説明

走査型粒子検出装置及び粒子検出方法

【課題】試料表面を短時間で走査し且つ試料表面に付着した粒子を高分解能で検出することができる走査型粒子検出装置を提供する。
【解決手段】導体部を有する探針8にて試料S表面を走査し、試料S表面に付着した粒子Pが存在する検査対象領域を検出する走査型粒子検出装置において、検査対象領域を検出した場合、試料S表面から離隔する方向へ探針8を移動させる探針駆動機構6と、探針8を試料S表面から離隔させた状態で、探針8から電子を放出させる引き出し電極11及び加速電極12と、探針8から放出された電子を検査対象領域の面積よりも小さい断面積を有する電子ビームに集束させ、該電子ビームを検査対象領域に照射させるコンデンサレンズコイル13及び対物レンズコイル14と、電子ビームの照射によって検査対象領域から放出された二次電子を検出する二次電子検出部15と、二次電子の検出結果に基づいてSEM画像を生成する制御部18とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、探針の走査によって粒子を粗検出し、探針から電子ビームを照射することによって粒子を微検出する走査型粒子検出装置及び粒子検出方法に関する。
【背景技術】
【0002】
半導体製造処理室の内壁から剥離した粒子が半導体ウエハ表面に付着した場合、半導体デバイスにおける配線の短絡が発生し、半導体デバイスの歩留まりが低下する。このため、半導体製造工程における粒子の発生状況、例えば粒子数、粒子径等を検査することが求められている。粒子の検出する方法としては、粒子に光を照射し、該粒子からの散乱光に基づいて粒子を検出する光散乱法が用いられている。
【0003】
半導体デバイスは高度に微細化されており、現在、加工配線幅は50nm未満に達している。また近い将来、30nmの配線加工技術が実用化されつつある。ところが、50nm以下の粒子を検出することができる光散乱技術は未だ存在していない。このため、歩留まりと粒子との関係を議論することができず、半導体デバイスの歩留まりが低下する虞がある。
【0004】
一方、50nm以下の粒子を検出することができる装置として、探針の先端にマイクロ波の近接場を発生させて試料を走査し、試料との相互作用を検出することによって、該試料に付着した粒子を検出する走査型近接場マイクロ波顕微鏡が提案されている(例えば、特許文献1)。
【0005】
また、試料に電子ビームを照射し、該試料から放出される二次電子を検出することによって、試料に付着した50nm以下の粒子を検出することができるSEM(Scanning Electron Microscope)が実用化されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2002−189043号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、走査型近接場マイクロ波顕微鏡においては、試料に付着している粒子が存在する検査対象領域を検出することができるが、検査対象領域に存在している粒子径、粒子数等の情報を得ることができないという問題があった。
【0008】
また、SEMにおいては、試料に付着した粒子を画像化し、該粒子径を測定することは可能であるが、試料表面全面を走査するのに時間を要するという問題があった。
【0009】
本発明は斯かる事情に鑑みてなされたものであり、試料表面を短時間で走査し、且つ試料表面に付着した粒子を高分解能で検出することができる走査型粒子検出装置及び粒子検出方法を提供することを目的とする。
【0010】
本発明の他の目的は、探針の走査で粒子が存在する検査対象領域を検出し、検査対象領域の画像を生成することによって、試料表面に付着した粒子数及び粒子径の情報を得ることができる走査型粒子検出装置を提供することにある。
【0011】
本発明の他の目的は、オージェ電子を検出することにより、試料表面に付着した粒子の組成を分析することができる走査型粒子検出装置を提供することにある。
【0012】
本発明の他の目的は、特性X線を検出することにより、試料表面に付着した粒子の組成を分析することができる走査型粒子検出装置を提供することにある。
【課題を解決するための手段】
【0013】
