説明

質量流量制御装置、その検定方法及び半導体製造装置

【課題】圧力及び質量流量の両方を反映させるとともにタンク容積の変化も考慮した高精度の検定を行う質量流量制御装置を提供する。
【解決手段】流路6の最上流に設けられた検定用バルブ42と、質量流量制御バルブ機構10と、質量流量制御バルブ機構10より上流側の流路6に設けられたタンク44と、質量流量検出手段8と、圧力検出手段46と、質量流量制御バルブ機構10を制御する手段18と、質量流量検定制御手段48とを有する質量流量制御装置を検定する方法であって、(1) 流路6に設定質量流量の流体を流し、(2) 流体の質量流量が設定質量流量と一致するように質量流量制御バルブ機構10の開度を保持し、(3) 検定用バルブ42を閉じ、(4) タンク44から流出する流体の流れが安定化した後で流体の圧力及び質量流量を測定し、(5) 初期状態において同じ手順で測定しておいた基準の圧力及び質量流量に対する圧力及び質量流量の変化率を求め、(6) 変化率に応じて検定を行う方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、比較的小流量の流体の質量流量制御の精度の検定を行うことができる質量流量制御装置、かかる質量流量制御装置の検定方法、及びかかる質量流量制御装置を有する半導体製造装置に関する。
【背景技術】
【0002】
一般に、半導体集積回路等の半導体製品の製造において半導体ウエハに対してCVD、エッチング等を行う場合、処理ガスの供給量を精度良く制御するため質量流量制御装置(Mass Flow Controller)が用いられている。
【0003】
図13は、液体や気体等の流体を流す流路(例えばガス管)4の途中に設けられた従来の質量流量制御装置2を示す。質量流量制御装置2は、両端がガス管4に接続されたステンレススチール等からなる流路6と、流路6のそれぞれ上流側及び下流側に位置する質量流量検出手段8及び質量流量制御バルブ機構10と、マイクロコンピュータのような質量流量制御手段18とを有する。
【0004】
質量流量検出手段8は、複数のバイパス管12と、バイパス管12の両端付近に開口し、バイパス管12を迂回してガスの一部を常に所定の割合で流すセンサ管14とを有する。センサ管14には、温度に応じて抵抗値が変化する材質からなり、直列に接続された一対の抵抗線R1、R4が巻回されている。抵抗線R1はガス流の上流側であり、抵抗線R4は下流側である。抵抗線R1、R4に接続されたセンサ回路16は質量流量信号Sg1を出力する。
【0005】
質量流量制御手段18は、センサ回路16が出力する質量流量信号Sg1に基づきガスの質量流量を求め、その質量流量が外部から入力される信号Sg0で表される設定質量流量と一致するように、質量流量制御バルブ機構10を制御する。
【0006】
質量流量制御バルブ機構10は、流路6の下流側に設けられた質量流量制御バルブ20と、質量流量制御バルブ20を駆動する回路28とを有する。質量流量制御バルブ20は、流路6に設けられたバルブ口24と、バルブ口24の開度を制御する金属製ダイヤフラム22と、ダイヤフラム22の上面に固定された積層圧電素子からなるアクチュエータ26と、ダイヤフラム22及びアクチュエータ26を保持するケース27とを有する。バルブ駆動回路28は、質量流量制御手段18から駆動信号を受けてアクチュエータ26にバルブ駆動信号(電圧)S2を出力し、アクチュエータ26はダイヤフラム22を変形させて、バルブ口24の開度を制御する。
【0007】
図14は質量流量検出手段8を示す。センサ回路16は抵抗線R1、R4に並列に接続した2つの基準抵抗R2、R3を有し、直列接続した抵抗線R1、R4と、直列接続した基準抵抗R2、R3とはブリッジ回路を形成している。基準抵抗R2、R3は一定の温度に維持されている。抵抗線R1、R4はヒータとしての機能も有する。このブリッジ回路は、基準抵抗R2、R3に並列に接続した定電流源30と、抵抗線R1、R4の接続点と基準抵抗R2、R3の接続点とが入力側に接続した差動回路32とを有する。差動回路32は両接続点の電位差から質量流量を求め、質量流量信号Sg1を出力する。
【0008】
センサ管14にガスが流れていない場合、両抵抗線R1、R4の温度は同じであるので、ブリッジ回路は平衡であり、差動回路32が検出する電位差は零である。センサ管14に質量流量Qのガスが流れると、ガスは上流側の抵抗線R1により温められて下流側の抵抗線R4の位置まで流れるので、熱の移動が起こり、抵抗線R1、R4の間に温度差が生じる。その結果、両抵抗線R1、R4の抵抗値に差が生じ、ガスの質量流量に比例する電位差が差動回路32により検出される。従って、差動回路32が出力する質量流量信号Sg1はガスの質量流量に比例する。検出されたガスの質量流量が設定質量流量(電圧信号Sg0で表される)と一致するように、例えばProportional-Integral-Derivative (PID)制御法により質量流量制御バルブ20の開度を制御する。
【0009】
図13に示す質量流量制御装置2では、信号Sg0が示す設定質量流量に対して実際に質量流量制御バルブ20に流れるガスの流量が精度良く一致することが必要である。しかし、センサ管14の内壁への異物の付着等の経時変化により、実際に質量流量制御バルブ20に流れるガスの流量は同じバルブ駆動電圧S2を印加しても納入当初と僅かに異なるようになる。
【0010】
図15は特開平8-335117号(特許文献1)に開示の質量流量制御装置101を示す。この質量流量制御装置101は、流体供給源102に連結した上流側配管103と真空ポンプ104に連結した下流側配管105との間に設置する配管111と、配管111に上流側から順に設けられた可変バルブ112、圧力センサ114、温度センサ115、音速ノズル113及び圧力センサ116と、圧力センサ114、温度センサ115及び圧力センサ116の出力をA/Dコンバータを介して入力する制御回路120と、制御回路120の出力信号を受信し可変バルブ112に駆動信号を出力するドライバ121とを有する。音速ノズル113の上流側及び下流側の流体の圧力を、音速ノズル113におけるレイノルズ数が106以上となるように設定すれば、下流側流体の圧力及び温度に影響されずに流体を目標の質量流量で供給することができる。しかしながら、質量流量制御装置101でも、音速ノズル113への異物の付着、ノズル内面の磨耗、圧力センサ114及び温度センサ115のドリフト等の経時変化により、納入当初と同じバルブ駆動電圧を印加しても実際のガスの流量が僅かに異なるようになる。
【0011】
