説明

Fターム[5H307FF15]の内容

流量の制御 (3,234) | 検出変量、検出手段 (398) | 被制御流体の流量以外の各種変量の検出 (173) | 温度を検出するもの (41)

Fターム[5H307FF15]に分類される特許

1 - 20 / 41


【課題】液化ガスの再液化を防ぎながら液化ガスの流量を精密に制御可能なマスフローコントローラーを提供する。
【解決手段】実施形態のマスフローコントローラー100は、流入口11から流入した液化ガスを分流するセンサー用配管13とバイパス配管14と、前記センサー用配管を覆うように配置された熱式センサー7と、前記センサー用配管を覆って前記センサー用配管と共に二重配管を形成し、前記センサー用配管および前記バイパス配管に連通する断熱領域15と、前記連通を遮断して前記断熱領域を閉鎖領域とする閉鎖バルブ1と、を備える。実施形態のマスフローコントローラーは、前記センサー用配管と前記バイパス配管とから合流した前記液化ガスの流出口12と、前記熱式センサーの検出結果に基づいて前記流出口から流出する前記液化ガスの流量を制御する制御手段と、前記各部位の全体を下方から加熱するヒーター2と、をさらに備える。 (もっと読む)


【課題】 開閉弁の異常が生じても、装置を停止することなく、できるだけ目標の設定流量に近い流量で運転すること。
【解決手段】 複数の異なる設定流量(または設定関連指標)に対応して開閉弁9A〜9Cを異なる開閉パターンに制御する流量調節装置であって、開閉異常が生じている開閉弁9A〜9Cを特定する異常特定制御と、開閉異常が生じている開閉弁9A〜9Cの開閉状態を含み、かつ正常時の開閉パターンに対応する設定流量(または設定関連指標)に近いバックアップ設定流量(またはバックアップ設定関連指標)の開閉パターンにより、開閉弁9A〜9Cを制御するバックアップ制御とを行う。 (もっと読む)


【課題】流量測定装置10や流量制御装置100においてコンパクト性を損なうことなく、流量測定精度を向上させる。
【解決手段】
測定対象流体が流れる流体抵抗部材3と、対象流体が導かれる感圧面に貼り付けられた抵抗素子2Bの電気抵抗値の変化から流体抵抗部材3の上流側圧力を測定することが可能であるとともに抵抗素子2Bの温度による電気抵抗値の変化から前記感圧面の温度を測定することが可能な上流側圧力センサ21と、流体抵抗部材3を流れる対象流体の温度を測定可能な位置に配置された温度検知手段8と、上流側圧力センサ21で測定された上流側流路の圧力及び前記流体抵抗部材の圧力−流量特性に加えて、上流側圧力センサ21で測定された圧力センサ温度及び温度検知手段8で測定された流体抵抗部材3における対象流体温度に少なくとも基づいて、当該対象流体の流量を算出する流量算出部9とを備えるようにした。 (もっと読む)


【課題】異なる液温の液体が収容された2つのタンクにおける急激かつ大幅な液位変化をなくして液体の温度調整を容易にすると共に、該装置をコンパクトかつ安価に設置できるようにする。
【解決手段】第1の液体F1が収容された外部タンク1の内部に、第2の液体F2が収容された内部タンク2を設置し、外部タンク1の内部又は内部タンク2の内部に下限液位センサ28又は25を配設し、該液位センサ28,25が液体の液位の低下を検出したとき第1の開閉弁24又は第2の開閉弁27を開放することにより、液位が上昇したタンク内の液体の一部を、外部タンク用液体循環路5及び内部タンク用液体循環路6を通じて液位が低下したタンク内に補給し、それによって両タンク1,2内の液位の変動を吸収する。 (もっと読む)


