説明

複数の陸上セルサイトとの同時通信のためのマルチリンク航空機セルラーシステム

マルチリンク航空機セルラーシステムは、航空機上に装着された複数の物理的に分離したアンテナと、付加的に任意の信号絶縁及び最適化技術とを利用して、空対地セルラー通信ネットワークの通話処理容量を改善する。これらの付加的な技術には、偏波ドメイン及び地上アンテナパターン整形(方位角、仰角、又は両平面における)を含むことができる。更に、コードドメイン分離を付加した場合、能力の劇的な向上が実現する。従って、空対地セルラー通信ネットワークは、2つ以上のセル又はセクタ間でそのトラフィック負荷を共有することにより、更に航空機に装着された複数の物理的に分離したアンテナを利用すると共に、付加的に任意の信号絶縁及び最適化技術を利用することによって航空機単位でその機能を強化することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、セルラー通信に関し、詳細には、航空機と複数の陸上セルサイトとの間に複数の無線周波通信リンクを同時に供給するためのシステムに関する。
【背景技術】
【0002】
セルラー通信の分野では、航空機がその軌道を飛行し、空港に接近/空港を出発するときに、複数の航空機の乗客の通信要件を効率的且つ連続的に満たすことには問題がある。
【0003】
典型的な空対地セルラー通信ネットワーク(地対空リンクを含む)は、多数の陸上(地上)基地局から成り、その各々は、セルサイト送信アンテナの周りに放射状に配置される予め設定された空間容積において無線周波数カバレッジエリアを提供する。この陸上基地局は、地上発信信号又は地上反射信号の受信の影響を受けず、上空方向にのみ伝送可能であるアンテナパターンを用いる。陸上基地局は、地理的に分散されており、一般的には、標準セルラー通信ネットワークレイアウトに従う。また、陸上基地局は、航空機が着陸状態にあるときにネットワークカバレッジを有効にするように空港近傍の同一の場所に配置することもでき、この場合には、アンテナパターンは、陸上に配置された航空機に対して最適化される。各陸上基地局のカバレッジエリアの境界は、実質的に隣接するサイトの境界と実質的に連続し、一般に、空対地セルラー通信ネットワークにおける陸上基地局の全ての複合カバレッジが、目標エリアに対するカバレッジを提供するようにする。陸上基地局は、単一の送受信アンテナシステムと関連付けられたトランシーバを用いたカバレッジの単一のオムニセル、或いは、各々が関連トランシーバ及び関連送受信アンテナを備えた、カバレッジのセル内に複数のセクタを設けることができる。陸上基地局当たりに複数のセクタを備える後者の構成の利点は、当該陸上基地局のカバレッジエリアにおける通話処理容量を増大させることができることである。
【0004】
利用可能な総無線周波数スペクトルには制限があり、従って、あらゆる単一セルにおける利用可能な総通話処理容量には制限がある。無線通信装置が、1つのセル又はセルのセクタのカバレッジエリアから空間的に連続した隣接セル又はセルのセクタのカバレッジエリア内に移動すると、その無線通信装置からの通信は、第1のセル(又は第1のセクタ)から第2のセル(又は第2のセクタ)にハンドオーバされる。これには、この無線通信装置により示される新しい負荷をサポートするために、第2のセルに利用可能な通話処理容量が十分にあることが必要である。単一のパーソナル無線通信装置に必然的に伴うコールハンドオフは、セルに大きな過渡的負荷をもたらさない。しかしながら、空対地セルラー通信ネットワークでは、各航空機には数百の乗客がおり、各々がネットワーク容量を奪い合うので、航空機内で現在作動中のセルラー通話の数は、陸上セルサイトの通話処理容量の大部分に相当する可能性がある。セルサイトがサービスを提供することができる航空機が少数であり、セル内での航空機の平均通過時間が長い場合には、現在サービスを提供されている航空機がセルから離れてセル内の通話処理容量を解放する前に到着する可能性がある航空機に対してサービスを提供するために、アイドル容量が大きな割当量がなければならない。加えて、航空機とサービング陸上セルサイトとの間に単一の無線周波数リンクを用いることは、サービス提供が中断されると多数の通話に影響を及ぼすシングルポイント障害になることを意味する。
【0005】
従って、航空機と空対地セルラー通信ネットワークの陸上基地局との間の無線周波通信リンクの能力は限定されており、シングルポイント障害を示し、更に、サービング陸上セルサイトの通話処理容量に関して通話ハンドオフ問題を示す。
【0006】
必要とされているのは、空対地セルラー通信ネットワーク通話処理容量問題を解決し、システム可用性、システム信頼性、及びシステム容量を飛躍的に改善する当該技術分野の進歩である。
【発明の概要】
【課題を解決するための手段】
【0007】
上に記載した問題は、本明細書では「マルチリンク航空機セルラーシステム」と呼ばれる本発明の「複数の陸上セルサイトと同時に通信するためのマルチリンク航空機セルラーシステム」により解決される。
【0008】
この技術的説明において、「空対地」セルラー通信ネットワークは、双方向性とみなされ、全2重無線通信リンクを生成するために地対空方向を含む。従って、本明細書では、空対地の記載には地対空方向をも含むものとする。
【0009】
帯域幅が制約された空対地セルラー通信ネットワークは、2つ以上のセル又はセクタ間の航空機のトラフィック負荷を共有することにより航空機毎の単位で通話処理容量を増大させることができる。このプロセスは、複数の陸上セル又はセクタ(或いは所与のセルのセクタ)に対しての2つ以上の空対地無線周波通信リンクを通じた航空機の通話トラフィックを同時に通信させることにより機能する。所与の無線周波数スペクトル割り当ての場合、複数の空対地無線周波通信リンク上での通話トラフィックを複数の陸上セル又はセクタに対して広げると、実装される各付加的な無線周波数リンクに対して所与の航空機との間の通話処理容量が増倍する(他の航空機がこれらのセル又はセクタの能力に競合していない場合)。同様に重要なことには、このアーキテクチャは、単一空対地無線周波通信リンクにより引き起こされるシングルポイント障害問題を排除し、これによって、複合空対地無線周波通信リンクのネットワーク可用性をより高度でよりロバストなものにする。空対地セルラー通信ネットワークが所与の空間領域において使用中である、すなわち複数の航空機と極めて混雑している場合であっても、サービスエリア内の航空機の全てがネットワーク容量に対する要求を個々に且つ集合的に変化させるので、このプロセスは、複数の陸上セルにわたる集約ネットワーク負荷を「平滑化」することによって所与の航空機に対する全体のトラフィックスループットを依然として増大させる。
【0010】
帯域幅制約無線空対地ネットワークの容量、可用性、及び信頼性を高めるために、航空機が動作している使用可能な空間及び時間多次元領域をパーズするための他の方法が必要である。これらの方法には、2つの実質的に直交する偏波を用いて所与のスペクトル割り当ての能力を効果的に2倍にすることを含む。更に、直交符号(Walsh code)ドメイン分離が付加される場合には、空対地セルラー通信ネットワークの通話処理容量の付加的な増大が達成される。
【0011】
本発明のマルチリンク航空機セルラーシステムの実施では、空対地セルラー通信ネットワークの通話処理容量を改善するため、航空機に搭載された複数の物理的に分離されたアンテナ、並びに付加的な任意選択の信号絶縁及び最適化技術を利用する。地上では、方位角、仰角、高度、又は複数の平面に整形する基地局アンテナパターンが、多次元空間的領域を複数のセクタに更にセグメント化し、これによって空間周波数の再利用によりシステム容量を改善する。
【0012】
前述の容量強化技術の全ては、本質的に相加的である。例えば、実質的に直交偏波を6セクタ方位基地局アンテナパターンと共に用いると、その所与の基地局及び関連する航空機の全体容量に対して線形的な乗数効果を有する。集合的ネットワーク容量を考慮する場合、複数のノードにわたる負荷ピークを平滑化又は平衡化することにより、システム全体の観点からピーク負荷管理が向上される。
【0013】
従って、空対地セルラー通信ネットワークは、2つ以上の陸上セル又はセクタ間でそのトラフィック負荷を共有すること、及び航空機に装着された複数の物理的に分離されたアンテナ及び基地局アンテナパターンセクタ化を利用すること、並びに直交偏波の利用などの付加的な任意選択の信号絶縁及び最適化技術を利用することによって、航空機単位でそのトラフィック(データ及び音声)処理容量を向上させることができる。
【図面の簡単な説明】
【0014】
【図1A】ボーイング737航空機を示す側面図である。
【図1B】ボーイング737航空機を示す前面図である。
【図1C】ボーイング737航空機を示す上面図である。
【図2A】ボーイング737〜500航空機上の前方に装着されたベリーブレードアンテナのための無線周波数送信パターンを示す図である。
【図2B】エンジンポッドにより引き起こされる無線周波信号の遮断を示す図である。
【図3A】ボーイング737〜500航空機の2つの航空機ブレードアンテナの無線周波数送信パターンを示す図である。
【図3B】ボーイング737〜500航空機上で、図3Aの2つの航空機ブレードアンテナの1つが前方に、1つが機尾に装着されたことを示す図である。
【図4A】スロットの長い方の長さに垂直なE−電場ベクトルを有するスロットアンテナラジエータを備えるベリー装着ブレードアンテナを示す図である。
【図4B】水平方向Eフィールドと、導電面の平面内にパターンヌルを有する導電面上の放射遠視野パターンとを備えた、図4Aのベリー装着ブレードアンテナの無線周波放射パターンを示す図である。
【図4C】モノポール要素の長軸に平行なEフィールドベクトルを有するモノポールアンテナラジエータを備えるベリー装着ブレードアンテナを示す図である。
【図4D】垂直Eフィールドと、導電面上の放射遠視野パターンとを備えた、図4Cのベリー装着ブレードアンテナの無線周波放射パターンを示す図である。
【図5A】垂直及び水平方向Eフィールドの両方を備えたベリー装着ブレードアンテナを示す図である。
【図5B】導電面を覆う遠視野放射パターンを備えた(このアンテナの軸率は、水平では不十分であるが、図4Bと異なり、放射電力は、図4Bで完全に理論上ヌルとなるのに対して−3dB低下するのみである)円偏波ベリー装着アンテナを示す図である。
【図6】放射アンテナの平面内の導電面に装着された典型的なデュアル直線偏波マイクロストリップパッチアンテナの無線周波信号出力を示す図である。
【図7】放射アンテナの平面内の導電面上に装着された典型的なデュアル円偏波マイクロストリップパッチアンテナの無線周波信号出力を示す図である。
【図8A】直線又は円偏波であり、航空機の側部胴体(又はベリーと側部胴体との間の領域)に装着されたコンフォーマルマイクロストリップパッチアンテナ(又はアレイ)を示す図である(これらのマイクロストリップアンテナは、図6及び図7に示すような単一のラジエータとすることもでき、マイクロストリップラジエータのアレイとして構成することもできる)。
【図8B】円偏波され、航空機ベリーに装着され、天底(地面)を向いたコンフォーマルマイクロストリップパッチアンテナ(又はアレイ)(この航空機アンテナは、基地局の天頂(天空)を向くアンテナとペアである)を示す図である。
【図9A】幾つかの空対地陸上基地局により形成される空対地セルラー通信ネットワークのセルサイトの典型的なパターンを示す図である(六角形のセル形状を用いることにより容易に説明することができる)。