本発明に係る走査型粒子検出装置は、導体部を有する探針にて試料表面を走査し、該試料表面に付着した粒子が存在する検査対象領域を検出する走査型粒子検出装置において、検査対象領域を検出した場合、前記試料表面から離隔する方向へ前記探針を移動させる探針駆動手段と、前記探針を前記試料表面から離隔させた状態で、前記探針から電子を放出させる電子放出手段と、前記探針から放出された電子を検査対象領域の面積よりも小さい断面積を有する電子ビームに集束させ、該電子ビームを検査対象領域に照射させる電子レンズと、電子ビームの照射によって検査対象領域から放出された二次粒子を検出する二次粒子検出手段とを備えることを特徴とする。
【0014】
本発明に係る走査型粒子検出装置は、前記電子ビームにて検査対象領域を走査し、前記試料表面の検査対象領域に付着した粒子を検出するようにしてあることを特徴とする。
【0015】
本発明に係る走査型粒子検出装置は、前記探針は、基端側から前記試料表面に臨む先端側へマイクロ波を伝送する伝送線路を備え、更に、マイクロ波を前記基端側から前記伝送線路へ供給するマイクロ波発生器と、前記伝送線路の前記基端側に接続されており、マイクロ波を共振させる共振器と、該共振器で共振したマイクロ波を検出するマイクロ波検出部と、該マイクロ波検出部にて検出されたマイクロ波の周波数に基づいて、検査対象領域を検出する手段とを備えることを特徴とする。
【0016】
本発明に係る走査型粒子検出装置は、前記電子放出手段は、前記探針から電子を引き出す引き出し電極と、前記探針から引き出された電子を加速させる加速電極とを備えることを特徴とする。
【0017】
本発明に係る走査型粒子検出装置は、電子ビームを前記試料表面に照射させる場合、前記引き出し電極及び加速電極を前記探針及び前記試料表面間に進出させ、前記探針の走査によって粒子を検出する場合、前記引き出し電極及び加速電極を後退させる電極駆動手段を備えることを特徴とする。
【0018】
本発明に係る走査型粒子検出装置は、前記二次粒子検出手段は、電子ビームの照射によって検査対象領域から放出された二次電子の放出量を検出する二次電子検出部を備え、更に、該二次電子検出部にて検出された二次電子の放出量に基づいて、前記試料表面の検査対象領域に付着した粒子の画像を生成する画像生成手段を備えることを特徴とする。
【0019】
本発明に係る走査型粒子検出装置は、前記二次粒子検出手段は、電子ビームの照射によって検査対象領域から放出されたオージェ電子のエネルギーを検出するオージェ検出部を備え、更に、複数の元素及び該元素に固有の前記オージェ電子のエネルギーを対応付けたオージェ電子エネルギーテーブルと、前記オージェ検出部にて検出されたオージェ電子のエネルギー及び前記テーブルに基づいて、前記試料表面に付着した粒子の組成を分析する手段とを備えることを特徴とする。
【0020】
本発明に係る走査型粒子検出装置は、前記二次粒子検出手段は、電子ビームの照射によって検査対象領域から放射された特性X線のエネルギーを検出する特性X線検出部を備え、更に、複数の元素及び該元素に固有の前記特性X線のエネルギーを対応付けた特性X線エネルギーテーブルと、前記特性X線検出部にて検出された特性X線のエネルギー及び前記テーブルに基づいて、前記試料表面に付着した粒子の組成を分析する手段とを備えることを特徴とする。
【0021】
本発明に係る粒子検出方法は、導体部を有する探針にて試料表面を走査し、該試料表面に付着した粒子が存在する検査対象領域を検出する粒子検出方法において、検査対象領域を検出した場合、前記試料表面から離隔する方向へ前記探針を移動させ、前記探針を前記試料表面から離隔させた状態で、前記探針から電子を放出させ、前記探針から放出された電子を検査対象領域の面積よりも小さい断面積を有する電子ビームに集束させ、該電子ビームを検査対象領域に照射させ、電子ビームの照射によって検査対象領域から放出された二次粒子を検出することを備えることを特徴とする。
【0022】
本発明にあっては、探針にて試料表面を走査し、該試料表面に付着した粒子が存在する検査対象領域を検出する。検査対象領域を粗検出する構成であるため、後述の電子ビームにて試料表面を走査する場合に比べて、より短時間で試料表面を走査することが可能になる。
検査対象領域を検出した場合、探針を試料表面から離隔させる。そして、探針から電子を放出させ、検査対象領域の面積よりも小さい断面積を有する電子ビームに集束させ、該電子ビームを検査対象領域に照射させる。次いで、試料表面から放出された二次粒子によって、粒子を微検出する。検査対象領域の面積よりも小断面積の電子ビームによって粒子を検出する構成であるため、探針の走査のみで粒子を検出する場合に比べて、粒子に係る詳細な情報を得ることが可能になる。