【課題】デジタル制御を採用したバルブ制御機構であっても、従来のアナログ制御を使用している場合に近い応答性を実現することができる流体制御装置を提供する。
【解決手段】流体が流れる流路5上に設けられた流体制御バルブ2と、前記流体に関する物理量を測定する流体測定部1と、前記流体測定部で測定される物理量の測定値が、予め設定される設定値となるように前記流体制御バルブ2の開度を制御するバルブ制御機構4とを備えた流体制御装置100であって、前記バルブ制御機構4が、前記測定値と前記設定値の偏差に基づいてデジタル制御によって前記流体制御バルブ2の開度の操作量を演算する操作量演算部41と、アナログ制御によって位相遅れを補償する位相補償部42と、を備えた。 (もっと読む)


【課題】単位時間内に供給されるC4混合物に含まれる有効成分の供給量を精度よく管理することができる供給量管理システムを提供する。
【解決手段】供給量管理システム1は、プラント内において、発生装置M1から処理装置M2に供給されるC4混合物に含まれる有効成分の供給量を管理するシステムであり、発生装置M1から処理装置M2に供給されるC4混合物の流量を連続的に計測する流量計測部2と、発生装置M1から処理装置M2に供給されるC4混合物に含まれる有効成分の濃度を連続的に計測する濃度計測部3と、流量計測部2によって計測されるC4混合物の流量データ及び濃度計測部3によって計測されるC4混合物に含まれる有効成分の濃度データを用いて、発生装置M1から処理装置M2に単位時間内に供給される有効成分の供給量を算出する算出部7と、を備えている。 (もっと読む)


【課題】小型化された校正ユニットにより、より迅速且つ高精度で行える、ビルドアップ(又はROR)法による流量制御器の流量校正方法を提供する。
【解決手段】ガス供給路LにビルドアップタンクBTと開閉弁V及び開閉弁Vと温度検出器Pd及び圧力検出器Tdとから成る校正ユニット5を分岐状に連結し開閉弁Vを真空排気装置に接続し、先ず各流量制御器の開閉弁Vo〜Vo及びガス使用箇所の開閉弁Vを閉鎖して開閉弁V及び開閉弁Vを開放、次に被校正流量制御器の開閉弁のみを開放して設定流量のガスを校正ユニット5へ流入させ、時刻tに於いてタンク内のガス温度及びガス圧力を計測し、その後開閉弁Vを閉鎖してタンクBT内のガスのビルドアップを行い、時刻tに開閉弁Vを閉鎖し、時刻tにガス温度及びガス圧力を計測して各計測値からガス流量Qを演算して設定ガス流量と演算ガス流量Qとの対比により流量校正を行う。 (もっと読む)


【課題】従来よりも計装コストを低減させる。
【解決手段】ガスが流通する流路11に配置され、発熱抵抗体、上流側測温抵抗素子および下流側測温抵抗素子を有するセンサ12と、発熱抵抗体を発熱させたときの上流側測温抵抗素子および下流側測温抵抗素子の検出温度に基づいてガスの物性値を算出する物性値算出部311と、上記検出温度に基づいてガスの流量を算出する流量算出部312と、ガスの置換時に開閉され、ガスの流量を調節する調節弁40と、算出された物性値または流量に基づいて調節弁40の開度を制御する弁制御部330と、センサ12の出力信号を、物性値算出部311または流量算出部312のいずれか一方への入力に切り替える切替部320と、を備える。 (もっと読む)


少なくとも1つのポンプと、質量流量センサと、周囲温度センサと、周囲圧力センサと、前記質量流量センサの温度を測定する温度補償センサと、制御システムとを備える安定した空気流量を維持するための流量調整システムが開示され、前記流量調整システムを用いて流量を測定するための方法、サンプリング装置と、濃縮トラップ1と、較正およびチューニングモジュールと、ブランクモジュールと、前記流量調整システムと、クロマトグラフィーユニットと、検出ユニットとを備える気相と粒子相との両方における空気中に存在する空気により運ばれる化合物を監視するための装置、ならびに前記監視装置を用いて空気流中の空気により運ばれる化合物を検出するための方法も開示される。 (もっと読む)