【図9B】セクタ間(セクタは偏波ドメインで更に分割され、この実施例では、垂直及び水平偏波が隣接セクタ間で交互する)を区別するために垂直及び水平偏波を用いて空対地陸上基地局アンテナの遠視野パターンを2つのセクタにした方位角セクタ化を示す図である。
【図9C】セクタ間(セクタは、偏波ドメイン(この実施例では、右円偏波(RHCP)及び左旋円偏波(LHCP)が隣接するセクタ間で交互に起こる)で更に分割される)を区別するために右回り及び左旋円偏波を用いて空対地陸上基地局アンテナの遠視野パターンを6つのセクタにした仰角セクタ化を示す図である。
【図9D】図9Bに示すシステムに存在する3つの航空機を示す図であり、垂直及び水平偏波を用いた空対地陸上基地局アンテナの遠視野パターンを6つのセクタにする方位角セクタ化を用いてセクタ間を区別し、空間的幾何形状が許せば、航空機が2つ以上のセクタと同時に通信することができるようになる。
【図10A】航空機が基地局アンテナから遠方で伝播視角が極めて浅い場合の無線周波信号の直接経路及び反射経路を示す図である。
【図10B】仰角セクタが2つの実質的に直交する偏波間で交互にされる、仰角方向に複数のセクタに分割されたセルサイトを示す図である。
【図10C】2つの図示の方位角セクタに分割され、更に仰角で複数のセクタに分割され、両分割次元が2つの実質的に直交する偏波の間で交互にされ、その空間的ドメインにおいて、方位角又は仰角又は両方の次元で2つのセクタが現在のセクタに用いられるのと同じ隣接するセクタ偏波を有することがないようにしたセルサイトを示す図である。
【図11A】2つのアンテナ、すなわちコンフォーマルマイクロストリップパッチアンテナ及びブレードアンテナが航空機のベリー上に装着され、2つの異なる空対地陸上基地局との2つの空対地無線周波通信リンクをサポートする実施例を示す図である。
【図11B】各々が少なくとも1つの空対地無線周波通信リンクを介して接続され、複数の航空機にサービスされる空対地セルラー通信ネットワークを示す一般図である。
【図12A】1つの送信ポート及び2つの受信ポートを備える現在の技術の送受信モジュール(トランシーバ)へのデータの流れを制御することによる航空機データ及び音声トラフィックの相互接続をブロック図形式で示す図である。
【図12B】各々が送信及び受信することができる4つのアンテナ接続ポートを備える強化トランシーバモジュールをブロック図形式で示す図である。
【図12C】基地局セクタからの受信パイロット信号強度の関数として航空機上の送信アンテナの選択を管理するためのシステムをブロック図形式で示す図である(図12Cのプロセスは、図12D及び図12Eのプロセスと関連する)。
【図12D】図12Cのプロセスと関連し、無線周波信号を送信するための送信航空機ラジエータ偏波及びアンテナの選択を示す図である。
【図12E】図12Cのプロセスと関連し、無線周波信号を送信するための送信航空機ラジエータ偏波及びアンテナの選択を示す図である。
【図12F】基地局セクタからの受信パイロット信号強度の関数として航空機の受信アンテナの選択を管理するためのシステムをブロック図形式で示す図である。
【図12G】図12Fのプロセスと関連し、1つの空対地リンク又は2つの空対地リンクが適所に存在するかどうかなど、可能性のある航空機システムレベル状態を詳細に説明する図である。
【図12H】航空機アンテナ、偏波、及び周波数ドメインの間の可能なマトリクス組み合わせを示す図である(図12Hは、実施例の形で、3つのドメインの1次及び2次ペアリングが、自己干渉を引き起こすことなく2つ同時の空対地リンクを可能にする必要があることを更に示している。)
【図13】2つのトランシーバカードを殆ど修正なしで用いて、デュアルアンテナ、デュアル偏波、マルチリンク機能を可能にするための航空機上の主要な構成単位をブロック図の形式で示す図である。
【図14A1】マルチリンク機能により、航空機と陸上基地局との間の順方向及び逆方向経路の両方でどのように逆多重化がもたらされるかを示しており、ここでは、順序外のデータパケットが、選択した宛先に送達される前に航空機及び地上の両方で正しい順序に再構築され、更に、PDSN−逆多重化機能の位置を更に下流側に移動させ、BTSとBSCの相互接続専用プロトコルを修正する必要がないようにする(これによって製品化の時間が短縮され、開発費用が低減される)。
【図14A2】陸上セクタが送信及び受信時に同様に偏波され、航空機トランシーバに航空機アンテナを接続することにより、接続マトリクスを通るダイバーシティ受信が可能になる特定の用途を示す図14A1の変更形態の図である。
【図14B】航空機無線モデムと陸上PDSN(パケットデータ交換ネットワーク)とHA(ホームエージェント)との間の接続を示す図であり、2つの無線マルチリンクを介して単一のQoS(サービス品質)をどのように空対地方向に送信し、次いで再結合して元のデータストリーム(航空機で発信したもの)と同一の複製にすることができるかを示している。
【図14C】逆多重化が概念的にはどのように作動するかを示す簡略プロセスの図である。
【発明を実施するための形態】
【0015】
空対地セルラー通信ネットワークの構成要素の多くは、複合空対地セルラー通信ネットワークトラフィック処理容量全体(データ、音声、その他)と相互作用して影響を及ぼすので、高信頼性及び高可用性の空対地セルラー通信サービスの提供は複雑なプロセスである。ネットワーク構成要素を変化させると、1つのネットワーク属性を改善することができるが、同時に別の属性を損なう可能性がある。システムの観点からは、ネットワーク設計は、高信頼性及び高可用性の両方を有すると共に、高トラフィック容量を有する必要がある。これらの属性を作動上管理するために、ネットワークアーキテクチャは、増加的にトラフィック容量を付加するために、時間の経過と共に拡大できる必要がある。
【0016】
通話処理容量強化問題
詳細には、空対地無線周波通信リンクが固定帯域幅リソースとなるので、空対地セルラー通信ネットワークに対する容量強化の課題は重大な問題である。セルラー通信ネットワークは、様々な航空機の空間密度(詳細には、空港内及びその周辺で航空機の空間的密度が高くなる)を有する多次元空間において飛行中の航空機に供用するので、容量強化問題は更に複雑になる。これらの航空機は、高速で飛行しており、関連するドップラーシフト、並びに大きなセル半径に関連する時間遅延が発生する。航空機飛行プロファイルは、様々なピッチ−ロール−ヨー角度、異なる高度、及び異なる速度を含む。各航空機は、陸上基地局の観点から単一の「ノード」のように見える。単一のノードとして、数百の乗客を収容している可能性がある各航空機は、陸上(各)基地局に極めて大容量のシングルポイントネットワーク負荷として見える。各一意的な乗客は、特定のデータ及び/又は音声要件を備えた無線装置を有する可能性があり、これは、乗客の無線装置の数を掛合わせると、航空機単位毎に相当なトラフィック負荷が発生する可能性がある。何れかの所与の領域において、各々が大きなトラフィック負荷を個々に有する数十もの航空機が存在する可能性があり、全ての航空機が、限定された周波数帯域幅の空対地無線周波通信リンクを通じた空対地セルラー通信ネットワークからのネットワークリソースを全体として奪い合う。
【0017】
航空機アンテナシステム
本明細書に記載する複数のリンクを用いた逆多重化システムは、放射された偏波がその放射方向で純粋なままであり、(陸上モバイル装置(携帯電話)との陸上セルラーネットワーク通信において起こるような)物理的物体散乱に起因する偏波ベクトルの回転を生じないといった、空対地システムの利点に大きく依存している。これは、空対地ネットワークの伝播経路が見通し(LOS)にあり、どのような自然又は人工的な物体もが航空機と地上との間(或いは、地上と航空機との間)でRF伝播を回折し、反射し、屈折し、又は他の方法で損うことがない(放射及び到達偏波が一定のままである)ことに起因する。従って、空対地ネットワークは、大部分が直交する2つの偏波タイプの間を良好に偏波絶縁することができる。直交偏波の実施例には、垂直偏波対水平偏波、及び右円偏波対左旋円偏波が含まれる。システムレベルの高周波電磁コンピュータモデル化、並びに電場測定は、直交偏波絶縁が通常は12dB〜15dBの範囲であることを示す。この絶縁レベルは、システム容量を強化する(並びにネットワーク内干渉又は自己ネットワーク干渉を最小限にする)ための重要な要素として偏波を用いるのには十分すぎる程である。しかしながら、今日まで、民生用通信サービスのための全ての空対地通信システムは、常に単一方向に偏波され、すなわち、垂直偏波のみ又は水平偏波のみの何れかであった。歴史的に、空対地単一方向偏波は、ネットワーク全体に広がり、全ての航空機は、同じ偏波、すなわち全てが垂直偏波であるか、又は全てが水平偏波である何れかで作動される。例えば、垂直偏波したネットワーク1で作動可能な航空機は、この実施例では水平に偏波されたネットワーク2では作動することができない。本明細書に記載する発明は、実質的に直交偏波を用いて、マルチセクタ基地局アンテナパターンの自己干渉を管理し、これによって同じスペクトル又は帯域幅割り当てに対してシステム容量を飛躍的に向上させることを利用している。勿論、セクタ化により、有効ネットワーク容量の自己増大が付加される。しかしながら、偏波絶縁を含まなければ、帯域幅限定システムにおけるセクタ化単独では、空対地ネットワークの容量は向上しない。
【0018】
システム内絶縁を生成し、これによって自己干渉することなく更にセクタ化することができる他の方法は、各セクタにおいて実質的に直交するコードドメインを利用することを含む。
【0019】
空対地通信のための絶縁方法としての時間ドメインは遙かに複雑になる。距離が大きいこと(100マイルを超える)により引き起こされる比較的長い伝播遅延が課題として含まれ、見通しの空対地アーキテクチャでは、パケットが空間内で更に延びるのを阻止し、数百マイル離れた別の対象とするパケットと潜在的に干渉するものは何もない。加えて、時間ドメインでは、種々のセル/セクタのパケットの航空機到着を同期させて、これにより(パケットのオンオフサイクルにタイミングを合わせることにより)1つのパケットを別のパケットから絶縁することは不可能である。従って、他のドメイン、すなわち、直交符号、偏波、方位角セクタ化、仰角セクタ化、アンテナパターン自己絶縁、及び周波数バンドの選択がより好ましい。
【0020】
飛行中の航空機に対する最新のセルラー通信サービスは、現在の陸上ベースのセルラー通信ネットワークでは企図されない固有の問題が生じる。例えば、航空機に設置されたアンテナシステムは、飛行の極限(650マイル/時、温度範囲が地上の120°Fから、数分後には飛行中の40°Fまで)に対処するだけでなく、極限の振動及び他の環境的危険にも対処する必要がある。無線通信の観点からは、これらの航空機アンテナは、全て極めて小さな物理的アンテナパッケージの中から関連する電磁偏波により特定の無線周波数(RF)エネルギーパターンを放射する必要がある(アンテナは、航空機の外側表面上に装着されるので大きな物理的物体により抗力が生じ、これは航空機の燃料節約に大きな影響を及ぼす可能性がある)。航空機自体は、航空機自体の電磁特性に起因して、装着した航空機アンテナから無線周波信号の物理的遮断物を透過する無線周波信号の伝播及び選択した無線周波信号偏波への非線形作用に影響を及ぼす。
【0021】