また、粒子の粗検出と、微検出とを別装置で行う場合に必要となる試料の移動、位置合わせ等が不要となり、試料に付着した粒子の効率的な検出が可能になる。
【0023】
本発明にあっては、粗検出した検査対象領域を電子ビームで走査することによって、探針の走査のみで粒子を検出する場合に比べて、検査対象領域に存在する粒子に係る詳細な情報を得ることが可能になる。
【0024】
本発明にあっては、探針が有する伝送線路の基端側からマイクロ波が供給され、探針の先端側にマイクロ波の近接場が発生する。探針の先端側には、共振器が接続されており、該共振器で共振したマイクロ波をマイクロ波検出部にて検出する。共振するマイクロ波の周波数は、探針と試料との相互作用によって変動するため、該周波数に基づいて、試料に付着した粒子が存在する検査対象領域を検出することが可能になる。
【0025】
本発明にあっては、引き出し電極は、電界によって探針の導体部分から電子を引き出し、加速電極は引き出されて電子を加速させる。加速した電子は、電子レンズにて電子ビームとして集束し、試料表面に照射される。
【0026】
本発明にあっては、電子ビームにて粒子を検出する場合、該電子ビームの生成に必要な引き出し電極及び加速電極を探針及び前記試料表面間に進出させる。探針の走査によって粒子を検出する場合、引き出し電極及び加速電極を後退させ、無用な干渉を避けることが可能になる。
【0027】
本発明にあっては、電子ビームの照射によって検査対象領域から放出された二次電子の放出量を二次電子検出部にて検出し、画像生成手段は、該放出量に基づいて、試料表面に付着した粒子の画像を生成する。
【0028】
本発明にあっては、電子ビームの照射によって検査対象領域から放出されたオージェ電子のエネルギーをオージェ検出部にて検出する。そして、検出されたオージェ電子のエネルギーと、オージェ電子エネルギーテーブルとに基づいて、検査対象領域に付着した粒子の組成を分析する。
【0029】
本発明にあっては、電子ビームの照射によって検査対象領域から放出された特性X線のエネルギーを特性X線検出部にて検出する。そして、検出された特性X線のエネルギーと、特性X線エネルギーテーブルとに基づいて、検査対象領域に付着した粒子の組成を分析する。
【発明の効果】
【0030】
本発明によれば、試料表面を短時間で走査し、且つ試料表面に付着した粒子を高分解能で検出することができる。
【0031】
また、探針の走査で粒子が存在する検査対象領域を検出し、検査対象領域の画像を生成することによって、試料表面に付着した粒子数及び粒子径の情報を得ることができる。
【0032】
更に、オージェ電子を検出することにより、試料表面に付着した粒子の組成を分析することができる。
【0033】
更にまた、特性X線を検出することにより、試料表面に付着した粒子の組成を分析することができる。
【図面の簡単な説明】
【0034】
【図1】本発明の実施の形態に係る走査型粒子検出装置の構成を模式的に示す側断面図である。
【図2】本発明の実施の形態に係る走査型粒子検出装置の構成を模式的に示す側断面図である。
【図3】粒子検出に係る制御部の処理手順を示すフローチャートである。
【図4】粒子検出に係る制御部の処理手順を示すフローチャートである。
【図5】変形例1における粒子検出に係る制御部の処理手順を示すフローチャートである。
【図6】変形例1における粒子検出に係る制御部の処理手順を示すフローチャートである。
【図7】変形例2に係る走査型粒子検出装置の構成を模式的に示す側断面図である。
【図8】変形例2における粒子検出に係る制御部の処理手順を示すフローチャートである。
【図9】変形例3に係る走査型粒子検出装置の構成を模式的に示す側断面図である。
【図10】変形例3における粒子検出に係る制御部の処理手順を示すフローチャートである。
【図11】変形例4に係る走査型粒子検出装置の構成を模式的に示す側断面図である。
【図12】変形例4に係る走査型粒子検出装置の構成を模式的に示す側断面図である。
【図13】変形例5に係る走査型粒子検出装置の構成を模式的に示す側断面図である。
【図14】変形例6に係る走査型粒子検出装置の構成を模式的に示す側断面図である。
【発明を実施するための形態】
【0035】