可動式流体輸送機(106)を使用して現場(100)に流体を輸送するシステム及び方法が開示される。本方法は、センサ(500)を使用して現場に関連するパラメータの値を特定すること、及び現場パラメータの値に基づいて流体輸送率を決定することを含む。本方法は、決定された流体輸送率で、可動式流体輸送機の位置での現場表面に流体を輸送することをさらに含む。
(もっと読む)


【課題】制限フロー構成要素によって生成される圧力低下に基づいて、フロー速度を測定するための流体フロー測定および制御デバイスを提供する。
【解決手段】本発明のデバイスは、流体入り口および流体出口を有する比例フローバルブ10、ならびにこの比例バルブ10を調節するためのアクチュエータ17を備える。この制限フロー要素15は、この比例フローバルブ10と連絡状態にある流体入り口および流体出口を備え、制限フロー構成要素の流体入り口と出口との間での圧力低下を生成する。このデバイスはまた、圧力低下を測定するための手段24,25、圧力低下に基づいてフロー速度を計算するための手段16、ならびに測定された圧力低下に応じて比例フローバルブ10を通じて流体のフローを制御するために圧力低下測定手段24,25、およびアクチュエータ17と連絡する制御手段(示さず)を備える。 (もっと読む)


【課題】自己校正型のガス流量制御のための方法及び装置を提供する。
【解決手段】ガス流量は最初に、流量制限器の開口の量を高い精度に制御することによって設定される。なお、流量制限器を含む装置の設計は高い精度の達成に役立つ。その後、ガス流量は、流量制限器の上流における圧力降下率で測定され、必要なら、流量制限器の開口の量は、正確に所望の流量を得るように調整される。 (もっと読む)


【課題】流体中の同一点の流体圧力と流体温度を同時に測定してオリフィス通過流量を高精度に制御できる圧力式流量制御装置を実現する。
【解決手段】圧力式流量制御装置に於いて、圧力センサ及び温度センサを、受圧面に形成した4個の抵抗を4辺とするブリッジ回路の入力端子間に定電流電源を接続してその出力端子間の電圧変化で流体圧力を検出すると共に、入力端子間の電圧変化で流体温度を検出する構成の温度と圧力を同時に検出する一つの圧力温度センサ10とし、流体温度Tに対応した補正を行ってこれを流体圧力Pに変換すると共に、温度変換手段からの流体温度Tに対応して流量演算式の比例定数Kの温度補正を行うガス温度補正手段と,補正後の後の演算流量Qと設定流量Qとの差を制御信号としてコントロールバルブへ出力する比較回路と,から構成する。 (もっと読む)


【課題】電磁駆動部により吐出される流量を目標流量通りに確保することが可能な流量制御装置を提供すること。
【解決手段】制御部14は、温度計9にて測定されたプロセスポンプ8に吸引される液体燃料の温度及び温度計10にて測定されたプロセスポンプ8の周囲温度に基づいてプロセスポンプ8の温度変化を算出し、当該温度変化に基づいて、液体燃料供給ラインL2における液体燃料の流量が実際の目標流量となるようにプロセスポンプ8の吐出流量を補正している。また、制御部14は、温度計12にて測定されたバーナポンプ11に吸引される液体燃料の温度及び温度計13にて測定されたバーナポンプ11の周囲温度に基づいてバーナポンプ11の温度変化を算出し、当該温度変化に基づいて、バーナ用燃料供給ラインL3における液体燃料の流量が実際の目標流量となるようにバーナポンプ11の吐出流量を補正している。 (もっと読む)


【課題】 コストを減少するとともに、スペースの減少も可能とした流体制御装置を提供する。
【解決手段】 流体制御装置1は、流体制御部2と流体導入部3とを有している。流体導入部3は、3つに分けられており、入口側に配置されてそれぞれ2×N/2個の開閉弁23からなる第1および第2入口側遮断開放部5,6と、4×M個の開閉弁23からなり、第1および第2入口側遮断開放部5,6と流体制御部2との間に配置された流体制御部側遮断開放部7とからなる。 (もっと読む)