米国特許第5,865,205号(特許文献2)は、既知の容積を有するリザーバから流出するガスの流量を制御する方法であって、(a) 所望の流れ入力信号及び較正信号を第一の回路に送給して較正された流れ入力信号を発生し、(b) 較正された流れ入力信号を流量制御回路に送給し、もってガス流を制御するために、リザーバの下流のガス流路に配置された質量流量制御バルブに制御信号を送給し、(c) リザーバ出口隔離バルブを開いてリザーバからガスを放出させ、(d) ガス流路内のガス流を質量流量制御バルブの下流で検出して、ガスの質量流量信号を第一の制御回路に送給し、(e) リザーバ出口隔離バルブが開いている全期間にわたって所望の流れ入力信号を積分し、リザーバから放出すべきガスの所望質量を示す第一の信号を発生させ、(f) 出口隔離バルブを開く前のリザーバ内のガスの質量を、出口隔離バルブを閉じた後のリザーバ内のガスの質量と比較し、リザーバから放出されたガスの実際質量を示す第二の信号を発生させ、(g) 第一の信号と第二の信号を比較して、更新された較正信号を発生させる方法を開示している。しかしこの方法では、リザーバと質量流量制御バルブとの間にリザーバ出口隔離バルブを備え、質量流量制御バルブと装置隔離バルブとの間に圧力検出装置及びオリフィスを備えるので、装置全体が複雑化し、リザーバの容積を大きくせざるを得ない。さらに、検出圧力から求めた質量を示す第一及び第二の信号を比較するので、質量信号に同程度の経時変化(ドリフト現象やCv値の変化)が起こり、検定結果に誤差が生じやすい。
【0012】
特開2006-38832号(特許文献3)は、小型のタンクを具備し、検定時の圧力変化を基準の圧力変化と比較することにより質量流量検定を行う質量流量制御装置を開示している。しかしながら、経時変化が予想される質量流量検出手段が出力する質量流量信号が検定結果に反映されないため、質量流量制御の検定精度が必ずしも十分でない。またこの検定方法ではタンク容積が一定であると仮定しているが、実際にはタンク内壁に生成物が付着する等の原因でタンク容積は変化する。従って、この方法での検定結果にはタンク容積の変化による誤差がある。
【0013】
【特許文献1】特開平8-335117号
【特許文献2】米国特許第5,865,205号
【特許文献3】特開2006-38832号
【発明の開示】
【発明が解決しようとする課題】
【0014】
従って本発明の目的は、圧力及び質量流量の両方を反映させるとともにタンク容積の変化も考慮した高精度の検定を行うことができる質量流量制御装置を提供することである。
【0015】
本発明の別の目的は、かかる質量流量制御装置の検定方法を提供することである。
【0016】
本発明のさらに別の目的は、かかる質量流量制御装置を用いた半導体製造装置を提供することである。
【課題を解決するための手段】
【0017】
流体を流す流路を有する本発明の質量流量制御装置は、
前記流路の最上流に設けられ、前記流路を開閉する検定用バルブと、
前記流体の質量流量が設定質量流量と一致するように開度を変える質量流量制御バルブ機構と、
前記質量流量制御バルブ機構より上流側の流路に設けられたタンクと、
前記流体の質量流量を検出して質量流量信号を出力する手段と、
前記流体の圧力を検出して圧力信号を出力する手段と、
前記検定用バルブ、前記タンク、前記質量流量検出手段及び前記圧力検出手段を用いて質量流量検定を行う検定制御手段と
を有することを特徴とする質量流量制御装置。
【0018】
前記検定制御手段は、前記流体の初期状態における圧力及び質量流量を基準圧力及び基準質量流量として記憶する基準データメモリと、経時後の流体の圧力及び質量流量を検定用圧力及び検定用質量流量として記憶する検定用データメモリとを有するのが好ましい。
【0019】
前記基準圧力の低下量と前記タンクの容積との積と、前記基準質量流量の積算値との比又は差を基準比較値Aiとし、前記検定用圧力の低下量と前記タンクの容積との積と、前記検定用質量流量の積算値との比又は差を検定用比較値Afとし、Aiに対するAfの変化率Hを予め設定した値と比較することにより、検定を行うのが好ましい。
【0020】
前記タンクに温度センサが設けられており、前記タンク内の温度により前記変化率Hを補正するのが好ましい。
【0021】
前記質量流量検出手段は、前記流路に沿って設けられた2つの抵抗線の電位差より質量流量を検出する機構を有するのが好ましい。
【0022】
検定結果に基づき前記質量流量信号を校正するのが好ましい。
【0023】
前記流路の出口に前記流路を開閉する零点測定用バルブが設けられているのが好ましい。
【0024】
流路の最上流に設けられた検定用バルブと、質量流量制御バルブ機構と、前記質量流量制御バルブ機構より上流側の流路に設けられたタンクと、質量流量検出手段と、圧力検出手段と、前記質量流量制御バルブ機構を制御する手段と、質量流量検定制御手段とを有する質量流量制御装置を検定する本発明の方法は、(1) 前記流路に設定質量流量の流体を流し、(2) 前記流体の質量流量が前記設定質量流量と一致するように前記質量流量制御バルブ機構の開度を保持し、(3) 前記検定用バルブを閉じ、(4) 前記タンクから流出する流体の流れが安定化した後で前記流体の圧力及び質量流量を測定し、(5) 初期状態において同じ手順で測定しておいた基準の圧力及び質量流量に対する前記圧力及び質量流量の変化率を求め、(6) 前記変化率に応じて検定を行うことを特徴とする。
【0025】
前記工程(5) における変化率Hは、好ましくは下記式:
H=[1−(Af/Ai)]×100 (%)・・・(1)
(ただし、Afは前記圧力の低下量と前記タンクの容積との積と、前記質量流量の積算値との比又は差により表される検定用比較値であり、Aiは基準の圧力及び質量流量から同様に求めた基準比較値である。)により表される。
【0026】
前記変化率Hを前記流体の温度により補正するのが好ましい。
【0027】
前記流体の流れが安定化したか否かの判定を、前記圧力、前記質量流量、及び前記比較値及びその変化率のいずれかを所定の値と比較することにより行うのが好ましい。
【0028】
前記流路の出口に前記流路を開閉する零点測定用バルブを設け、検定の前に前記検定用バルブ及び前記零点測定用バルブの漏れを検査するのが好ましい。
【0029】
前記漏れ検査は、前記検定用バルブを閉じた後、前記検定用バルブと前記零点測定用バルブとの間のガスの圧力が所定の値に降下したときに前記零点測定用バルブを閉じ、前記ガスの圧力変化を監視することにより行い、圧力が上昇した場合には前記検定用バルブの漏れがあると判定し、圧力が下降した場合には前記零点測定用バルブの漏れがあると判定するのが好ましい。