航空機に設置するのに最適な多数のアンテナタイプが存在し、すなわち、ブレードスタイル、コンフォーマルパッチ、コンフォーマルパッチアレイ、ワイヤモノポール、ワイヤストリング(HF)、金属スロット等である。これらのうちで最も一般的に用いられるアンテナタイプの1つはブレードアンテナであり、これは、航空機のベリー上に装着されることが多い。ブレードスタイルのアンテナでは、特定の航空機装着部位は、他の隣接する航空機アンテナ、或いは航空機操縦翼面及び着陸装置格納ウェルのような航空機の機械的特徴部により更に制限される可能性がある。望ましい無線周波通信経路は、空対地及びその逆経路である地対空の両方であるので、ブレードアンテナでは航空機下部のベリー装着部位を用いることが特に望ましい。ブレードアンテナを大きな商用ジェット機のベリーに装着するときには、航空機自体が、見通し(LOS)無線信号伝播経路に影響し始める。例えば、最新のジェットエンジン設計では、高バイパスジェットエンジン(高レベルの燃料効率を達成する)の物理的に大型のエンジンナセルは、実際には、水平飛行において航空機のベリーよりも下に懸架されている。エンジンナセルは、金属(導電性)であり、無線周波数エネルギーに対して透過性がない。従って、エンジンナセルは、ベリー装着ブレードアンテナから送信され、又はこれにより受信される無線周波数エネルギーを遮断する。この無線周波数伝播経路遮断はかなり大きい。また、着陸装置が降ろされてロックされる飛行の短い時間期間では、これらの機械的構造も無線周波数伝播に対して見通し遮断物である。
【0022】
これとは別に、殆どの航空機が導電性外板から構成されるので、航空機の導電性材料の物理領域は、動作周波数、すなわち、上側UHF、下側L帯域、及びこれよりも高い周波数の波長に対して電気的に大きい。従って、航空機アンテナの放出又は受信偏波(電磁気相反定理の適用)は、この電気的に大きな多次元導電性航空機表面により影響を受ける。詳細には、マックスウェルの方程式では、Eフィールド(電場)ベクトルが導電面に平行であるときに、電場強度が電気的に大きな導体の表面に沿ってゼロ(零)になることを必要とする。従って、水平面に偏波された(すなわち、航空機が水平飛行しているときにEフィールド偏波平面が航空機のベリー及び地表に対して平行である)航空機アンテナは、実質的に水平の導電性航空機表面が存在するあらゆる方向で必然的にパターンロールオフを有する。更に、このパターンロールオフは、多くの導電性材料が存在するほどより顕著になる。例えば、ベリー装着水平偏波航空機アンテナは、航空機ベリーの長さに沿って機首から機尾まで水平に見るときに相当のパターンロールオフを生じる。航空機翼もまた、ある程度の影響を及ぼすが、翼の導電面は一般に水平の伝播水平面よりも上にあるので、この影響はあまり顕著ではない(サービングセル又はセクタに対する高所での航空機の視角は、僅か数度である)。
【0023】
これらの課題、すなわち遮断物及び偏波パターン作用は、無線周波信号伝播経路の一時的損失により空対地セルラー通信ネットワークの可用性に大幅な影響を与える。また、これらの同じ課題はまた、所与の航空機との間の空対地セルラー通信ネットワークの総通話処理容量にも影響を及ぼす。音声通話のような時間又は待ち時間に感受性のある通信では、これらの課題は、音声電話通話を完全に不可能にする可能性がある。インターネットアクセスのようなデータアプリケーションでは、同じ空対地無線周波通信リンクに数百人の乗客が多重化しているとすると、システム容量の損失は許容可能ではない。
【0024】
通話ハンドオフ
伝播の損失を管理するための現在の陸上無線セルラー技術は、良好な信号を有する隣接セル又はセル−セクタにその通話をハンドオフすることを含むことが多い。このような陸上ハンドオフ法は、当該技術分野では公知である。このハンドオフは、「ハード」(make−then−break)、「ソフト」(同時に2つ又はそれ以上のセルを介した接続を有する)、又は「ソフター」(所与のセルの2つ又はそれ以上のセクタ間の接続を保持する)とすることができる。しかしながら、空対地セルラー通信ネットワークでは、セルサイトの物理的位置は、数百マイル離れており、これは、実行可能なハンドオフ(すなわちハード又はソフト又はソフター)が、単一のベリー装着航空機アンテナには利用可能ではなく、どのような時間期間でも障害のある無線周波数セルラー通信リンクを生じている可能性があることを意味する。実際、航空機が高所で直進水平飛行をしている場合には、この障害時間は、受け入れ難いほど長くなる可能性がある。
【0025】
これとは別に、空対地セルラー通信ネットワークにおいて固定無線周波数スペクトル割り当てを用いると、本質的に容量限界がある。シャノンの法則により、最大で1ヘルツ当たりに幾つのビットの容量が実現できるかが定義される。従って、システム容量全体の強化を実現するためには、他の方法が必要となる。システム容量を改善するための公知の方法の幾つか(陸上セルラーシステム設計の概念から選出)は、空対地セルラー通信ネットワークに利用可能であるが、実際には、空対地環境は、独自のものであり、十分に活用できる独自の属性を有する。例えば、偏波ドメインでは、空対地セルラー通信ネットワークは、一般に、見通し(LOS)伝播を有する。航空機は、一般に、直進水平飛行状態にあり、すなわち、旋回又は上昇/降下時でも、商用航空機が受ける飛行角度は顕著ではない。従って、水平及び垂直偏波間の測定偏波絶縁は、12dB〜15dB(純粋な陸上セルラーネットワークでは不可能)である。加えて、見通し条件により、飛行の殆ど全ての局面において無線周波通信リンクを複数のセル又はセクタに同時に直接伝播することが可能になるが、この場合も、陸上携帯端末装置がハンドオフ(ハンドオーバー)領域にある場合を除き、陸上セルラーネットワークでは一般に不可能である。最後に、空対地陸上基地局アンテナパターンは、仰角と方位角両方の2つの平面で整形することができる。陸上セルラーにおける建造物又はトンネルが干渉するような、これらのパターンと干渉するものはないので、パターン整形が3次元空間を小領域にパーズする手段を提供し、これにより固定スペクトル割り当てが何倍にも増えることになる。
【0026】
課題
空対地無線周波通信リンク性能に影響を及ぼす可能性がある3つの重大な伝播課題、すなわち、航空機エンジンポッド遮断物による見通しシャドーイング、導電面に沿った水平偏波パターンヌリング、及びイントラシステム同一チャネル(同一周波数)干渉が存在する。
【0027】
見通しシャドーイング
本明細書で論じる第1の課題は、見通しシャドーイングである。図1A〜図1Cは、デュアルエンジンのボーイング737航空機のそれぞれ側面図、前面図、及び上面図を示す。航空機の幾つかのタイプでは(例えばボーイング737、757)、エンジンポッド101、102は、胴体100の底部の下に延びて、ここで空対地セルラー通信ネットワーク用のアンテナ150、151が装着される。このエンジンポッド構成は、アンテナ150、151からサービング陸上セル(図示せず)への無線周波信号の見通し遮断物をもたらす可能性がある。
【0028】
航空機装着アンテナの最大無線周波数カバレッジ範囲は、エンジンポッド遮断物がない場合の4/3地球曲率計算を用いて電波地平線により決定される。水平方向において、エンジンポッド遮断物が存在する場合、見通しカバレッジは地上から航空機までの仰角θによって決定され、この仰角は、航空機アンテナの垂直方向の角度よりも大きく、エンジンポッドを越えて通過するようにする必要がある。ボーイング737〜500航空機では、この垂直角は15.5度である。従って、垂直角並びに航空機高度は、水平シャドーイング領域において最大見通しカバレッジ範囲を定める。高度10,000フィートでは、シャドーイング領域におけるカバレッジ範囲は、ボーイング737〜500航空機で7マイルであり、高度40,000フィートではカバレッジ範囲は28マイルである。
【0029】
図2Aは、図2Bに示すようなボーイング737〜500航空機の前方装着ベリーブレードアンテナ150の無線周波信号送信パターンを示し、エンジンポッド101、102により引き起こされる無線周波信号の遮断を示す。図2Aの線220は、航空機が高度40,000フィートで飛行しているときのアンテナ150から放射される無線周波信号の範囲を示しており、図2Aの線230は、航空機が高度10,000フィートで飛行しているときのアンテナ150から放射される無線周波信号の範囲を示している。これらのアンテナパターンから分かるように、領域250、251で表わされる、アンテナ150の可能性のある無線周波数カバレッジエリアの約35%は、エンジンポッド101、102により遮断される。
【0030】
第2のベリー装着アンテナ151を航空機の機首と尾部との間の中間点で航空機の中心線の後方に装着して付加すると、図2Aに示すようなベリー装着アンテナ150の無線周波信号送信パターンにおいてヌルが減少又は排除される。図3Aは、図3Bに示すような、1つがボーイング737〜500航空機の航空機中心線の機首側に装着され、1つが航空機中心線の後方に装着された2つの航空機ブレードアンテナ150、151に於ける複合無線周波信号送信パターンを示す。この無線周波信号送信パターンから分かるように、第2のベリー装着ブレードアンテナ151は、第1のベリー装着ブレードアンテナ150を補完する無線周波信号送信パターンを有し、これによって、航空機エンジンポッド101、102により引き起こされる信号遮断を軽減することでより均一なカバレッジを提供する。
【0031】
アンテナの組み合わせ
航空機に2つのアンテナを用いることにより、エンジンポッド遮断問題が軽減される。しかしながら、デュアル偏波アンテナの場合、2つのアンテナから4つのアンテナフィードが存在する。単一のEV−DOモデムを用いる場合には、EV−DOモデムの2つのRx入力に入力する前に、2つのアンテナからの2つの垂直偏波フィードを組み合わせ、2つのアンテナからの2つの水平フィードを組み合わせる必要がある。別の選択肢は、2つのEV−DOモデムを用いることである。2つのモデルを用いる場合、4つのアンテナフィードを組み合わせるのに2つの可能性がある。第1の選択肢では、モデムの1つを両方の垂直フィードに接続し、第2のモデムは、両方の水平フィードに接続する。第2の選択肢では、各モデムは、2つのアンテナのうちの1つの垂直及び水平フィードに接続する。
【0032】
選択肢1−1つのモデムを垂直フィードに接続、1つを水平フィードに接続
モデム アンテナ1 アンテナ2
モデム アンテナ1 アンテナ2
モデム1___V
\ /H
\___/________V
モデム2___/ H
\___________/
【0033】
この構成には、セル/セクタ境界の偏波絶縁が有効である。加えて、この選択肢には、各モデムが異なるセル/セクタによりサービスされることが有効である。これにより、単一の航空機が多重化ゲインによって高いスループットを有することができるようになる。しかしながら、低SINRでセルによりサービスされているモデムがセル全体の性能を引き下げないように注意する必要がある。1つの可能性は、2つのセルのうち弱い方によって最低データ転送速度(又は等価な品質測定基準)をサポートできるときにのみ複数セルを多重化することである。弱い方のセルが最低品質測定基準を満たさない場合には、強い方のセルによりサービスされているモデムのみを用いる。
【0034】
選択肢2−各モデムを2つのアンテナのうちの1つの垂直及び水平フィードに接続する
モデム アンテナ1 アンテナ2
モデム1____V
\____H
モデム2____________V
\__________________H