システムは流体のマスフロー送給を遂行し、また、流体のマスフロー確証を遂行する。システムは室内への流体の流れを制御する入口弁と、室からの流体の流れを制御する出口弁と、室内の流体の圧力を測定する圧力トランスデューサと、室内の流体の温度を測定する温度センサと、コントローラとを含む。コントローラは、第1のモードにある場合には、装置による流体の流量の測定を確証し、第2のモードにある場合には、室から処理設備へ所望量の流体を送給するように、室内の圧力及び温度の変化の測定値を使用して、入口弁及び出口弁の開閉を制御するように形状づけられる。 (もっと読む)


【課題】装置の損傷程度を検知し、損傷部位を特定する装置を提供する。
【解決手段】圧力調整器10は流体流路に配置されて、流路内を移動可能な絞り要素22を有している。軸30が絞り要素22に取りつけられている。その装置は、絞り要素の上流圧力を測定するための第一圧力センサ34、絞り要素22の下流圧力を測定するための第二圧力センサ35および絞り要素22の位置を検知するための作動センサ44とを有している。測定された圧力と作動距離に基づいて流量を定めるためのアルゴリズムを備えたプロセッサ52が提供される。 (もっと読む)


【課題】本発明は、流路面積が可変のオリフィス板及び当該オリフィス板を備えた流量制御装置を提供する。
【解決手段】オリフィス板101は、両面に形成された電極111,112及び圧電体110からなり、面内方向に伸縮する圧電素子から構成してある。オリフィス板1は、孔部113及び孔部113の周縁から放射状に径方向外側に向かって延びる複数の切欠部114,114,…からなる流路部115を備える。電極111,112に電圧を印加して圧電体10を面内方向に伸長させた場合、流路部115の流路面積が減少する。電極111,112に印加する電圧を調整することにより、流路面積が可変となる。 (もっと読む)


【課題】流量操作部の操作速度に応じて流調弁の駆動速度を設定する一方、止水操作時におけるウォータハンマーの発生を防止することができる水栓装置を提供する。
【解決手段】流調弁33aと、操作ハンドル20aの移動により吐水開始,吐水流量増加,吐水流量減少,止水を指示する流量操作部20と、操作ハンドル20aの移動位置に応じて目標吐水流量を演算すると共に、移動速度に応じて流調弁33aの駆動速度を演算し、流調弁33aを駆動するコントローラ35を備えた水栓装置1において、コントローラ35は、吐水流量減少方向に駆動するとき、演算した駆動速度Vが上限駆動速度V2(V3,V4)より大きい場合には、駆動速度Vを上限駆動速度V2(V3,V4)に制限し、上限駆動速度V3,V4は、通常流量領域内にあるときよりも、低流量領域内にあるときの方が、小さな値に設定されている。 (もっと読む)


【課題】止水状態で使用者が操作部を操作するときに、操作方向を迷うことなく意図した操作方向で必ず増流量方向に操作することができる操作が容易な水栓装置を提供する。
【解決手段】水栓本体10と、流調弁33aを有する流調調整手段33と、第1操作方向及び第2操作方向に操作可能である流量操作部20と、流量操作部20の操作方向及び操作量を検知し、検知した操作方向に応じて吐水温度を変化させることなく、検知した操作方向及び操作量に基づいて、吐水流量を調整するために流量調整手段33を制御するコントローラ35と、を備えた水栓装置1であって、コントローラ35は、止水状態において流量操作部20が第1操作方向及び第2操作方向のいずれかの操作方向に操作された場合、操作された操作方向を吐水流量を増加させる増流量方向に設定し、他方の操作方向を吐水流量を減少させる減流量方向に設定する。 (もっと読む)


1 - 20 / 41