【0030】
流路の最上流に設けられた検定用バルブと、質量流量制御バルブ機構と、前記質量流量制御バルブ機構より上流側の流路に設けられたタンクと、質量流量検出手段と、圧力検出手段と、前記質量流量制御バルブ機構を制御する手段と、質量流量検定制御手段とを有する質量流量制御装置を検定する本発明の方法は、(1) 前記流路に設定質量流量の流体を流し、(2) 前記流体の質量流量が前記設定質量流量と一致するように前記質量流量制御バルブ機構の開度を保持し、(3) 前記検定用バルブを閉じ、(4) 前記タンクから流出する流体の流れが安定化した後で前記流体の圧力Pf及び質量流量Rfを測定し、(5) 前記圧力Pfの所定時間における低下量ΔPfと前記タンクの容積Vとの積ΔPf×Vと、前記質量流量の積算値ΣRとの比又は差により表される検定用比較値Afを求め、(6) 初期状態において前記工程(1)〜(4) と同様に測定した基準の圧力Pi及び質量流量Riから、所定時間における圧力低下量ΔPiと前記タンクの容積Vとの積ΔPi×Vと、質量流量積算値ΣRiとの比又は差により表される検定用比較値Aiを求め、(7) H=[1−(Af/Ai)]×100 (%)の式により表される変化率Hに応じて検定を行うことを特徴とする。
【0031】
本発明の半導体製造装置は、少なくとも2つの上記質量流量制御装置と、複数の開閉バルブとを有し、1つの質量流量制御装置の検定中に他の質量流量制御装置が質量流量制御を行えるように、前記開閉バルブが駆動されることを特徴とする。
【発明の効果】
【0032】
本発明の質量流量制御装置の検定は、初期状態及び検定時における圧力及び質量流量の両方の変動を含むパラメータを用いるので、非常に高精度である。また質量流量制御装置を半導体製造装置のガス供給系等に組み込んだまま、運転を停止することなく遠隔操作で短時間に検定できるので、半導体製造装置等の稼働率の低下を防げる。
【発明を実施するための最良の形態】
【0033】
[1] 質量流量制御装置及びその検定方法
本発明の質量流量制御装置及びその検定方法を添付図面を参照して以下詳細に説明する。図1は本発明の質量流量制御装置40の一例を示し、図2は質量流量制御装置40の内部構造を示す。なお図13及び図14に示すのと同じ部品には同じ符号を付し、それらの説明を省略する。勿論、同じ部品を使用するのは必須ではない。本発明の質量流量制御装置40は液体及びガスのいずれの流体に対しても用いることができるが、ガス(例えばN2ガス)に用いる場合を例にとって説明する。従って、この説明はそのまま液体の場合にも適用できる。
【0034】
質量流量制御装置40は、一端が半導体製造装置(内部は真空引きされる)に接続するガス管4の途中に設けられ、ガス管4内を流れるガスの質量流量を制御する。質量流量制御装置40は、下流側の質量流量制御部40Aと、上流側の質量流量検定部40Bとを有する。質量流量制御装置40はステンレススチール等からなる流路6を有し、流路6の入口6Aはガス管4の上流側に接続され、出口6Bはガス管4の下流側に接続される。
【0035】
質量流量制御部40Aは、ガスの流れを完全に遮断するために下流側の流路6に設けられた零点測定用バルブ36以外、図13に示す従来の装置と同じ構造を有し、質量流量検出手段8、質量流量制御バルブ機構10、及び質量流量制御手段18を具備する。質量流量検出手段8は、バイパス管12、センサ管14及びセンサ回路16を有し、検出した質量流量信号Sg1を質量流量制御手段18に出力する。質量流量制御バルブ機構10は、質量流量制御バルブ20、質量流量制御バルブ20を駆動するアクチュエータ26、及びアクチュエータ26にバルブ駆動電圧S2を出力するバルブ駆動回路28を有する。質量流量制御手段18は、外部のホストコンピュータ等から入力される信号Sg0で示される設定質量流量と、信号Sg1で示される検出質量流量とが一致するように、質量流量制御バルブ20の開度をPID制御法等により制御する。図示の例では質量流量制御バルブ機構10は質量流量検出手段8の下流に設置されているが、質量流量検出手段8の上流に設置しても良い。
【0036】
質量流量検定部40Bは、流路6を開閉する検定用バルブ42と、既知の容積を有するタンク44と、ガスの圧力を検出する手段(圧力センサ)46と、マイクロコンピュータ等の検定制御手段48とを具備する。
【0037】
検定用バルブ42は流路6の最上流に設けられ、検定制御手段48からのバルブ開閉信号Sg3により開閉する。検定用バルブ42として、三方バルブ、全閉用ダイヤフラム等を内蔵したアクチュエータレス小型空圧バルブを用いることができる。図2に示すように、検定用バルブ42は筐体45の凹部47に収容され、零点測定用バルブ36は筐体45の凹部62に収容される。検定用バルブ42の全閉用ダイヤフラムは、筐体45の入口43から導入される作動空気により屈曲し、バルブ口を全開又は全閉する。また零点測定用バルブ36の全閉用ダイヤフラムは筐体45の入口85から導入される作動空気により屈曲し、バルブ口を全開又は全閉する。
【0038】
圧力センサ46は例えばキャパシタンスマノメータからなり、流路6内のガスの圧力を検出し、圧力信号Sg4を検定制御手段48に出力する。検定用バルブ42と圧力センサ46との間に設けられ、流路6を流れるガスが必ず通過するタンク44はステンレススチール等からなり、タンク44の底部にガスの入口44A及び出口44Bが設けられ、タンク44の天井部に温度センサ45(例えば白金温度センサ)が設けられている。タンク44は例えば40 cm3程度の容積を有する。温度センサ45が出力する温度信号は検定制御手段48に入力される。
【0039】
検定制御手段48は、初期状態で得た基準となる圧力データ及び質量流量データを記憶する基準データメモリ52Aと、検定時に得た圧力データ及び質量流量データを記憶する検定用データメモリ52Bとを有する。検定制御手段48にはさらに、検定結果等を表示する手段54(例えば液晶ディスプレイ)、及び必要時に音声や光の点滅等により警報を発する手段56が接続している。検定制御手段48は、質量流量検出手段8のセンサ回路16に校正信号Sg10を出力する。校正信号Sg10に従って、センサ回路16内の差動回路32(図14に示す)のゲインを調整することにより、センサ回路16から出力される質量流量信号Sg1を校正する。
【0040】