この選択肢には、セル/セクタ境界の偏波絶縁は有効であるが、多重化ゲインは提供しない可能性が高い。これは、2つのモデムが常に同じセル(1つのアンテナが遮断されている場合を除く)によりサービスされており、送信リンクタイムスロットに対して互いに競合することになるためである。
【0035】
或いは、動的に適応可能な「スマート」設計では、選択肢1又は選択肢2の何れの構成が最良であるかを最適に選択することができる。本明細書は、航空機のアンテナの数を2つのみに制限するものではない。図8Aのように3つ以上の航空機アンテナを有することが最適である可能性がある(本明細書で後で検討する)。
【0036】
典型的ブレードアンテナ構成
図4Aは、金属プレートにカットされた、或いはプリント回路基板にエッチングされたスロット(穴)452を備えるベリー装着ブレードアンテナ400を示す。RF入出力コネクタは、装着フランジ470上の460である。同軸ケーブル462は、インピーダンス整合された点460でスロットに給電する。同軸ケーブルの中心導体(PCB上のエッチングスロットの対向する側部にエッチングされたマイクロストリップラインとすることもできる)は、開放空気スロットを超えて延びて、スロットの対向する縁部に取り付けられる(電気的接続)。ハウジング453は、耐飛性で且つRF透過性のあるグラスファイバ又は樹脂材料で作られることが多い。このアンテナ400は、水平方向440に電磁場440を生成する。
【0037】
図4Bは、水平方向Eフィールド440と、導電面410の上の放射遠視野パターン430とを備えた、図4Aのベリー装着ブレードアンテナ400に対する無線周波放射パターンを示す。このアンテナの遠視野パターンは430として示される。遠視野パターンは、天底配向ベクトル435の周りで半径方向に対称である。スロット遠視野パターンは、天底435においてヌルである。天底は、水平飛行状態の航空機で地球に向かって直進下向きに向けられる。Eフィールドは、同様の方向の導電面の表面で「短絡」する必要がある(マクスウェルの法則に従う)ので、420では、水平方向に偏波されたベリー装着ブレードアンテナがパターンヌルを生じる。このパターンヌルは、天底ベクトル435の周りで半径方向に対称である。420でのヌルの角度及び深さは、装着される導電面の波長の大きさによって決まる。従ってベリー装着アンテナでは、胴体の機首から機尾までの長さに沿って大きな導電性が現れる。図4Bに示すような水平偏波アンテナでは、この導電面により、機首から機尾まで平面の軸線に沿って深い遠視野パターンがヌルになる。従って、図2及び図3に示す遠視野パターンは、ベリー装着水平偏波アンテナを示していない(但し、垂直偏波ベリー装着アンテナを示すことになる)。
【0038】
幾何学的な観点からは、航空機から地上まで(及びその逆)の空対地ネットワークの視角は、動作空間容積の大部分に対して極めて浅い角度である。従って、420のパターンヌルは、極めて重大なリンクバジェットの課題である。水平偏波作用の課題は、逆多重化マルチリンクアーキテクチャのシステム設計全体で考慮する必要があるものである。マルチリンク概念を最適にするために、航空機からの両方の放射直交偏波は、できるだけ「パターンバランスがとれた」ものである必要があり、すなわち、それぞれの遠視野パターンは極めて類似する必要がある。言い換えると、何れの偏波パターンも、(420のような)空間の大きな領域にパターン穴を有する必要がない。
【0039】
図4Cは、導電面410を覆う垂直モノポールを有するベリー装着ブレードアンテナ405を示す。RF入出力コネクタは480、ベース装着フランジは471であり、これは、航空機のベリーに取り付けられる。同軸ケーブル481は、モノポールラジエータ482に給電する。ブレードハウジング406は、グラスファイバのような耐空性の十分な材料で作られ、RF透過性である。このアンテナのEフィールドは、483に示すように垂直である。直進水平飛行では、483は、航空機ベリーに対し垂直で、更に地球に対しても垂直である。このアンテナ405は、電磁遠視野490を生成し、水平偏波スロットのように天底に向いたパターンヌル493を有する。航空機ベリー上に装着される水平偏波スロットとは異なり、垂直偏波モノポールは、水平方向でパターンヌルを有さない。遠視野パターンは、天底ベクトル493の周りで半径方向に対称である。要約すると、図4Dは、垂直Eフィールド483及び導電面410を覆う放射遠視野パターン490と共に、図4Cのベリー装着ブレードアンテナ405の無線周波放射パターンを示す。
【0040】
水平偏波スロット(図4A及び図4B)又は垂直偏波モノポール(図4C及び図4D)であるこれらの例示的なアンテナの何れかにおいて、これらのアンテナが複合材又は非導電性機体に装着される場合には、遠視野パターンは有意に変化することになる。非導電性機体では、他のアンテナタイプがより好適とすることができ、或いは、アンテナを装着する胴体ベリー領域に導電性材料を埋め込むこともできる。例えば、水平偏波スロットアンテナは、Eフィールドが水平線で短絡しないので、実際に、非導電性機体よりも優れた性能を発揮することになる。何れの場合においても、これは、本明細書で識別された別個の高周波電磁気設計の問題であり、複数のリンクを用いた逆多重化の概念が非金属航空機又は複合材機体の航空機に対して依然として実施可能である。
【0041】
図5Aは、垂直及び水平方向Eフィールドの両方を備えたベリー装着ブレードアンテナ500を示す。このアンテナ500は、2つの電磁場、すなわち、垂直偏波Eフィールド590を備える第1の遠視野パターン591と、水平方向Eフィールド偏波540を備える第2の遠視野パターン541とを生成する。このアンテナは、導電性410の航空機胴体のベリー上に概念的に装着される。アンテナ500は、「デュアル直線偏波アンテナ」と呼ばれる。これは、天底310に配向されたヌルを保持し、両偏波の遠視野パターンは、ベクトル510の周りで半径方向に対称である。水平パターン541は、電気的に大きな導電面を覆って放射されたときにその水平線ロールオフを保持する。
【0042】
図5Bは、導電面(航空機ベリー)410を覆う関連の遠視野放射パターンと共に円偏波ベリー装着アンテナ520を示す。このアンテナ520は、図4A及び図4Cのアンテナの組み合わせとすることができ、或いは、その長い天底配向軸線に垂直に(又は水平線に沿って)円偏波を放射し且つ同様の天底配向ヌルを有する「通常モード」螺旋のような全く異なるアンテナ構造とすることもできる。図5Aと図5Bとの間の重要な相違点は、図5Bでは、2つのデュアル直線直交偏波が(図5Bに示すように)ここでは電気的な位相が90度離れていることである。結果として得られる偏波は、右旋円偏波(RHCP)及び左旋円偏波(LHCP)である。RHCP及びLHCPの両方を生成するために、一方はV−polとH−polの間に+90度で給電し、もう一方は、V−polとH−polとの間に−90度で給電する。電気的に位相が90度離れた元の2つの遠視野パターンの組み合わせは、551及び550に示される「軸率」と呼ばれる組み合わせパターン効果をもたらす。551では、軸率は小さく、高度の円偏波純度を示す。これは、この領域の元のV−pol及びH−polの遠視野パターンの振幅がほぼ等しいことに起因する。しかしながら、550領域では、この領域のH−pol振幅がゼロになる(又はパターンヌルを有する)ので、軸率は不十分である。デュアル直線アンテナと同様に、円偏波アンテナは、天底ベクトル510の周りで半径方向に対称である。
【0043】
円偏波を用いることの決定的な重要性は、550の領域では、この領域のV−pol寄与がパターンヌルを有さないので軸率は不十分であるが、正味の作用は僅か−3dBの損失にすぎないことである(導電面を覆うH−polが厳密に配備される場合の全損と対比して)。同様に、逆多重化複数リンクの概念は、高品質の高可用性遠視野航空機アンテナパターンに依存し、すなわちこれは、サービスを提供する3次元空間の最も大きな容積を有する水平領域に特に当てはまり、また最大伝播距離を有する領域でもある。従って、円偏波を用いてこの重要な水平空間領域において航空機の航空機アンテナ遠視野パターンオン/オフを改善するような方法は、逆多重化の総合システム設計に必要不可欠な要素である。
【0044】
図6は、典型的なデュアル直線偏波マイクロストリップパッチアンテナ600の無線周波信号出力を示し、ここでは端子621での1つの出力が垂直偏波されて垂直方向Eフィールドベクトル620を生成し、端子631での出力が水平偏波されて水平方向Eフィールドベクトル630を生成する。同様に、図7は、典型的なデュアル円偏波マイクロストリップパッチアンテナ710の無線周波信号出力を示し、ここでは、1つの出力が0°で偏波され、他方の出力が1つの偏波に対して−90°で偏波され、その結果、他方の偏波が0°及び+90度である(図7には示さず)。これらの2つの信号は、90度ハイブリッド回路720に同時に印加され、これが、右旋円偏波Eフィールドベクトル730及び左旋円偏波Eフィールドベクトル740を生成する。Eフィールドは必然的にゼロになるので、導電面700は、導体平面内の遠視野パターン形状に影響を及ぼすことになる点に留意されたい。
【0045】
マイクロストリップパッチアンテナを用いる1つの重要な利点は、航空機上/から離れたビーム及びパターン整形を生じるように容易に構成できることである。この特徴により、システム設計者は、航空機内部アンテナパターン絶縁を構築することが可能になり、従って別の設計自由度を提供することができる。更に重要なことには、遥かに高いゲインの航空機アンテナが可能になる。例えば、図4A及び図4Bの水平偏波スロット及び図4C及び図4Dの垂直偏波モノポールのアンテナゲインは、(等方性ラジエータと比較して)比較的低く、実際にはおよそ0dBiであるが、機体効果により−2dBi〜−4dBiであることが多い。これとは対照的に、単一のマイクロストリップパッチアンテナのピークゲインは、およそ+5dBiであり、パッチアンテナアレイのゲインはかなり高いことになる。これは、航空機との間のリンクバジェット均衡化を改善するだけでなく、航空機内の複数のアンテナ絶縁も提供する。また、これは、所与の陸上基地局セクタへの指向性を改善する。マイクロストリップパッチアレイは、アンテナが装着される航空機胴体の形状に一致するコンフォーマルに作ることができる。これにより、アンテナを越えて通過する空気流を極めて滑らかにすることができ、全体抗力が減少し、航空機燃料効率が改善される。
【0046】
マイクロストリップ航空機アンテナ
図8Aは、航空機800の側部胴体上に装着されたコンフォーマルマイクロストリップパッチアンテナ810〜840(又はアレイ)のセットを示しており、このコンフォーマルマイクロストリップパッチアンテナ810〜840は、円偏波される(但し、直線偏波することもできる)。装着部位は、胴体の側部上とすることができ、或いは、ベリーと側部との間の移行領域とすることもできる。
【0047】
図8Bは、コンフォーマルマイクロストリップパッチアンテナ(又はアレイ)870が航空機850のベリー上に装着された代替の構成を示しており、この天底(地上)指向アンテナ870は円偏波される。空対地セルラー通信ネットワークは、天頂指向円偏波アンテナを備えた基地局880を含む。空対地無線周波通信リンク890は、飛行ヨー角に関係なく共偏波されたアップリンク及びダウンリンク構成要素を含む。この構成の重要性は、陸上セルサイトの上の「ドーナツ穴」領域及び天底指向ヌルを有する典型的な航空機アンテナの「ドーナツ穴」領域(航空機の下)において空間的カバレッジを提供することである。天頂に向いた(又は直立した)陸上アンテナは、マイクロストリップパッチアンテナとすることができ、或いは、エンドファイアを放射する軸モード螺旋アンテナとすることもできる。地上及び空中の両方のアンテナは、単一円又はデュアル円偏波(容量が増大する)とすることができる。航空機及び陸上アンテナの両方が円偏波されるので、航空機は、セルサイト全体にわたりあらゆるコンパス方位(ヨー)で飛行し、常に同偏波することができる。
【0048】
要約−見通しシャドーイング及び導電面に沿った水平偏波パターンヌル化
航空機に複数のアンテナを用いて見通し問題に対処すると、上記で検討したように、用いることができるアンテナの多くのタイプが存在すると共に、多くのアンテナ構成が存在する。加えて、特に胴体の長軸に沿って水平偏波パターンヌル化を補正又は補償するための航空機ベースアンテナの解決策が存在する。アンテナを適切に位置決めし、無線周波信号の偏波を選択することにより、空対地無線周波通信リンクのトラフィック(データ及び音声)処理容量が有意に改善される。
【0049】
システム内同一チャネル干渉
典型的な空対地セルラー通信ネットワークは、幾つかの陸上(地上)基地局から成り、その各々は、セルサイト送信アンテナの周りに半径方向に配列された所定空間容積において無線周波数カバレッジエリアを提供する。図9Aは、幾つかの陸上基地局により形成された空対地セルラー通信ネットワーク内のセルサイト901〜904の典型的なパターンを示している。典型的には六角形を使用するが、実際の形状は、一般に更に円形に近く且つ多次元であり、方位角及び仰角アスペクトを有する。各陸上基地局は、地上発信又は地上反射信号の受信に感受性が無く、アンテナパターンが上空方向にのみ送信又は受信可能であるアンテナパターンを用いる。また、陸上基地局は、航空機が地上に位置するときにネットワークカバレッジを可能にするように空港近傍の同一の場所に配置することができ、この場合には、アンテナパターンは、陸上に位置付けられた航空機に最適化される。空対地陸上基地局は一般に、典型的なセルラー通信ネットワークレイアウトに従って地理的に分散される。各空対地陸上基地局のカバレッジエリアの境界は、隣接サイトの境界と実質的に連続し、一般に、空対地セルラー通信ネットワークにおける陸上基地局の全ての複合カバレッジが、目標エリアに対するカバレッジを提供するようにする。
【0050】
カバレッジエリアのセクタ化
