。これにより、水蒸気Sの漏洩が発生したエネルギー効率の悪い状況で蒸気噴射式ガスタービン1を運転することがなくなり、蒸気噴射式ガスタービン1のエネルギー効率を向上させることもできる。
【0050】
以上のように、本例の蒸気漏れ検出装置7によれば、蒸気噴射式ガスタービン1において燃焼器3へ水蒸気Sを供給するための蒸気バイパス系統6における水蒸気Sの漏洩の有無を早期に検知することができる。
【0051】
また、本例においては、図4に示すごとく、圧力データP(i)に基づく標準偏差Pd及び流量データS(i)に基づく標準偏差Sdを求める所定の測定期間T3と、水蒸気Sの漏洩の有無の判定を行う判定期間T4とを同じにした。そして、蒸気漏れ検出装置7は、所定の測定期間T3毎に、各標準偏差Pd、Sdを求め、この測定期間T3毎に、漏洩の有無の判定を行った。
【0052】
これに対し、図5に示すごとく、所定の判定期間T4は、所定の測定期間T3よりも短い期間とすることもできる。この場合には、蒸気漏れ検出装置7は、所定の判定期間T4毎(漏洩の有無の判定を行う判定時点毎)に、判定期間T4よりも長い期間を遡った測定期間T3における各標準偏差Pd、Sdを用いて、水蒸気Sの漏洩の有無の判定を行うことができる。この場合には、漏洩の有無の検出精度を維持したまま、この検出をより迅速に行うことができる。
【0053】
また、図6は、本例の蒸気漏れ検出装置7を用いて、蒸気噴射式ガスタービン1の蒸気バイパス系統6に生じる水蒸気Sの漏洩の有無を検出した例を示すグラフである。同図は、横軸に日(日にち)をとり、縦軸に診断指標(Sd/Pd)をとって、蒸気噴射式ガスタービン1の運転中における正常時(蒸気漏れが発生していないとき)、蒸気漏れ時、正常時(蒸気漏れの検知をして蒸気漏れが発生している箇所を修復したとき)についての実測結果を示す。
同図より、蒸気バイパス系統6に水蒸気Sの漏洩が発生すると、診断指標(Sd/Pd)が大きくなり、この漏洩の発生を早期に検出できることがわかる。
【図面の簡単な説明】
【0054】
【図1】実施例における、蒸気漏れ検出装置により蒸気漏れの有無の検出を行う蒸気噴射式ガスタービンを示す構成図。
【図2】実施例における、蒸気漏れ検出装置により蒸気漏れの有無の検出を行う動作を示すフローチャート。
【図3】実施例における、横軸に時間をとり、縦軸に蒸気バイパス系統における水蒸気の流量をとって、蒸気噴射式ガスタービンの運転中における両者の関係を示すグラフ。
【図4】実施例における、標準偏差を求める測定期間と、水蒸気の漏洩の有無の判定を行う判定期間とを同じにした場合の判定フローを示す説明図。
【図5】実施例における、水蒸気の漏洩の有無の判定を行う判定期間を、標準偏差を求める測定期間よりも短くした場合の判定フローを示す説明図。
【図6】実施例における、横軸に日をとり、縦軸に診断指標をとって、蒸気噴射式ガスタービンの運転中における診断指標の変化を示すグラフ。
【符号の説明】
【0055】
1 蒸気噴射式ガスタービン
2 ガスタービン
21 タービンホイール
22 コンプレッサホイール
25 発電機
3 燃焼器
31 燃料供給系統
4 排ガス蒸気ボイラ
41 排ガスボイラ
42 蒸気ドラム
43 エコノマイザ(給水系統)
5 蒸気供給系統
51 プロセス蒸気制御弁
6 蒸気バイパス系統
61 噴射蒸気圧力計
62 噴射蒸気流量計
63 噴射蒸気制御弁
7 蒸気漏れ検出装置
71 読込手段
72 判定手段
F 燃料ガス
G1 燃焼ガス
G2 排ガス
A1 空気
A2 圧縮空気
W1 給水
W2 予熱給水
S 水蒸気
T1 サンプリング期間
T2 予備測定期間
T3 測定期間
P(i) 圧力データ
S(i) 流量データ
Pv(j)、Sv(j) 偏差二乗和
Pd、Sd 標準偏差
Sd/Pd 比率(診断指標)

【特許請求の範囲】
【請求項1】
タービンホイールとコンプレッサホイールとを同一軸上に配設してなるガスタービンと、
燃料供給系統から受け取る燃料ガスと、上記コンプレッサホイールによって吸入、圧縮された圧縮空気とを用いて燃焼を行う燃焼器と、
該燃焼器による燃焼ガスによって回転する上記タービンホイールの回転を受けて発電を行う発電機と、
給水系統から受け取る給水と上記タービンホイールから受け取る排ガスとから、水蒸気を発生させる排ガス蒸気ボイラと、
該排ガス蒸気ボイラにおいて発生した水蒸気をプロセス蒸気として外部へ供給するための蒸気供給系統と、
該蒸気供給系統に配設し、上記排ガス蒸気ボイラにおいて発生する水蒸気の圧力を調整するためのプロセス蒸気制御弁と、
上記蒸気供給系統における上記プロセス蒸気制御弁の上流側位置と上記燃焼器とを接続し、上記蒸気供給系統における水蒸気の一部を上記燃焼器へ供給するための蒸気バイパス系統と、
該蒸気バイパス系統又は上記蒸気供給系統に配設し、上記排ガス蒸気ボイラにおいて発生した水蒸気の圧力を測定する噴射蒸気圧力計と、
上記蒸気バイパス系統に配設し、該蒸気バイパス系統を通過する水蒸気の流量を測定する噴射蒸気流量計と、
上記蒸気バイパス系統に配設し、上記燃焼器へ噴射する水蒸気の流量を調整するための噴射蒸気制御弁とを備えた蒸気噴射式ガスタービンにおいて、上記蒸気バイパス系統に水蒸気の漏洩が生じたか否かを検出することができる蒸気漏れ検出装置であって、
該蒸気漏れ検出装置は、上記噴射蒸気圧力計による測定値を圧力データとして逐次読み込むと共に、上記噴射蒸気流量計による測定値を流量データとして逐次読み込む読込手段と、
所定の測定期間内に逐次読込みを行った複数の上記圧力データ及び複数の上記流量データについてそれぞれ標準偏差又は分散値を求め、該圧力データについての標準偏差又は分散値と、該流量データについての標準偏差又は分散値との比率が、所定の正常範囲を一回又は複数回継続して外れたときに、上記蒸気バイパス系統に水蒸気の漏洩が生じたことを検出する判定手段とを備えていることを特徴とする蒸気噴射式ガスタービンの蒸気漏れ検出装置。
【請求項2】
請求項1において、上記判定手段は、上記測定期間よりも短い所定の予備測定期間毎に、該予備測定期間内に逐次読込みを行った複数の上記圧力データ及び複数の上記流量データについてそれぞれ偏差二乗和を求めると共に、上記圧力データ及び上記流量データについて、上記測定期間内における複数の上記予備測定期間の偏差二乗和の合計を用いて、上記標準偏差又は分散値をそれぞれ求めるよう構成してあることを特徴とする蒸気噴射式ガスタービンの蒸気漏れ検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−264220(P2009−264220A)
【公開日】平成21年11月12日(2009.11.12)
【国際特許分類】
【出願番号】特願2008−114034(P2008−114034)
【出願日】平成20年4月24日(2008.4.24)
【出願人】(000221834)東邦瓦斯株式会社 (440)
【Fターム(参考)】