検定を行う前にガス流量が完全に零の状態で質量流量検出手段8が出力する質量流量信号Sg1が「零」であるか否かを調べる。それには、検定用バルブ42及び零点測定用バルブ36をともに閉じることにより流量制御装置40内のガス流路6を外部から完全に遮断するとともに、質量流量検出手段8の質量流量制御バルブ20を開き、装置40内を連通状態にする。ガス流路6中のガス流が完全に停止した後、質量流量信号Sg1を求め、質量流量信号Sg1が零点からずれている場合、「零点からのズレ量」を検定制御手段48に記憶する。零点補正により質量流量の測定値の正確さが保証される。
【0041】
質量流量制御装置40の作動には、質量流量制御モード及び質量流量検定モードの2種類がある。質量流量検定モードには、初期状態(例えば装置40を工場から出荷する時やクリーンルームに設置する時等)に、検定の基準となる圧力及び質量流量のデータ(基準圧力データ及び基準質量流量データ)を得る基準データ取得ルーチンと、クリーンルーム等で定期的又は不定期的に質量流量制御の精度が高いか否かを調べる検定ルーチンとがある。
【0042】
質量流量制御モードは図13及び図14を参照して説明した動作と同じであり、質量流量制御モードの間質量流量検定部40Bは休止する。質量流量制御部40Aの質量流量制御手段18は、信号Sg0で示される設定質量流量と信号Sg1で示される検出質量流量とが一致するように質量流量制御バルブ20の開度をPID制御法等により制御する。質量流量の測定は所定の間隔(例えば1 msec)で行う。質量流量制御したガスは下流側の半導体製造装置等に供給される。
【0043】
(A) 質量流量検定の原理
図3は、検定用バルブ42を閉じた後の質量流量及び圧力の時間的変化を示す。一定流量のガスを流している状態で、バルブ10の開度を固定し、検定用バルブ42を完全に閉じると(時刻Tc)、質量流量検出手段8及び圧力センサ46によりそれぞれ検出される質量流量及び圧力は次第に減少し、最終的に質量流量は零となり、また圧力は下流側のガス管4内の圧力(例えば真空圧又は大気圧)となる。
【0044】
図3(a) に示すように、T1,T2,T3・・・のサンプリング時間で質量流量はR1,R2,R3・・・と変化し、圧力P1,P2,P3・・・と変化する。Tc〜T1の間にタンク44から流出したガスの質量はその間の質量流量の積算値に相当し、T1〜T2の間にタンク44から流出したガスの質量はその間の質量流量の積算値に相当する。従って、検定用バルブ42の閉鎖時点Tcから検定の終了時点Teまでにタンク44から流出したガスの質量は、その間の質量流量Rの積算値ΣRに相当する。ΣRは下記式(2) により表される。
【数1】

【0045】
またTc〜T1の間にタンク44から流出したガスの質量はその間の圧力低下量ΔP1とタンク44の容積Vとの積に相当し、T1〜T2の間にタンク44から流出したガスの質量はその間の圧力低下量ΔP2とタンク44の容積Vとの積に相当する。従って、検定用バルブ42の閉鎖時点Tcから検定の終了時点Teまでにタンク44から流出したガスの質量はΔP1×V+ΔP2×V・・・=ΔP×Vに相当する。
【0046】
質量流量制御装置40が経時変化を受けていなければ、下記式(3):
ΔP×V=ΣR・・・(3)
に示すように、TcからTeまでの圧力低下量ΔPとタンク44の容積Vとの積(ΔP×V)と質量流量の積算値ΣRとは等しい。しかし、質量流量制御装置40に経時変化があると、式(1) が成り立たなくなる。質量流量制御装置40の経時変化の程度が大きくなると、ΔP×VとΣRとの違いも大きくなる。従って、ΔP×VとΣRとの違いを初期状態と経時後とで比較すると、経時変化の程度が分かる。経時変化の程度を定量化するために、ΔP×VとΣRとの比(ΔP×V/ΣR)又は差(ΔP×V−ΣR)により表される比較値Aを用いる。初期状態における比較値AをAiとし、経時後の比較値AをAfとすると、Aiに対するAfの変化率Hは経時変化による質量流量の変化率を表す。例えば変化率Hが+2%であれば、設定質量流量が90%であるとしても実際に質量流量制御バルブ20を流れるガスの流量は90%×1.02=91.8%となる。従って、質量流量信号Sg1を90/91.8 = 1/1.02倍に校正すれば、実際に質量流量制御バルブ20を流れるガスの流量は90%となる。このように変化率Hの分だけ質量流量信号Sg1を変えれば、実際に質量流量制御バルブ20を流れるガスの流量を設定通りにすることができる。質量流量検出手段8のセンサ回路16に校正信号Sg10を出力し、センサ回路16から出力される質量流量信号Sg1を校正する。このように、ΔP×V及びΣRから求めた比較値の変化率Hにより質量流量制御装置40の校正を行うことができる。
【0047】
質量流量制御装置40の検定を行うために、初期状態において圧力及び質量流量のデータ(基準データ)を取得するルーチンと、半導体製造装置に設置した状態で検定用に圧力及び質量流量のデータ(検定用データ)を取得するルーチンを行う必要がある。
【0048】
(B) 第一の検定方法
(1) 基準データ取得ルーチン
図4は質量流量検定モードにおける各信号の時間的変化を示し、図5は基準データ取得ルーチンの工程を示す。まず検定用バルブ42を開き(工程S1)、タンク44内にガスを充満させる。ガス管4の下流側は真空引きしても良い。時刻T1で設定質量流量信号Sg0を外部のホストコンピュータ又は検定制御手段48から質量流量制御手段18に送る(工程S2)。設定質量流量信号Sg0は例えば0〜5 Vの範囲で調節可能であるので、全範囲で検定を行う必要がある。このため、例えば100%(フルスケール、5 V)から最少値(例えば10%)まで10%ずつ低減した設定質量流量信号Sg0を質量流量制御手段18に送る。質量流量制御バルブ20の開度は、質量流量信号Sg1と設定質量流量信号Sg0とが一致するように、例えばPID制御法により制御する。
【0049】
最初の設定としてフルスケールの設定質量流量信号Sg0を質量流量制御手段18に送ると、質量流量制御手段18はバルブ駆動回路28を介してバルブ駆動電圧S2を質量流量制御バルブ機構10に送給し、Sg0で決まる開度に質量流量制御バルブ20を開ける。これによりガスは下流側に流れ始め、ガスの質量流量は質量流量検出手段8で検出され、質量流量信号Sg1は質量流量制御手段18及び検定制御手段48に入力される。ガスの圧力は圧力センサ46で検出され、圧力信号Sg4は検定制御手段48に入力される。
【0050】
所定の時間(例えば6秒程度)経過させてガスの質量流量が安定化した後(工程S3)、時刻T2でバルブ駆動電圧S2をその時の電圧値に固定し、質量流量制御バルブ20の開度を固定する(工程S4)。バルブ駆動電圧S2を固定して数秒間経過した後、温度センサ45が検出したタンク44内のガスの温度を初期温度Tiとして記憶する(工程S5)。