CDMAシステムは、本質的に干渉限界がある。システム内同一チャネル干渉を最小にする1つの解決策は、航空機に1つ又はそれ以上のデュアル偏波アンテナと共に陸上基地局に同様のデュアル偏波アンテナを用いることである。より詳細には、CDMAシステムでは、各個々の陸上セルセクタは、送信及び受信の両方に対して同様に偏波され(例えば、両方ともV−polになる)、隣接するセクタもまた、送信及び受信に対して同様に偏波されることになるが、その偏波は、前の隣接するセクタ(これはV−polされている)に実質的に直交する(すなわちH−pol)ことになる。図9Bは、空対地陸上基地局アンテナの遠視野パターンを6つのセクタ化(A〜F)セルサイト911−914にセクタ化し、交互するセクタ上に垂直及び水平偏波を実装した方位角セクタ化の実施例を示している。交互偏波を用いると、陸上システムにおけるようなマルチパス伝播に起因した無線周波信号の偏波の損失がないので、空対地見通し環境に有利である。例証として、セルサイト914は、6つのセクタ4A〜4F(914A〜914F)に分割され、2つの実質的に直交する偏波の間で交互にされる。従って、例証として、セクタ914A、914C、914Eは垂直に偏波され、セクタ914B、914D、914Fは水平に偏波される。この偏波絶縁はまた、セル912及び914の境界にも存在し、914Fが水平に偏波され、912の「2C」セクタが垂直に偏波される点に留意されたい。
【0051】
図9Cは、空対地陸上基地局アンテナの遠視野パターンを6つのセクタ化(A〜F)セルサイト921〜924に方位角セクタ化し、交互セクタ上でRHCP及びLHCP偏波を実装していることを示している。交互偏波を用いると、陸上システムにおけるようにマルチパス伝播に起因した無線周波信号の偏波の損失がないので、空対地見通し環境に有利である。例証として、セルサイト924は、6つのセクタ4A〜4F(924A〜924F)に分割され、2つの実質的に直交する偏波の間で交互にされる。従って、例証として、セクタ924A、924C、924Eは右旋円偏波にされ、セクタ924B、924D、924Fは左旋円偏波にされる。
【0052】
これらの実施例では、図9B及び図9Cの両方に対するアンテナパターンは各々、方位角カバレッジ/セクタがほぼ60度である。これらの所与のセクタの仰角パターンは、仰角空間の全てを含み、水平から天頂まで(すなわち、カバレッジ90度)にわたることができ、或いは、仰角空間は、セクタ化(方位角セクタ単位)することもできる。
【0053】
図9Dは、図9Bに示したシステムに現存している3つの航空機を示しており、ここでは、垂直及び水平偏波を用いた空対地陸上基地局アンテナの遠視野パターンを6つのセクタにする方位角セクタ化を利用して、セクタ間を区別している。航空機900は、垂直偏波を用いるセクタ2Eのセル912の空対地通信リンク901によりサービスされる。航空機910は、セル911、912、914の境界にあり、それぞれ無線周波信号の水平偏波、垂直偏波を用いるセクタ2D、1Aにおけるセル912、911それぞれの空対地通信リンク941、942によりサービスされる。最後に、航空機920は、無線周波信号の垂直偏波を用いるセクタ1Eにおけるセル911の空対地通信リンク951、952によってサービスされる。この場合、両方の航空機アンテナが垂直に偏波され、航空機において対応する「ダイバーシティ受信ゲイン」が存在するので、CDMAEDVO受信機は、空間ダイバーシティ受信を用いている。
【0054】
反射経路干渉
図10Aは、航空機1000が基地局アンテナ1002から遠方で浅い伝播角度にある場合の無線周波信号の直接経路1007と反射経路1006とを示している。詳細には、この実施例は、基地局アンテナ1002がほぼ200フィート高さであり、航空機1000が高度7マイルで飛行している典型的な状況における無線周波信号の直接経路1007と反射経路1006との間の関係を示す。基地局アンテナ1002と航空機1000との間の距離は、100マイルで示されている。この距離及び飛行高度では、反射経路1006と地球の表面との間の角度1004は0.04度であり、反射経路は、地点1003で地球表面に遭遇する。この経路の外向きセグメントでは、反射経路1006と地球表面との間の角度1005は7度である。この実施例では、これらの計算角度は、一般に4/3無線プロファイル地球(radio profile earth)に対して平坦な地球を想定している。
【0055】
上に示した伝播角度は極度に浅いので、直接経路1007及び反射経路1006の距離は事実上等しく、従って、信号1008、1009の両方に対して伝播遅延及び到達位相が等しい。更に、反射経路基地局線束1009の大きさは、直接経路基地局線束1008と等しいが、(反射点1003から)直接経路に対して180度位相が変化する。従って、直接線束1008(直接経路1007)及び反射線束1009(反射経路1006)は、大きさが等しいが位相が反対であるので、航空機1000が水平位置にあるときには、航空機1000の無線周波信号に深いパターンヌルが存在する。(水平方向に)ほぼ−5dBでロールオフすることにより水平線で基地局アンテナパターンを整形すると、一般に、水平線でのこの伝播課題が補正される。航空機から基地局までの逆伝播経路は、グレージング反射角度が一般に大角度である(数度のグレージング角度を上回ると、パターンヌル化問題は顕著なものではない)ので、常に相互関係になるわけではない。
【0056】
図10Bは、仰角方向に複数のセクタ1013〜1016に分割されたセルサイトを示し、該セクタは2つの実質的に直交する偏波間で交互にされる。これらの仰角パターンは、セルが全方向性である場合には陸上基地局1012の周りで半径方向に対称とすることもでき、或いは、(6つのセクタ方位角セルを有する図9の一連の図に示されるような)単に所与の方位角セクタに対してのものとすることもできる。図示の偏波は、実施例であり、直線又は円形に関係なく偏波選択を制限するものはない。各パターンは、異なるゲイン、水平線より上の指示角度、及びリンクバジェット対距離対保護される空間容積(すなわち、その空間容積がどれほどの容量を必要とするか)のバランスをとるための異なるビーム幅を有する。一般に、仰角が増大すると、その特定のアンテナの垂直ビーム幅はそれよりも下にあるアンテナパターンのビーム幅よりも大きいことが予期される。パターン1017は、所与の航空機がセル1012にわたって飛行する方向に関係なく常に同偏波されるように円偏波である。空間領域1011は、図10Aに示すようなヌル化の影響を最小にするための水平線でのパターンロールオフを示す。
【0057】
図10Cは、2つの実質的な直交偏波の間で交互にされた仰角の複数のセクタ1013〜1016(図10Bに示す)と、仰角の1020〜1024とに分割したセルサイト1050(セル4)を示す。仰角セクタ1013〜1016は方位角セクタ4B(1018)であり、仰角セクタ1020〜1024は方位角セクタ4Cである。天頂に向いたアンテナ1017は、円偏波される。アンテナパターン1013及び1020は、一般に、水平線を向くが、水平線(1011)でエネルギーを直接除去するために、機械的又は電気的に上方に傾けられる。方位角及び仰角セクタ化の両方を組み合わせて、各サブアンテナビーム間に尚も偏波絶縁を実現することが可能であることは明らかである。例えば、アンテナパターン1023は、方位角及び仰角の両方で絶縁され、すなわち、1023はH−poll、1015はV−pol(方位角)であり、仰角では、1024がV−pol、1021がV−polであるが、中間の1023はH−polである。空間の領域1011は、図10Aで説明されるようなヌル化の影響を最小にするための水平線でのパターンロールオフを示す。
【0058】
従って、セクタ化の上記の実施例は、航空機内に配置された複数の無線加入者装置と空対地セルラー通信ネットワークとの間の通話トラフィックを交換するための多偏波である複数の多次元無線周波数セクタを備えた非陸上空間領域を実装する幾つかの方法を示す。セクタは、多次元空間(すなわち、方位角、仰角、高度、又は複数の平面)に生成され、これは、非陸上空間を制御可能にパーズして、この空間で作動している航空機の通信ニーズと一致させるようにする。隣接するセクタ間の干渉を低減するための無線周波信号の偏波に加えて、本発明のマルチリンク航空機セルラーシステムは、無線周波数「トンネル」の多次元アレイを生成し、その各々が、1つ又はそれ以上の航空機との関連する空対地セルラー通信リンクをサポートする。複数の無線周波数「トンネル」の可用性により、空対地セルラー通信ネットワークが、特定の航空機に対する必要に応じてトンネルを割り当てることによって各航空機が利用できるようにする効果的な無線周波信号帯域幅を正確に管理できるようになる。トンネルは、時間、空間、コード、偏波、航空機のアンテナ、地上アンテナ、周波数、方位角セクタ化、仰角セクタ化、ピッチ(Pitch)、ロール、ヨー、飛行速度、及びその他の属性を有することができる。この通信空間の管理の説明は、以下に示され、これは、空対地セルラー通信ネットワーク通話処理容量問題を解決する強力なツールとなり、システム可用性、システム信頼性、及びシステム容量を飛躍的に改善する。
【0059】
複数の空対地リンク
図11Aは、コンフォーマルマイクロストリップパッチアンテナ(又はアレイ)1120が航空機1110のベリー上に装着された実施例を示し、ここでは天底(地上)を向いたアンテナ1120が円偏波される。空対地セルラー通信ネットワークは、天頂指向円偏波アンテナを備えた空対地陸上基地局1105を含む。空対地無線周波通信リンク1130は、飛行ヨー角に関係なく同偏波されるアップリンク及びダウンリンク構成要素を含み、この実施例では、偏波はRHCPである。加えて、航空機1110は、ベリー装着垂直偏波ブレードアンテナ1130を備え、該アンテナは、方位角セクタ化垂直偏波アンテナを備えた空対地陸上基地局1107との空対地無線周波通信リンク1140を介して通信するように示されている。
【0060】
2つの空対地セルサイト1105、1107は、それぞれ関連する基地局送受信装置(BTS)1135、1145によりサービスされ、これらは、セルラー通信の分野で公知のようにIP又は専用ネットワーク1150を介して基地局制御装置(BSC)1151に接続されている。次に、BSCは、PSTN、PSDN及びインターネット(1152)に接続される。PSTN−PSDN−IP(1152)から航空機(1110)への全ての通信経路は双方向性である。
【0061】
エアインタフェース路1140及びエアインタフェース路1130は各々、航空機との間で単一独立経路としてトラフィック(データ及び音声)を伝達することができる。すなわち、経路1130は、経路1140と混合される情報を何も含まない。実施例では、経路1130は、ビジネスクラス及びファーストクラスの顧客専用であり、経路1140がエコノミー又は普通席顧客専用とすることができる。この場合には、リンク1130と1140との間には論理的又は物理的接続は存在しない。
【0062】
或いは、経路1130及び1140は、航空機からの総合トラフィック(データ及び音声)の一部が1130により部分的に伝達され、1130により伝達されない残りのトラフィックが1140により伝達されるような、逆多重化マルチリンク様式で論理的に接続して作動することもできる。マルチリンク法を用いると、個々のデータパケットは、もはや時間的に同期されず、すなわち、パケット2はパケット1の後に続く。従って、逆多重化機能は、経路1130及び1140により伝達された情報を正しい順序で(パケットを欠落させることなく)「再構築」し、集約的な複合データストリームにするために航空機と地上との両方に備える必要がある。
【0063】
図11Bは、複数の航空機にサービスする空対地セルラー通信ネットワークの汎用図を示し、その各々が、少なくとも1つの空対地無線周波通信リンクを介して接続される。航空機1110、1170〜1173は各々、少なくとも1つのサービング空対地陸上基地局送受信装置(BTS)1135、1145、1190、及び1191と航空機を接続する少なくとも1つの空対地無線周波通信リンク1130、1140、1160〜1164を有する。データ通信リンク1180〜1183は、通信ネットワーク1150及びデータ通信リンク1184〜1185を介して、空対地陸上基地局送受信装置(BTS)1135、1145、1190、1191と関連する基地局制御装置1151、1195とを相互接続し、次いで、これが一般通信事業者ネットワーク1152と相互接続される。
【0064】
従って、この空対地セルラー通信ネットワークの基本アーキテクチャは、陸上セルラー通信ネットワークと類似するが、航空機が更に複雑になり、航空機当たりに複数の空対地無線周波通信リンクを用いて、空対地セルラー通信ネットワーク全体にわたり各航空機上に配置された無線端末装置により発生するトラフィックを分配する。
【0065】
逆多重化機能は、航空機1110及び1170〜1173側と、並びに地上側での、ネットワーク1150、BSC1184〜1185、又はこの目的(逆多重化)のために特別に生成された別の新しいネットワーク装置における何れかとの両方に備わっている。逆多重化の概念には、複数のリンクを共有してデータトラフィックを伝達することが含まれる。図11Bでは、航空機1110は、1135(BTS−1)及び1145(BTS−2)と同時に通信する。図11Bの遠方左端部は、より物理的な例図の図11Aの複写である点に留意されたい。例えば、経路1130は図11A及び図11Bの両方で円偏波され、経路1140は図11A及び図11Bの両方で垂直偏波される。図11A及び図11Bの両方において、BTSは1135及び1145である。図11A及び図11Bの両方において、BTSとBSCとの間の相互接続ネットワークは1150、BSCは1131、パブリックネットワークは1152である。
【0066】
図12Aは、ブロック図形式で、航空機上のデュアルアンテナへの送信及び受信信号の相互接続を示す。航空機は複数の顧客端末装置を含み、その各々がデータ通信要求を有する。これらの端末装置の相互接続は、データソース1201を集約し、データフロー制御プロセス1202を用いて、送信ポート1204及び2つの受信ポート1205、1206をサポートするトランシーバカード1203を介して空対地セルラー通信ネットワークと顧客端末装置を相互接続する他の手段の無線ローカルエリアネットワークにより行われる。送信路は、最良受信路パイロット測定に基づいて選択される。送信ダイバーシティは、現在実施可能ではない。受信機は、マルチパス遅延されるが同じソース又はセクタから到達する2つの信号の時間相関によるダイバーシティ受信能力を有する。
【0067】
或いは、図12Bに示すように、「強化」トランシーバカード1203は、4つのポート(今日現在存在しない)すなわち、アンテナ1 垂直偏波、送信及び受信両用1210;アンテナ1 水平偏波、送信及び受信両用1211;アンテナ2 垂直偏波、送信及び受信両用1212;アンテナ2 水平偏波、送信及び受信両用1213をサポートする。
【0068】
図12C〜図12Eは、ブロック図形式で、航空機送信アンテナの選択を管理するためのシステムプロセスを示す。航空機送信アンテナの選択を管理する3つの論理図があり、各図は、段階1299(図12C、図12D、及び図12E)で始まる。これらの3つのプロセスは、一般に並行して操作する。図12Cの段階1299では、プロセスが開始され、ここで、航空機のプロセッサにより、選択した空対地陸上基地局送受信装置(BTS)への空対地無線周波通信リンクを実施するための送信アンテナ及び偏波として働くアンテナ及び偏波の選択が開始される。各アンテナ及び無線周波信号偏波の組み合わせに1つずつの作動可能な複数のパイロット信号測定プロセスが存在する。この実施例では、2つのアンテナ(アンテナ1、アンテナ2)及び2つの無線周波信号偏波(水平、垂直)が存在し、これにより、1292、1293、1294、及び1295において、それぞれアンテナ/偏波1210、1211、1212、及び1213由来のパイロット信号強度を測定するのに用いられる4つのプロセスをもたらす。これらのプロセスは、並行して、交互に、又は連続して作動することができる。何れの場合においても、各パイロット信号測定プロセスは、1214でのパイロット信号比較プロセスに結果を返し、ここで、ある範囲内の空対地陸上基地局全てから受け取った航空機アンテナ及び無線周波信号偏波の各組み合わせに対してパイロット信号が比較される。
【0069】
段階1215から段階1230までにおいて、どのアンテナ及び無線周波信号偏波が最も強いパイロット信号及び2番目に強いパイロット信号をもたらすかを判断する。最も強いパイロット信号を判断することにより、その航空機アンテナ及び無線周波信号偏波の組み合わせが1次送信機アンテナ及び関連する偏波選択となる。2番目に強いパイロット信号を判断することにより、その航空機アンテナ及び無線周波信号偏波の組み合わせが2次送信機アンテナ及び関連する偏波となる。
【0070】
図12Cに記載する送信アンテナ及び関連する偏波選択プロセスは、システムが、単なる単一のノードとしてだけでなく、ネットワークトラフィック全体の負荷(すなわち、所与のセル−セクタにより幾つの航空機がサービスを受けているか)をも考慮して航空機から最適送信路を探し出す連続的プロセスであり、複合ネットワークが、その地方、地域、及び国の観点からネットワークに対して全体的な最適化アルゴリズムを有する。詳細には、複合ネットワーク最適化アルゴリズムにより、ネットワーク通信リソースを奪い合う全ての航空機の間でサービスの公平さ及び品質(QoS)が確保される。
【0071】
図12D及び図12Eは、航空機送信アンテナ及び関連する偏波選択に対する付加的な論理規則を示している。詳細には、これらの2つの論理選択規則のセットは、2つの設置アンテナが空間的に絶縁されているかどうかに関係する。しかしながら、この概念は、2つのアンテナに限定されない。空間的絶縁の実施例は、航空機の後部尾翼胴体側部に装着されたアンテナが、前方右側胴体側部に装着されたアンテナに対して有することになる航空機内アンテナパターン自己絶縁となる。これらのアンテナがアンテナパターン空間分離を有する場合には、両方の航空機アンテナが場合によっては互いに自己干渉を引き起こすことなく同時に同じ偏波で送信できるので、容量強化の別の要素が生じている。
【0072】
図12Dは、2つの航空機送信アンテナが十分なパターン内絶縁(段階1231)を有さない場合に実施される論理プロセスである。次に、段階1232及び1233では、選択した1次及び2次送信偏波は、実質的に直交する必要があり、例えば、1次偏波がV−polである場合には、2次偏波はH−polとする必要がある。次いで、段階1234、1235、1236、及び1237で、本システムは、必要な2次直交偏波が、1次偏波と同じ物理的アンテナにあるかどうか、或いは2次偏波が他方の第2のアンテナに接続されているかどうかを判断する。
【0073】
図12Eは、2つの送信アンテナが、段階1238で十分なパターン内絶縁を有する場合に実施される論理プロセスである。この場合には、段階1239及び1240で、2次偏波は、1次偏波と同じとすることができ、或いは、1次偏波と直交することもできる。選択した1次及び2次偏波が、段階1241及び1243で同じである場合には、選択したアンテナは異なる必要がある。選択した1次及び2次偏波が異なる(又は直交する)場合には、選択したアンテナは同じであることも、異なるものとすることもできる。
【0074】
図12Fは、ブロック図の形式で、航空機上の受信アンテナ及び関連する偏波の選択を管理するためのシステムを示す。航空機受信アンテナの選択を管理する2つの論理図があり、各図は、段階1298(図12F及び図12G)で始まる。これらの2つのプロセスは一般に並行して作動する。図12Fの段階1298でプロセスが開始され、ここで、航空機上のプロセッサが、選択した空対地陸上基地局送受信装置(BTS)に対する空対地無線周波通信リンクを実施する受信アンテナ及び偏波として働くアンテナ及び偏波の選択を始める。各アンテナ及び無線周波信号偏波組み合わせに1つずつの作動可能な複数のパイロット信号測定プロセスが存在する。この実施例では、2つのアンテナ(アンテナ1、アンテナ2)及び2つの無線周波信号偏波(水平、垂直)が存在し、これにより、1292、1293、1294、及び1295においてそれぞれアンテナ/偏波1210、1211、1212、及び1213由来のパイロット信号強度を測定するのに用いられる4つのプロセスをもたらす。これらのプロセスは、並行して、交互に、又は連続して作動することができる。何れの場合においても、各パイロット信号測定プロセスは、1245でのパイロット信号比較プロセスに結果を返し、ここで、ある範囲内の空対地陸上基地局全てから受信した航空機アンテナ及び無線周波信号偏波の各組み合わせに対してパイロット信号が比較される。
【0075】
段階1246〜段階1261までにおいて、どのアンテナ及び無線周波信号偏波が最も強いパイロット信号及び2番目に強いパイロット信号をもたたすかを判断する。最も強いパイロット信号を判断することにより、その航空機アンテナ及び無線周波信号偏波の組み合わせが1次受信アンテナ及び関連する偏波選択となる。2番目に強いパイロット信号を判断することにより、その航空機アンテナ及び無線周波信号偏波の組み合わせが2次受信アンテナ及び関連する偏波となる。
【0076】
図12Fに記載する受信アンテナ及び関連する偏波選択プロセスは、システムが、単なる単一のノードとしてだけでなく、
ネットワークトラフィック全体の負荷(すなわち、所与のセル−セクタにより幾つの航空機がサービスを受けているか)も考慮して航空機までの最適な送信路を探し出す連続プロセスであり、複合ネットワークが、その地方、地域、及び国の観点からネットワークに対して全体的な最適化アルゴリズムを有する。詳細には、複合ネットワーク最適化アルゴリズムにより、ネットワーク通信リソースを奪い合う全ての航空機の間でサービスの公平さ及び品質(QoS)が確保される。
【0077】
一般に、受信及び送信アンテナ及び関連する偏波を選択するプロセスは、受信及び送信アンテナ/偏波が一致する、すなわち同じとなることが多い。しかしながら、これは必ずしも常に当てはまるとは限らない。詳細には、他のシステムレベルプロセスは、所与の航空機に対するトラフィックプロファイルが、フォワードパス(基地から航空機)及びリバースパス(航空機から基地)においてアンバランスであると判断する可能性がある。この場合、システムは、2つの受信アンテナ及び関連する偏波を有するが、送信アンテナ及び関連する偏波は1つのみであるように選ぶことができる。この実施例では、フォワードパスは、リバースパスよりもトラフィック負荷が高い。
【0078】
図12Gは、1298で始まる受信アンテナ及び関連する偏波の選択を示す。プロセスは、段階1262及び1263を通って1264〜1267まで流れる。概念的に、2つの異なるアンテナに対する選択した受信偏波が同じである場合には、両方の航空機アンテナは、同じBTS生成セクタからの情報を受信している可能性が極めて高い。この場合には、1264及び1267において、EVDO CDMA受信装置は、空間ダイバーシティ受信としてこれらの2つの受信入力を用い、これによって到達ダイバーシティの時間が異なることによって複合受信信号品質を高める。選択した受信偏波が異なり、実質的に直交する場合(段階1265及び1266)には、航空機は、受信するために2つの別個のセクタに接続される可能性が高く、作動時に2つの互いに異なるリンクを有する。
【0079】
図12Hは、アンテナ(1及び/又は2)、偏波(V−pol又はH−pol)、周波数バンド(1つ又は2つ)、及び作動状態(1次又は2次)のいずれかの可能性のある組み合わせを示す。この図は、航空機上に2つのアンテナを示しているが、この図を3つ以上の航空機アンテナに拡張することは技術的には妨げられない。これらの図の各軸線は、偏波ドメイン並びに周波数ドメインの両方において実質的に自己絶縁していることを理解することが重要である。この自己絶縁により容量強化することが可能になる。2つの一般的な航空機アンテナシステム要素のペアリング、すなわち、1290に示す1次ペアリングと1291に示す2次ペアリングとが存在する。これらの2つのペアリングは、実質的に自己絶縁しており、一般に、1次ペアリング又は2次ペアリングの何れかが動作しているが、同時に両方は動作せず、すなわち、ペアリングは、一般的に他方に対して排他的である(すなわち、一般的に、航空機アンテナパターンが本明細書で上述されたように空間絶縁する場合を除き、互いに排他的であり、1次及び2次ペアリングは、潜在的に同時に作動することができることになる)。必要なマトリクス行列「セル」を覆う2つの実線で示される1次ペアリング1290は、以下の属性を有し、すなわち、アンテナ1の1296では、1次送信1276が、H−polの1271とバンド1の1272とにあり、1次受信1275が、V−polの1270とバンド2の1273とにあり、アンテナ2の1297では、1次送信1284が、V−polの1280とバンド1の1282とにあり、1次受信1287が、H−polの1281とバンド2の1283とにある。2点破線楕円内に含まれるように示される2次ペアリング1291において、概念的に同様のアンテナ−偏波−バンドマッピングを行うことができる。
【0080】
図13は、相互接続された構成単位1300としての航空機電子システムの1つの実施形態を示す。航空機データソース/シンク1301は、データフロー制御及び(多重−多重分離装置)である1302に双方向性に接続される。また、「mux−demux」の機能は、航空機上で2つの別個の受信マルチリンクパスからのデータを再結合する「逆多重化」機能としても知られている。またこの機能は、(ネットワーク規模の単位で複数の航空機及び複数のセクタ間のトラフィック負荷のバランスをとるために)陸上ネットワークからの信号情報と併せて、航空機電子機器に備わっているトラフィック負荷管理及びリンク品質指標アルゴリズムに基づいて、2つのトランシーバ1303及び1304間で航空機送信データを割り当てる。データフロー制御mux−demux装置1302は、EVDO CDMAトランシーバ1の1303とトランシーバ2の1304とに双方向に接続される。プロセッサ1305は、トランシーバ1303及び1304に対して双方向性である。このプロセッサ1305は、パイロット強度測定値比較又は他のリンク品質指標測定を行い、1次及び2次送信及び受信ポート選択に関する知的判断を行い、トランシーバ1303及び1304並びに1306のMxN無線周波数送信−受信マトリクスに選択指令を送る。装置1306は、RF信号のデュプレクサ(受信及び送信指向性経路を分離する)、ダイプレクサ(複数のRF信号を同じ送信アンテナに接続する)、サーキュレータ、スイッチ及び/又はルータの機能を果たし、全て装置1305による命令に従って、アンテナポート1210〜1213をトランシーバポート1310〜1312及びトランシーバポート1315〜1317に接続する。装置1306は、図12C、12D、12E、12F、12G、及び12Hに定められるような論理規則により、及び1305からの命令により管理される。
【0081】
図14A1は、空対地(地対空)ネットワークにおいてで作動する逆多重化機能を示す。航空機電子システム1300は、航空機アンテナ1401及び1402に接続され、これは、経路1405、1406及び1410、1411を通して陸上に配置されたアンテナ1420及び1421と通信する。陸上アンテナ1420及び1421は、BTS1431及び1430にそれぞれ接続される。
【0082】