【0051】
初期温度Tiの記憶後直ちに、時刻T3で検定制御手段48は検定用バルブ42を閉じる信号Sg3を出力する(工程S6)。これによりガスの供給が断たれ、タンク44内のガスが流れ出し、質量流量信号Sg1及び圧力信号Sg4は徐々に減少する。
【0052】
ガスの圧力及び質量流量を所定のサンプリング間隔(例えば1 msec)で測定し(工程S7)、圧力又は質量流量の変化率からガス流が安定化したか否かを判定する(工程S8)。例えば圧力の変化率を用いる場合、図4に示すように、時間ΔTで圧力がPnからPn+1に変化したとすると、圧力の変化率P’は[(Pn+1−Pn)/Pn]×100(%)により表される。P’が例えば0.1%以下となると、圧力が安定化した(ガス流が安定化した)と判定する。ガス流が安定化した後の時刻T4で測定した圧力及び質量流量を、フルスケールの設定質量流量における基準圧力Pie及び基準質量流量Rieとして基準データメモリ52Aに記憶する(工程S9)。
【0053】
上記の通り検定は異なる設定質量流量に対して行う必要があるので、設定質量流量を下限(例えば10%)に達するまで例えば10%ずつ低減させて、その都度基準圧力データPie及び基準質量流量データRieを求める。具体的には、設定流量が下限でない場合(工程S10のNOの場合)、設定質量流量を10%ずつ減少させて(工程S11)、設定質量流量が下限に達するまで工程S3〜S9を繰り返し、その都度基準圧力データPie及び基準質量流量データRieを基準データメモリ52Aに記憶する。
【0054】
(2) 検定ルーチン
質量流量制御装置40の経時変化を調べるために、装置40をクリーンルームの半導体製造装置等のガス供給ラインに組み込んだまま検定ルーチンを定期的又は不定期的に行う。図6は第一の検定ルーチンを示し、図7は検定ルーチンにおける検定工程を示す。第一の検定ルーチンにおける工程S21〜S31は、図5に示す基準データ取得ルーチンの工程S1〜S11と基本的に同じである。従って、検定ルーチンにおける各信号の変化も図4に示す通りである。基準データ取得ルーチンと同様に、設定質量流量信号Sg0をフルスケール(100%)から10%ずつ10%まで低減させて、検定ルーチンを行う。
【0055】
検定用バルブ42を開けた後(工程S21)、時刻T1で設定質量流量信号Sg0をフルスケール(100%)に設定する(工程S22)。これによりガスは下流側に流れ始め、ガスの圧力及び質量流量が検出され、圧力信号Sg4は検定制御手段48に入力され、質量流量信号Sg1は制御手段18及び検定制御手段48に入力される。質量流量制御バルブ20の開度は、質量流量信号Sg1と設定質量流量信号Sg0とが一致するようにPID制御法により制御する。所定の時間(例えば6秒程度)の経過後にガス流が安定化した後(工程S23)、時刻T2でバルブ20の開度を固定する(工程S24)。さらに数秒間経過後、温度センサ45が検出したタンク44の温度Tfを記憶する(工程S25)。
【0056】
温度Tfの記憶後直ちに時刻T3で検定制御手段48が信号Sg3を出力し、検定用バルブ42を閉じる(工程S26)。これによりガスの供給が断たれ、タンク44内のガスは流れ出し、質量流量信号Sg1及び圧力信号Sg4は徐々に低減する。ガスの圧力及び質量流量を所定の間隔(例えば1 msec)で測定し(工程S27)、上記と同じ方法によりガス流の安定化を判定する(工程S28)。ガス流が安定化した後、時刻T4でフルスケールの設定質量流量における圧力及び質量流量を検定用圧力Pfe及び検定用質量流量Rfeとして検定用データメモリ52Bに記憶する(工程S29)。
【0057】
基準データと同様に検定用データを異なる設定質量流量に対して求める必要があるので、設定質量流量が下限(例えば10%)でない場合(工程S30のNOの場合)、設定質量流量を下限に達するまで例えば10%ずつ減少させて(工程S31)、工程S23〜S29を繰り返し、その都度検定用圧力及び検定用質量流量を検定用データメモリ52Bに記憶する。
【0058】
基準データ及び検定用データを用いて、図7に示す検定(図6における工程S32に相当)を行う。工程S41では、基準データメモリ52Aに記憶した基準圧力データ及び基準質量流量データに基づき、基準圧力低下量ΔPieとタンク44の容積Vとの積(ΔPie×V)と、基準質量流量の積算値ΣRieとの比である基準比較値Ai(=ΔPie×V/ΣRie)を算出する。工程S42では、検定用データメモリ52Bに記憶した検定用圧力データPfe及び検定用質量流量データRfeに基づき、圧力低下量ΔPfeとタンク44の容積Vとの積(ΔPfe×V)と、質量流量の積算値ΣRfeとの比である検定用比較値Af(=ΔPfe×V/ΣRfe)を算出する。
【0059】
比較値Aを比(ΔP×V/ΣR)の代わりに差(ΔP×V−ΣR)としても良い。その場合、Ai=ΔPie×V−ΣRieであり、Af=ΔPfe×V−ΣRfeである。
【0060】
第一の検定方法ではガス流が安定化した後で測定した圧力及び質量流量に基づき基準比較値Ai及び検定用比較値Afを計算するので、Ai及びAfは時間の関数ではない。しかしサンプリング間隔で圧力及び質量流量を測定するごとに比較値Ai,Afを計算すると、基準比較値Ai及び検定用比較値Afの時間的変化は図8に示す通りとなる。図8に示す例では、比較値AはΔP×V/ΣRである。またnはサンプリング回数を表す。両比較値Ai、Afが最初に大きいのは、測定開始時には熱伝導式の質量流量検出手段8を通るガス流が速いので、質量流量の検出遅れが大きいからである。質量流量検出手段として応答性の良い音速ノズルを用いれば、質量流量の検出遅れがはるかに小さいが、音速ノズルはガス圧が高くないと利用できないので、汎用性が低い。熱伝導式の質量流量検出手段8を用いても、検定時間を長くすれば、圧力低下量ΔP及び質量流量の積算値ΣRが大きくなるので、検定精度が向上する。検定時間を長くするには、ガス流の安定化の判定基準を厳しくするか(例えば圧力の変化率を0.05%とするか)、タンクの容量を大きくすれば良い。
【0061】
基準比較値Aiの曲線と検定用比較値Afの曲線とは、質量流量制御装置40の経時変化のために僅かにずれている。従って、このずれを定量化すれば、質量流量制御装置40の検定に使用できる。具体的には、基準比較値Aiに対する検定用比較値Afの変化率Hを下記式(4) により求める(工程S43)。
H=[1−(Af/Ai)]×100 (%)・・・(4)
【0062】