この図14A1の実施形態では、陸上アンテナ1420「セルアンテナ5、セクタα」がデュアル直交線形偏波であり、これは、陸上アンテナ1421にも同様に当てはまる点に留意されたい。特定の無線技術又はアーキテクチャでは、これは、好ましい手法とすることができる。しかしながら、図14A2は、陸上アンテナセクタが受信及び送信両方に対して単一の偏波であり、受信及び送信周波数が実質的に異なる別の実施形態を示している。CDMA EVDOのような、配備された特定の技術タイプでは、図14A2は自己干渉を管理するための好ましい方法であり、この方法は、本明細書における一連の図9及び図10に示すセクタ化方式を用いる。
【0083】
引き続き図14A1の説明で、これらのBTS1430及び1431は、BSC2の1436に対するネットワーク1435に更に接続される。ネットワーク1435は、連結ネットワークに加えて、逆多重化機能を提供することができる。或いは、逆多重化機能は、更に下流のBSCの出力にスライドすることができる(図14A2に示す)。しかしながら、BSCの後に逆多重化機能を移動させるこの手法は、使用する「非標準」機器の数量を最小にするのに有利とすることができる(BTS及びBSC相互接続プロトコルは専用であることが多い)が、図14A1が逆多重化経路に複数のBSCを有する場合には、これらのBSCは、図14Bに記載する手段を通じて互いに接続されて、パケットデータストリームを再構築する必要がある。図14A1の接続の説明を続けると、BSC1436は、陸上に配置されたパブリックネットワーク1437に接続される。1437の出力は、航空機から複数の無線路を通じて送信された完全再構築のデータストリーム1441である。本明細書の記載事項は、航空機から地上(及び地上から航空機)の間の経路数を2つの無線リンクにのみ限定するものではない。概念的には、無線リンクの数の唯一の制限は、各固有の無線経路間の自己絶縁を生成するのにシステム設計者が利用可能な自由度(コード、空間、時間、偏波等)である。
【0084】
図14A1を全て考察すると、空対地接続経路は1405及び1406である。これらのエアインタフェースデータストリーム内では、1300で供給される元のパケットは、2つの別個のRFリンク1405及び1406上で順序外に地上に送られる。この順序外データがネットワーク1435に到達すると、この特定の実施形態では、順序外データは正しい順序に再構築され、最終的に完全に元の順序のパケットA〜Iで1441に伝達される。同様に、地対空方向では、エアインタフェース経路1410及び1411は、地上から航空機までのマルチリンク通信を提供する。1440では、1300の出力のデータは、正しい順序のパケット1〜9に再構築される。
【0085】
図14A2では、この説明図は、EVDO CDMA実施に更に特定されている。ここに示すアーキテクチャは、製品化するまでの時間を短縮すると共に、全国的又は本土全体で作動するネットワークを開発し配備する費用を最小にするために、修正を最小にした標準EVDOプラットフォームの大部分を再利用しようとしている。図14A1及び図14A2との間には類似性があるが、図14A2に示す重要な差違は、マルチリンク逆多重化機能を実現するために、現行のEVDO標準及びその周辺に技術的要素を付加することによってEVDOを用いて空対地(地対空)ネットワークを効率的に配備するのに重要である。航空機から始めると、構成単位1450は、データソース/シンク−データフロー制御−データ逆Muxの機能を有する。装置1450は、本明細書では航空機無線モデム1及び航空機無線モデム2で記載される2つのRFトランシーバ1451及び1452に双方向で接続される。これらのモデムは、2つの航空機アンテナ1453及び1454に相互接続される。1465では、各航空機アンテナは、基地局又はセルアンテナ1455及び1456からの両方の偏波を受信することができる。航空機アンテナが放射送信パターン絶縁を有さなければ、各航空機アンテナは、実質的に直交偏波で送信することになり、すなわち、一方のモデムがV−polを送信し、他方のモデムがH−polを送信することになる。これらの送信偏波割り当ては動的であり、本明細書に記載するように航空機が1つの空間領域から別の領域に飛行するときに変化する。経路1403及び1406は、空対地の方向である。逆に、経路1410及び1411は地対空の方向である。セルアンテナ6、セクタγ1455の両方のアンテナポートは、V−polとして構成される。V−pol送信(Tx)ポートは1466であり、同様にV−polである受信ポートは、1467(Rx)で表示される。1456のセル4セクタδには同様の構成が設定されるが、この特定のセクタは、受信及び送信の両方のそれぞれのポート1469及び1468に対して水平に偏波される。概念的に、陸上アンテナセクタパターン1455及び1456は、方位角、仰角、又はその両方の何れかに空間的に隣接するが、1455は垂直に偏波され、1456は水平に偏波される。空間的に隣接するセクタの概念は、本明細書の図9及び図10の一連の図で示される。このように、これらの2つの陸上アンテナセクタ1455及び1456の空間的境界では、航空機アンテナ1453及び1454において12dB〜15dBの偏波絶縁が存在する。
【0086】
アンテナ1455は、BTS2の1458に接続され、アンテナ1456はBTS3の1457に接続される。BTS1457及び1458の両方は、ネットワーク1459を通じてBSC1の1460に双方向性に接続される。続いて、1460は、ネットワーク1461を通じて装置1462に接続される。装置1462は、PDSN(パケットデータ交換網)、HA(ホームエージェント)、及び逆Mux(逆多重化)能力を含む。1462の出力は、航空機により送られたデータストリームを完全に再構築したものであり、1463で示す。
【0087】
このマルチリンクネットワークは双方向性であるので、航空機装置1450は、1464で地上から送られるデータを完全に再構築されたデータストリームとして出力する。このデータストリーム1464は、次に、当該技術分野で公知のパケットパケットアドレス指定方式によって定義される航空機船室内部(又は航空機システム)に伝達される。ネットワークにより伝達されるデータは、データ、音声、VoIP等とすることができる。
【0088】
図14Bは、より詳細なアーキテクチャ上のサービス品質(QoS)空対地1471経路を示し、ここでは、データストリーム1470が航空機で開始され、マルチリンク無線送信を通って、同データストリームが地上に送信され、2つのリンク1405及び1406を介して(関連する機器及びプロセスを用いて)1472として再構築される。航空機では、IP「X」1473として示されたデータストリーム1470は、逆Mux(マルチプレクサ)1474に配信され、これが、2つのデータストリーム、すなわちIP「Y」1476及びIP「Z」1475をそれぞれ出力する。IP「Z」経路に続いて、航空機に配置されるEVDO無線モデム1477は、無線でBTS 1478に接続され、これが更にBSC 1479及びPDSN 1480からHA(ホームエージェント)1481に接続される。1481の出力は、1475 IP「Z」である。同様の経路に沿って、IP「Y」データストリームは、無線でEVDOモデム1482からBTS 1483まで、次いで、BSC 1484、更にその後、HA 1486を通ってPDSN 1485に流れ、元のデータストリームIP「Y」1476として再び現れる。両方のデータストリーム1475及び1476は、逆DeMux装置1487に接続される。装置1487は、1472としてデータストリームIP「X」1473を出力する。この集約経路に沿った送信は、最終的に無損失であり、すなわち、航空機で何が送信されても、最終的にはエラー又はパケット損失がなく地上に到達する。
【0089】
HA(ホームエージェント)は、CDMAパケットデータネットワークでは任意である。CDMAパケットデータネットワークアーキテクチャは、「Simple IP」及び「移動体IP」のIP移動体モデルをサポートする。移動体IPは、IETF(RFC2002〜2006)の従来のIP移動体モデルである。HAは、MT(移動体端末)により用いられるIPアドレスのアンカポイントである。MTでは、インターネットへの接続ポイントが移動するので、ルーティングネットワークは、移動体に対して直接ルーティングすることができない。代替として、HAは、各IPアドレスにルーティングポイントを生成する。次に、HAは、所与のIPアドレスに対するIPパケットを適切なフォーリンエージェント(FA)にトンネリングする。移動体IPを用いる場合には、PDSNがFA機能を果たす。移動体が新しいFA(PDSN)に移動する場合、移動体IPプロトコルは、新しいFAに向くようにそのHAを更新処理する。
【0090】
他の選択肢はSimple IPを用いることである。Simple IPでは、PDSNはIPアドレスに対するアンカポイントを生成する。PDSNは、DHCP又は何らかの同様の機能を介して、パケットデータセッションを確立したときにMTにIPアドレスを割り当てることになる。インターネットルーティングインフラストラクチャには、PDSNは、これらのIPアドレスに対するエンドポイント(又は最終ルータ)のように見える。MTがセル境界にわたって移動し、これによって新しいPDSNに割り当てられることになる場合には、新しいIPアドレスを入手する必要がある。移動体IPでは、モビリティの別のレイヤが存在し、PDSN境界は、IPアドレスの変化が生じない。
【0091】
___HA____
/ \
PDSN1 PDSN2
/ \ / \
RNC/PCF1 RNC/PCF2 RNC/PCF3
/ \ \ /
BTS1 BTS2 BTS3 BTS4
上に示すように、MTがBTS2からBTS3に移動する場合、MTは、依然として同じPDSNによりサービスされることになる。従って、Simple IP及び移動体IPの両方を用いる場合、MTは、新しいIPアドレスを割り当てられる必要はない。しかしながら、MTが、BTS3からBTS4に移動する場合、PDSNが変化することになる。Simple IPを用いる場合、これには、PDSN2により新しいIPアドレスの割り当てが必要になる。移動体IPを用いる場合、HAは同じままであり、従って、IPアドレスの割り当ては必要ではない。但し、ポインタをPDSN1ではなくPDSN2を指すように更新されることになる。インターネットの他の部分は、ルーティングテーブル全てがHAを向くので移動が認知されない。
【0092】
逆Muxの位置に対して、HAは、MTとHAとの間の移動体IPトンネルのエンドポイントである。これは、このトンネルの外側に逆Muxを維持することが最も容易であるためである。同時に、HAは、既に、big−Iインターネットの前の最終エンドポイントであるので、逆Mux機能を実施するのに適切な場所である。
【0093】
図14Bでは、単一のQoSの流れが示されている。しかしながら、複数のQoSの流れも実施可能である。あらゆる場合において、MTとPDSNとの間に各QoSの流れが確立される。加えて、ヘッダー圧縮及び/又はヘッダー除去がサポートされている。MT及びPDSNは、圧縮器/圧縮解除器のエンドポイントである。これらの理由で、MTとPDSNとの間のどこかに逆Mux機能を挿入するために標準の変更が必要とされることになる。
【0094】
逆Muxの別の機能は、複数のIPアドレスのマッピングを処理して単一のIPアドレスに戻すことである。このため、逆Muxは、HAとインターネットとの間に位置する可能性が高いことになる。殆どの配備における2つのHAは、同じ物理エンティティとなるので、HAは、逆Mux機能を実施するための良好な候補になる。
【0095】
図14Bの2つのPDSNは、別個の論理エンティティとして示されるが、多くの場合、これらは、単一の物理ネットワーク要素となる。これはHAにも当てはまる。
【0096】
図14Cは、簡略化された逆多重化プロトコルを示す。1490では、パケットが順序外で且つパケット損失の可能性もあるが、データストリームは受信される。1492では、プロトコルは、パケットがN+1パケットであるか、すなわちシーケンスの次のパケットであるかどうかを確認する。そうである場合、パケットは、送信バッファ1491に送られ、順序外である場合には、パケットは1493に送られる。1494では、パケットが正しい順序に再構築される。1496では、データストリームを1497に送信する前に損失パケットがないか最後にもう一度確認する。パケット損失がある場合には、1495で、損失パケットを再送するようリクエストが送られる。
【0097】
逆多重化
複数のEV−DOモデムを用いる場合、逆多重化機能を提供して2つのEV−DOストリームを組み合わせることが必要である。逆多重化は、単一のチャネルからデータをとり、複数の小さなチャネルにわたって分配し、相手方でデータが再構築される。マルチリンクPPPは、複数の安定チャネル(例えば、論理ISDNチャネル)を組み合わせるのに用いられてきたが、リンクの動的特性により、複数のEV−DOリンクには適切でないことになる。逆多重化機能は、各リンクの瞬間的状態を考慮する必要がある。この問題は十分に研究されており、幾つかのシステムが試作されている。逆多重化プロトコルは、典型的には、リンクの各端部で論理回路が必要である。
【0098】
逆多重化は、スケジューリング、損失パケット、到達順序、パケット待ち時間等の因子を考慮する必要がある。加えて、集約ネットワーク負荷バランスアルゴリズムは、公平性及びサービス品質(QoS)に対する制御機能を提供するために必要とされる。これらの変数全てと併せて、システムは、特に、複合ネットワークにおいて複数の航空機の全体的必要性を比較したときに、何れかの所与のリンクの実効スループットを連続的に測定する必要がある。
【0099】
要約
本発明のマルチリンク航空機セルラーシステムは、航空機に装着された複数の物理的に分離したアンテナを利用すると共に、逆多重化により空対地セルラー通信ネットワークのトラフィック(データ及び音声)処理容量を改善するために、付加的に任意の信号絶縁及び最適化技術を用いる。マルチリンク航空機セルラーシステムの付加的な技術には、偏波ドメイン、コードドメイン、及び地上アンテナパターン整形(方位角、仰角、又は両方の平面)を含むことができる。

【特許請求の範囲】
【請求項1】
航空機内に配置された複数の無線加入者装置と空対地セルラー通信ネットワークの複数の空対地陸上基地局との間の無線周波通信を管理するためのシステムであって、
前記航空機の外側表面上に装着された複数の無線周波数アンテナと、
前記複数の無線加入者装置と前記空対地セルラー通信ネットワークとの間の通話トラフィックを交換する無線周波通信信号を生成するため、前記航空機に配置された少なくとも1つのインタフェース手段と、
前記無線周波通信信号を前記複数の無線周波数アンテナのうちの選択したアンテナに選択的に印加して、前記空対地セルラー通信ネットワークの複数の空対地陸上基地局のうちの選択した基地局と複数の空対地無線周波通信リンクを同時に維持するようにする相互接続手段と、
を備える、無線周波通信を管理するためのシステム。
【請求項2】
前記複数の無線周波数アンテナが、
航空機のベリー上に物理的に間隔を置いた関係で装着された少なくとも2つのデュアル偏波無線周波数アンテナを含む、
請求項1に記載の無線周波通信を管理するためのシステム。
【請求項3】
前記複数の無線周波数アンテナが、
前記航空機の機首と尾部との間の中間点を含む航空機の中心線より前方の航空機ベリー上に装着された第1の無線周波数アンテナと、
前記航空機の中心線の後方の航空機ベリー上に装着された第2の無線周波数アンテナと、
を含む請求項1に記載の無線周波通信を管理するためのシステム。
【請求項4】
前記第1の無線周波数アンテナ及び前記第2の無線周波数アンテナが、デュアル偏波アンテナである、
請求項3に記載の無線周波通信を管理するためのシステム。
【請求項5】
前記少なくとも1つのインタフェース手段が、
第1の偏波で前記無線周波通信信号を生成するための第1の偏波手段と、
前記第1の偏波に実質的に直交する第2の偏波で前記無線周波通信信号を生成するための第2の偏波手段と、
を含む請求項3に記載の無線周波通信を管理するためのシステム。
【請求項6】
前記相互接続手段が、
前記第1の偏波での記無線周波通信信号の第1のセットを前記第1の無線周波数アンテナに印加し、前記第2の偏波での前記無線周波通信信号の第2のセットを前記第2の無線周波数アンテナに印加するための第1の接続手段と、
前記第1の偏波での前記無線周波通信信号の第3のセットを前記第2の無線周波数アンテナに印加し、前記第2の偏波での前記無線周波通信信号の第4のセットを前記第2の無線周波数アンテナに印加するための第2の接続手段と、
を含む請求項5に記載の無線周波通信を管理するためのシステム。
【請求項7】
前記相互接続手段が、
第1の偏波での前記無線周波通信信号の第1のセットを前記第1の無線周波数アンテナに印加し、前記第1の偏波での前記無線周波通信信号の第2のセットを前記第2の無線周波数アンテナに印加するための第1の接続手段と、
前記第2の偏波での前記無線周波通信信号の第3のセットを前記第1の無線周波数アンテナに印加し、前記第2の偏波での前記無線周波通信信号の第4のセットを前記第2の無線周波数アンテナに印加するための第2の接続手段と、
を含む請求項5に記載の無線周波通信を管理するためのシステム。
【請求項8】
前記相互接続手段が、
前記空対地セルラー通信ネットワークの複数の空対地陸上基地局の選択された局と複数の空対地無線周波通信リンクを確立するための陸上基地局選択手段を含む、
請求項1に記載の無線周波通信を管理するためのシステム。
【請求項9】
前記相互接続手段が、
前記空対地セルラー通信ネットワークの選択された空対地陸上基地局と通信する選択された空対地無線周波通信リンクの通信リンク特性を定義するための空対地無線周波通信リンク指定手段を含む、
請求項1に記載の無線周波通信を管理するためのシステム。
【請求項10】
前記相互接続手段が、
前記空対地セルラー通信ネットワークの複数の空対地陸上基地局の選択された局と複数の空対地無線周波通信リンクを確立するための陸上基地局選択手段を更に含む、請求項9に記載の無線周波通信を管理するためのシステム。
【請求項11】
前記空対地無線周波通信リンク指定手段が、前記通信リンク特性のセットから複数の通信リンク特性を選択し、前記通信リンク特性が、無線周波数、無線周波信号偏波、空対地陸上基地局、複数の多次元セクタを有する空対地陸上基地局の多次元セクタ、及び空対地無線周波通信リンクハンドオフ候補を含む、
請求項9に記載の無線周波通信を管理するためのシステム。
【請求項12】
航空機内に配置された複数の無線加入者装置と空対地セルラー通信ネットワークの複数の空対地陸上基地局との間の無線周波通信を管理するための方法であって、
前記航空機の外側表面上に装着された複数の無線周波数アンテナを作動させる段階と、
前記航空機内で、前記複数の無線加入者装置と前記空対地セルラー通信ネットワークとの間の通話トラフィックを交換するための無線周波通信信号を生成する段階と、
前記無線周波通信信号を前記複数の無線周波数アンテナのうちの選択されたアンテナに選択的に印加して、前記空対地セルラー通信ネットワークの複数の空対地陸上基地局のうちの選択した基地局と複数の空対地無線周波通信リンクを同時に維持する段階と、
を含む方法。
【請求項13】
前記複数の無線周波数アンテナが、
前記航空機の前記ベリー上に物理的に間隔を置いて配置された関係で装着された少なくとも2つのデュアル偏波無線周波数アンテナを含む、
請求項12に記載の無線周波通信を管理するための方法。
【請求項14】
前記複数の無線周波数アンテナを作動させる段階が、
前記航空機の機首と機尾との間の中間点を含む航空機の中心線より前方の航空機ベリー上に装着された第1の無線周波数アンテナを作動させる段階と、
前記航空機の中心線の後方の航空機ベリー上に装着された第2の無線周波数アンテナを作動させる段階と、
を含む、
請求項12に記載の無線周波通信を管理するための方法。
【請求項15】
前記第1の無線周波数アンテナ及び前記第2の無線周波数アンテナが、デュアル偏波アンテナである、
請求項14に記載の無線周波通信を管理するための方法。
【請求項16】
前記生成段階が、
第1の偏波での前記無線周波通信信号を生成する段階と、
前記第1の偏波に実質的に直交する第2の偏波で前記無線周波通信信号を生成する段階と、
を含む、
請求項14に記載の無線周波通信を管理するための方法。
【請求項17】
前記選択的に印加する段階が、
前記第1の偏波での前記無線周波通信信号の第1のセットを前記第1の無線周波数アンテナに印加し、前記第2の偏波での前記無線周波通信信号の第2のセットを前記第1の無線周波数アンテナに印加する段階と、
前記第1の偏波での前記無線周波通信信号の第3のセットを前記第2の無線周波数アンテナに印加し、前記第2の偏波での前記無線周波通信信号の第4のセットを前記第2の無線周波数アンテナに印加する段階と、
を含む、
請求項16に記載の無線周波通信を管理するための方法。
【請求項18】
前記選択的に印加する段階が、
第1の偏波での前記無線周波通信信号の第1のセットを前記第1の無線周波数アンテナに印加し、前記第1の偏波での前記無線周波通信信号の第2のセットを前記第2の無線周波数アンテナに印加する段階と、
前記第2の偏波での前記無線周波通信信号の第3のセットを前記第1の無線周波数アンテナに印加し、前記第2の偏波での前記無線周波通信信号の第4のセットを前記第2の無線周波数アンテナに印加する段階と、
を含む、
請求項16に記載の無線周波通信を管理するための方法。
【請求項19】
前記選択的に印加する段階が、
前記空対地セルラー通信ネットワークの複数の空対地陸上基地局の選択した局との複数の空対地無線周波通信リンクを確立する段階を含む、
請求項12に記載の無線周波通信を管理するための方法。
【請求項20】
前記選択的に印加する段階が、
前記空対地セルラー通信ネットワークの選択した空対地陸上基地局と通信するために、選択した空対地無線周波通信リンクの通信リンク特性を定義する段階を含む、
請求項12に記載の無線周波通信を管理するための方法。
【請求項21】
前記選択的に印加する段階が、
前記空対地セルラー通信ネットワークの複数の空対地陸上基地局の選択した局と複数の空対地無線周波通信リンクを確立する段階を更に含む、
請求項20に記載の無線周波通信を管理するための方法。
【請求項22】
前記確立する段階が、無線周波数、無線周波信号偏波、空対地陸上基地局、複数の多次元セクタを有する空対地陸上基地局の多次元セクタ、及び空対地無線周波通信リンクハンドオフ候補を含む前記通信リンク特性のセットから前記複数の通信リンク特性を選択する、
請求項20に記載の無線周波通信を管理するための方法。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図4D】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図9C】
image rotate

【図9D】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図12C】
image rotate

【図12D】
image rotate

【図12E】
image rotate

【図12F】
image rotate

【図12G】
image rotate

【図12H】
image rotate

【図13】
image rotate

【図14A1】
image rotate

【図14A2】
image rotate

【図14B】
image rotate

【図14C】
image rotate


【公表番号】特表2010−508771(P2010−508771A)
【公表日】平成22年3月18日(2010.3.18)
【国際特許分類】
【出願番号】特願2009−535374(P2009−535374)
【出願日】平成19年9月17日(2007.9.17)
【国際出願番号】PCT/US2007/078640
【国際公開番号】WO2008/054934
【国際公開日】平成20年5月8日(2008.5.8)
【出願人】(506194210)エアーセル・エルエルシー (5)
【Fターム(参考)】