変化率Hは質量流量の変化率に相当する。第一の検定方法では比較値Ai,Afをガス流の安定化後に求めるが、仮にサンプリングごとに変化率Hを算出するとすると、図9に示す通りとなる。変化率Hは検定開始時にはやや大きいが、徐々に低減し、安定化する。装置40に経時変化が全くなければ変化率Hは零に収束するが、実際には装置40の経時変化により変化率Hは、ガス流が安定化した後でもある程度のレベルHmのままである。Hmは、安定化後に複数回(例えば5回)サンプリングして求めた変化率Hを平均することにより求めることができる。
【0063】
式(4) は温度の影響を考慮していないが、温度補正した変化率Hは下記式(5) により求まる。
H=[1−(Af/Ai)×(273.15+Ti)/(273.15+Tf)]×100 (%)・・・(5)
(ただし、Tiは図5に示す工程S5で求めたタンク44内の初期温度であり、Tfは図6に示す工程S25で求めたタンク44内の検定時の温度である。)
【0064】
安定化後の変化率Hmを記憶するとともに、表示手段54に表示する(図6に示す工程S33)。変化率Hmが所定の値を超えた時点を質量流量制御装置40を交換する目安としても良い。
【0065】
変化率Hmに応じてセンサ回路16を自動的に校正し、正しい質量流量信号Sg1を出力する(工程S34)。この校正は、センサ回路16の増幅器である差動回路32(図14参照)のゲインを調整することにより行うことができる。また検定結果及び校正データをホストコンピュータ等に送り、データベース化しても良い。検定誤差が予め設定した許容範囲を超えた時には警報手段56を駆動し、オペレータの注意を喚起する。自動校正が終了したら、検定ルーチンを終了する。
【0066】
圧力の変化率が所定の範囲(例えば0.1%)以内になったか否かによりガス流の安定化を判定する代わりに、比較値Aの変化率(又は変化量)、又は変化率Hの変化率(又は変化量)により判定しても良い。
【0067】
比較値Aによる判定の場合、サンプリングごとの比較値Aの変化率(又は変化量)ΔAが所定の値(例えば0.1%)以下になったか否かにより、ガス流の安定化を判定する。
(a) 比較値AがΔP×VとΣRの比の場合
ΔA=(ΔPn×V/ΣRn−ΔPn+1×V/ΣRn+1)/(ΔPn×V/ΣRn)
=(ΔPn/ΣRn−ΔPn+1/ΣRn+1)/(ΔPn/ΣRn)・・・(6)
(b) 比較値AがΔP×VとΣRの差の場合
ΔA=[(ΔPn×V−ΣRn)−(ΔPn+1×V−ΣRn+1)]/(ΔPn×V−ΣRn)・・・(7)
【0068】
比較値AがΔP×VとΣRの差の場合、式(7) にタンク44の容積Vの項があるため、タンク44の内壁に生成物等が付着してタンク44の容積量Vが初期状態から変化したときに、ΔAは影響を受ける。一方、比較値AがΔP×VとΣRの比の場合、式(2) はタンク44の容積Vの項を含まないので、タンク44の容積量Vが初期状態から変化しても、ΔAは影響を受けない。
【0069】
変化率Hによる判定の場合、サンプリングごとの変化率Hn, Hn-1の変化率(又は変化量)ΔHが所定の範囲(例えば0.1%)以内になったか否かにより、ガス流の安定化を判定する。変化率Hの変化率ΔHは下記式(8):
ΔH=(Hn−Hn-1)/Hn・・・(8)
により表される。
【0070】
(3) 検定実験
10〜5000 SCCM(大気圧における1分当たりの流量)の範囲内で異なる流量範囲を有する10台の本発明の質量流量制御装置MFCに対して、下記の検定評価を行った。結果を表1に示す。No.8のMFCは、流量範囲を2つに分けた。
【0071】
(a) 一定圧力での繰り返し性(Repeatability)
流路6を流れるガスの圧力を0.2 MPaとした初期状態で、図5に示す基準データ取得ルーチンにより基準比較値Ai(=ΔPi×V/ΣRi)を求めた。その後直ちに、初期状態と同じガス圧で同じ検定工程を2回行い、検定用比較値Af1(=ΔPf1×V/ΣRf1),Af2(=ΔPf2×V/ΣRf2)を求めた。基準比較値Ai及び検定用比較値Af1,Af2から、2つの変化率H1, H2を得た。変化率H1,H2の差(|H1−H2|)の大小は質量流量の測定値のバラツキの大小に対応する。従って、|H1−H2|により一定圧力での繰り返し性(設定質量流量に対する誤差の大きさ)を評価した。
【0072】
(b) 異なる圧力での繰り返し性
流路6を流れるガスの圧力を初期状態の0.2 MPaから、検定工程で0.25 MPa(+0.05 MPa)に変えた以外上記(a) と同じ方法により、2つの変化率H1, H2を得た。|H1−H2|により異なる圧力での繰り返し性を評価した。
【0073】
【表1】

【0074】
表1から明らかなように、一定圧力での繰り返し性は0.34〜1.11%と良好であった。異なる圧力での繰り返し性も0.97〜1.24%と良好であった。従って、総合的な繰り返し性は、10〜400 SCCMの流量範囲では1.16〜1.45%と1.50%の保証値より低く、401〜5000 SCCMの流量範囲では1.89〜2.35%と2.50%の保証値より低かった。これから、広い流量範囲において繰り返し性が良好な流量検定が可能であることが分る。
【0075】
(C) 第二の検定方法
第一の検定方法では設定質量流量が下限か否かの判定工程S30を検定工程S32の前に行い、異なる設定質量流量で取った基準データ及び検定用データをメモリに記憶しておいたが、図10に示すように、設定質量流量ごとに検定(工程S30)を行っても良い。この場合、基準データ取得ルーチンも図10に示すように変える。
【0076】
(D) 第三の検定方法
基準圧力データ及び基準質量流量データの取得と同時に基準比較値Aiを算出して基準データメモリ52Aに記憶し、検定用の圧力データ及び質量流量データを取得したときごとに検定用比較値Afを算出しても良い。この場合、基準比較値Ai及び検定用比較値Afはサンプリング回数ごとに変化するので、比較値の変化率によりガス流の安定化を判定しても良い。
【0077】
(E) バルブの漏れ検査
質量流量制御装置の検定に当たり、検定用バルブ42及び零点測定用バルブ36に漏れのないことが必要である。検定用バルブ42に漏れがあると、圧力低下量ΔPが不正確となる。また零点測定用バルブ36に漏れがあると、質量流量検出手段8の零点補正が不正確となる。そのため、零点補正及び検定の前に、検定用バルブ42及び零点測定用バルブ36の漏れを検査する。
【0078】
図11は、検定用バルブ42及び零点測定用バルブ36を順次閉じたときの圧力変動を示す。時刻170で検定用バルブ42を閉じると、検定用バルブ42と零点測定用バルブ36との間の圧力は急速に低下する。所定の圧力降下(例えば0.03 MPa)が認められる時刻171で零点測定用バルブ36を閉じる。圧力が安定化する時間(例えば2〜4秒)を経た時点172での圧力を基準とし、圧力変動の監視を例えば10秒間行う。圧力がライン174のように上昇すれば検定用バルブ42が漏れていると判定し、ライン175のように降下すれば零点測定用バルブ36が漏れていると判定する。検定用バルブ42又は零点測定用バルブ36の漏れがあると、質量流量制御装置40はバルブが異常であることを示す信号を発し、検定を停止する。ライン173のように圧力変動がない場合、検定用バルブ42及び零点測定用バルブ36はともに正常と判定し、零点補正又は流量検定に進む。このように零点補正及び流量検定を行う前に検定用バルブ42及び零点測定用バルブ36の漏れ検査を行うと、検定結果の精度はさらに高くなる。
【0079】
[2] 半導体製造装置
本発明の流量検定機能付質量流量制御装置を搭載した半導体製造装置の一例を図12に示す。プロセスガス源L1及びL2から出たプロセスガスは、圧力制御装置R1及びR2で適度な圧力に調整され、開閉バルブV1及びV4を経て流量検定機能付質量流量制御装置40-1及び40-2に入り、流量を制御した後開閉バルブV2、V5及びV10を経て処理室Dに入る。処理室Dの出口は開閉バルブV12を経て排気装置Pに連結している。プロセスガスの置換や流量検定に利用する不活性ガスは、不活性ガス源L3から出て、圧力制御装置R3で適度な圧力に調整され、開閉バルブV7、V9、V3、V6を経て質量流量制御装置40-1及び40-2に入り、流量を制御した後開閉バルブV8及びV10を経て処理室Dに入る。
【0080】
半導体製造装置の操作において、全ての指令信号は制御装置Cから出力される。初期状態では開閉バルブV1〜V12は閉じている。まず排気装置Pを稼動し、質量流量制御装置40-1〜40-3、及び開閉バルブV2、V3、V5〜V10及びV12を開き、圧力制御装置R3で圧力制御した不活性ガス(例えば窒素)を配管内及び処理室D内に導入する。次いで、開閉バルブV3、V5、V6、V9を閉じ、開閉バルブV1を開き、制御装置Cから質量流量制御装置40-1及び40-3に設定質量流量信号を送る。この状態で、プロセスガス源L1から出るプロセスガスを圧力制御装置R1で圧力制御し、質量流量制御装置40-1に導入するとともに、不活性ガス源L3から出る不活性ガスを圧力制御装置R3で圧力制御し、質量流量制御装置40-3に導入し、もって不活性ガスで希釈したプロセスガスを処理室Dに導入する。プロセスガス源L2を用いる場合も同様である。
【0081】
例えば質量流量制御装置40-1を検定する場合、排気装置Pを稼動し、開閉バルブV2、V3、V7、V9、V10、V12を開き、不活性ガス源L3から出る不活性ガスを圧力制御装置R3を経て質量流量制御装置40-1に導入する。次いで質量流量制御装置40-1に検定モードの指示信号を送る。勿論、不活性ガスの代りにプロセスガス源L1又はL2から出るプロセスガスを使用しても良い。
【0082】
半導体の良品率は、クリーンルームのクリーン度やプロセスガスの流量制御の精度に影響される。例えばオペレータが行う作業では発塵がクリーン度に大きな影響を及ぼすので、無人の遠隔操作が望ましい。本発明は、遠隔操作でプロセスガスの流量制御の検定及び校正を行うことを可能にする。
【0083】
圧力制御装置、開閉バルブ、質量流量制御装置、処理室及び排気装置を含む半導体製造装置全体を制御装置Cにより一元的に制御するので、自動的な流量検定をすることができる。また複数の質量流量制御装置を切り換えながら検定するので、半導体製造装置の連続運転が妨げられない。さらに質量流量制御装置は検定機能を有するので、制御装置Cから検定モードの指示信号を受けるだけで良く、従来の方法より制御プログラムが非常に簡単である。
【0084】
本発明を図示の例により詳細に説明したがそれに限定されず、本発明の思想の範囲内で種々の変更をすることができる。
【図面の簡単な説明】
【0085】
【図1】本発明の質量流量制御装置の一例を示すブロック図である。
【図2】本発明の質量流量制御装置の内部構造を示す概略断面図である。
【図3(a)】質量流量及び圧力の時間的変化を示すグラフである。
【図3(b)】圧力低下とタンクの容積との積と質量流量の積算値との関係を示すグラフである。
【図4】質量流量制御装置の検定モード時の各信号のタイミングを示すチャートである。
【図5】基準データ取得ルーチンの各工程を示すフローチャートである。
【図6】第一の検定方法における検定ルーチンの各工程を示すフローチャートである。
【図7】検定ルーチンにおける検定の各工程を示すフローチャートである。
【図8】圧力低下量ΔPとタンクの容積Vとの積と質量流量の積算値ΣRとの比(ΔP×V/ΣR、比較値A)の時間的変化を示すグラフである。
【図9】変化率Hの時間的変化を示すグラフである。
【図10】第二の検定方法における検定ルーチンを示すフローチャートである。
【図11】漏れ検査における検定用バルブと零点測定用バルブとの間の圧力の時間的変化を示すグラフである。
【図12】本発明の半導体製造装置の一例を示す概略図である。
【図13】ガス管に設けられた従来の質量流量制御装置の一例を示す概略図である。
【図14】図13の質量流量制御装置における質量流量検出手段の構造を示す概略図である。
【図15】従来の質量流量制御装置の他の例を示す概略図である。
【符号の説明】
【0086】
4 ガス管(流体通路)
6 流路
8 質量流量検出手段
10 質量流量制御バルブ機構
12 バイパス管
14 センサ管
16 センサ回路
18 質量流量制御手段
20 質量流量制御バルブ
28 バルブ駆動回路
36 零点測定用バルブ
40 質量流量制御装置
40A 質量流量制御部
40B 質量流量検定部
42 検定用バルブ
44 タンク
45 温度検出手段
46 圧力検出手段
48 検定制御手段
52A 基準データメモリ
52B 検定用データメモリ
54 表示手段
56 警報手段
Sg0 設定質量流量信号
Sg1 質量流量信号
Sg2 バルブ駆動信号
Sg3 バルブ開閉信号
Sg4 圧力信号
Sg10 校正信号



【特許請求の範囲】
【請求項1】
流体を流す流路を有する質量流量制御装置であって、
前記流路の最上流に設けられ、前記流路を開閉する検定用バルブと、
前記流体の質量流量が設定質量流量と一致するように開度を変える質量流量制御バルブ機構と、
前記質量流量制御バルブ機構より上流側の流路に設けられたタンクと、
前記流体の質量流量を検出して質量流量信号を出力する手段と、
前記流体の圧力を検出して圧力信号を出力する手段と、
前記検定用バルブ、前記タンク、前記質量流量検出手段及び前記圧力検出手段を用いて質量流量検定を行う検定制御手段と
を有することを特徴とする質量流量制御装置。
【請求項2】
請求項1に記載の質量流量制御装置において、前記検定制御手段は、前記流体の初期状態における圧力及び質量流量を基準圧力及び基準質量流量として記憶する基準データメモリと、経時後の流体の圧力及び質量流量を検定用圧力及び検定用質量流量として記憶する検定用データメモリとを有することを特徴とする質量流量制御装置。
【請求項3】
請求項2に記載の質量流量制御装置において、前記基準圧力の低下量と前記タンクの容積との積と、前記基準質量流量の積算値との比又は差を基準比較値Aiとし、前記検定用圧力の低下量と前記タンクの容積との積と、前記検定用質量流量の積算値との比又は差を検定用比較値Afとし、Aiに対するAfの変化率Hを予め設定した値と比較することにより、検定を行うことを特徴とする質量流量制御装置。
【請求項4】
請求項1〜3のいずれかに記載の質量流量制御装置において、前記タンクに温度センサが設けられており、前記タンク内の温度により前記変化率Hを補正することを特徴とする質量流量制御装置。
【請求項5】
請求項1〜4のいずれかに記載の質量流量制御装置において、前記質量流量検出手段は、前記流路に沿って設けられた2つの抵抗線の電位差より質量流量を検出する機構を有することを特徴とする質量流量制御装置。
【請求項6】
請求項1〜5のいずれかに記載の質量流量制御装置において、検定結果に基づき前記質量流量信号を校正することを特徴とする質量流量制御装置。
【請求項7】
請求項1〜6のいずれかに記載の質量流量制御装置において、前記流路の出口に前記流路を開閉する零点測定用バルブが設けられていることを特徴とする質量流量制御装置。
【請求項8】
流路の最上流に設けられた検定用バルブと、質量流量制御バルブ機構と、前記質量流量制御バルブ機構より上流側の流路に設けられたタンクと、質量流量検出手段と、圧力検出手段と、前記質量流量制御バルブ機構を制御する手段と、質量流量検定制御手段とを有する質量流量制御装置を検定する方法であって、(1) 前記流路に設定質量流量の流体を流し、(2) 前記流体の質量流量が前記設定質量流量と一致するように前記質量流量制御バルブ機構の開度を保持し、(3) 前記検定用バルブを閉じ、(4) 前記タンクから流出する流体の流れが安定化した後で前記流体の圧力及び質量流量を測定し、(5) 初期状態において同じ手順で測定しておいた基準の圧力及び質量流量に対する前記圧力及び質量流量の変化率を求め、(6) 前記変化率に応じて検定を行うことを特徴とする方法。
【請求項9】
請求項8に記載の質量流量制御装置の検定方法において、前記工程(5) における変化率Hが下記式:
H=[1−(Af/Ai)]×100 (%)
(ただし、Afは前記圧力の低下量と前記タンクの容積との積と、前記質量流量の積算値との比又は差により表される検定用比較値であり、Aiは基準の圧力及び質量流量から同様に求めた基準比較値である。)により表されることを特徴とする方法。
【請求項10】
請求項9に記載の質量流量制御装置の検定方法において、前記変化率Hを前記流体の温度により補正することを特徴とする方法。
【請求項11】
請求項8〜10のいずれかに記載の質量流量制御装置の検定方法において、前記流体の流れが安定化したか否かの判定を、前記圧力、前記質量流量、及び前記比較値及びその変化率のいずれかを所定の値と比較することにより行うことを特徴とする方法。
【請求項12】
請求項8〜11のいずれかに記載の質量流量制御装置の検定方法において、前記流路の出口に前記流路を開閉する零点測定用バルブを設け、検定の前に前記検定用バルブ及び前記零点測定用バルブの漏れを検査することを特徴とする方法。
【請求項13】
請求項12に記載の質量流量制御装置の検定方法において、前記漏れ検査は、前記検定用バルブを閉じた後、前記検定用バルブと前記零点測定用バルブとの間のガスの圧力が所定の値に降下したときに前記零点測定用バルブを閉じ、前記ガスの圧力変化を監視することにより行い、圧力が上昇した場合には前記検定用バルブの漏れがあると判定し、圧力が下降した場合には前記零点測定用バルブの漏れがあると判定することを特徴とする方法。
【請求項14】
流路の最上流に設けられた検定用バルブと、質量流量制御バルブ機構と、前記質量流量制御バルブ機構より上流側の流路に設けられたタンクと、質量流量検出手段と、圧力検出手段と、前記質量流量制御バルブ機構を制御する手段と、質量流量検定制御手段とを有する質量流量制御装置を検定する方法であって、(1) 前記流路に設定質量流量の流体を流し、(2) 前記流体の質量流量が前記設定質量流量と一致するように前記質量流量制御バルブ機構の開度を保持し、(3) 前記検定用バルブを閉じ、(4) 前記タンクから流出する流体の流れが安定化した後で前記流体の圧力Pf及び質量流量Rfを測定し、(5) 前記圧力Pfの所定時間における低下量ΔPfと前記タンクの容積Vとの積ΔPf×Vと、前記質量流量の積算値ΣRとの比又は差により表される検定用比較値Afを求め、(6) 初期状態において前記工程(1)〜(4) と同様に測定した基準の圧力Pi及び質量流量Riから、所定時間における圧力低下量ΔPiと前記タンクの容積Vとの積ΔPi×Vと、質量流量積算値ΣRiとの比又は差により表される検定用比較値Aiを求め、(7) H=[1−(Af/Ai)]×100 (%)の式により表される変化率Hに応じて検定を行うことを特徴とする方法。
【請求項15】
請求項1〜7のいずれかに記載の少なくとも2つの質量流量制御装置と、複数の開閉バルブとを有する半導体製造装置であって、1つの質量流量制御装置の検定中に他の質量流量制御装置が質量流量制御を行えるように、前記開閉バルブが駆動されることを特徴とする半導体製造装置。

【図1】
image rotate

【図2】
image rotate

【図3(a)】
image rotate

【図3(b)】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2008−170410(P2008−170410A)
【公開日】平成20年7月24日(2008.7.24)
【国際特許分類】
【出願番号】特願2007−69343(P2007−69343)
【出願日】平成19年3月16日(2007.3.16)
【出願人】(000005083)日立金属株式会社 (2,051)
【Fターム(参考)】