以下、本発明をその実施の形態を示す図面に基づいて詳述する。
図1及び図2は、本発明の実施の形態に係る走査型粒子検出装置の構成を模式的に示す側断面図である。本実施の形態に係る走査型粒子検出装置は、走査型近接場マイクロ波顕微鏡及びSEMの機能を融合し、ウエハ等の試料Sに付着した粒子Pを効率的に検出し、粒子数及び粒子径を測定することを可能にしたものである。図中1は真空室であり、真空室1は、有底円筒状の第1真空室1aと、第1真空室1aの天側に設けられており、第1真空室1aに比べて短径の円筒状をなす第2真空室1bとで構成されている。
【0036】
第1真空室1aは、水平に設けられるべき底板部、該底板部に周設された周壁部、及び円環板状の天部を備え、底板部には、可動ステージ16が設けられている。可動ステージ16は、粒子Pが付着した試料S、例えばウエハが載置されるべき円盤状のステージ部と、該ステージ部を、底板部に対して略平行な二方向及び略垂直方向へ粗動及び微動させるステージ駆動部、例えば粗動用のステッピングモータ及び微動用のピエゾ素子とを備える。以下、底板部が水平に設置されているものとして、前記二方向を、水平方向であるX方向及びY方向、前記略垂直な方向を鉛直方向として説明する。
【0037】
また、第1真空室1aの周壁部の適宜箇所には、真空ポンプ17が接続されている。真空ポンプ17は、例えば、ロータリーポンプ等の一次ポンプと、ターボ分子ポンプ等の二次ポンプとで構成される。
【0038】
第2真空室1bは、第1真空室1aを構成する天部の内周縁部から鉛直上方へ延設された周壁部と、円環状の天部とを備える。周壁部又は天部の外側の適宜箇所には、後述の共振器5に設けられた探針8を試料Sに対して接離する方向、即ち鉛直方向へ移動させるための探針駆動機構6が設けられている。探針駆動機構6は、例えば探針8を接離方向へ粗動させるためのステッピングモータ、及び接離方向へ微動させるためのピエゾ素子で構成されている。
【0039】
共振器5は、探針駆動機構6にて、第2真空室1bの中心軸上を前記接離方向へ移動するように構成されている。共振器5は、試料Sに付着した粒子Pを検出するためのマイクロ波を共振させるべく、円筒状をなし、底部及び天部の略中央部にはマイクロ波が入出力する孔部が形成されている。共振器5の天部側には、3端子のサーキュレータ3が配され、底部には探針8が接続されている。
【0040】
サーキュレータ3は、第1乃至第3端子3a,3b,3cを備えており、第1端子3aには、GHz帯の高周波、即ちマイクロ波を発生させ、該マイクロ波を共振器5へ出力するマイクロ波発生器2が接続されている。また、サーキュレータ3の第2端子3cには、共振器5を構成する天部の孔部に接続され、第3端子3bには、共振器5で共振したマイクロ波を検出し、検出結果を出力するマイクロ波検出部4、例えばダイオード検出器が接続されている。
【0041】
探針8は、共振器5を構成する底部の孔部に垂設され、第2真空室1bの天部に設けられた真空ベローズ7を介して真空室1側に配されている。探針8は、共振部側の基端部から試料Sに臨む先端部へマイクロ波を伝送するマイクロ波伝送線路8aを有する。マイクロ波伝送線路8aは、誘電体材料、例えば石英からなり、先端部にテーパを有する細長棒状をなしている。また、マイクロ波伝送路の周面、少なくともマイクロ波電送線路を挟む二側面は、導電部86で覆われている。更に、探針8の先端部は、マイクロ波の近接場を発生させるべく、マイクロ波の波長よりも小さく形成されている。例えば、試料Sに付着した50nmの粒子Pが存在する検査対象領域を粗検出する場合、数百nm〜1μmの分解能を達成すべく、1μm程度の曲率半径を有するように先端部を形成すれば良い。
【0042】
更に、第2真空室1bの周壁下部には孔部が形成されており、探針8から電子を引き出す引き出し電極11と、該引き出し電極11にて引き出された電子を加速する加速電極12とが、前記孔部から進退可能に突出している。引き出し電極11及び加速電極12は、真空ベローズ9を介して、第2真空室1bの外側に設けられた電極駆動部10に接続され、電極駆動部10は、引き出し電極11及び加速電極12を、探針8及び試料S表面間へ進出させ、また後退させるモータを備えている。また、走査型粒子検出装置は、引き出し電極11及び加速電極12と、探針8との間に数kVの電圧を印加することによって、探針8から電子を引き出し、加速するための電源30を備える。
【0043】
更にまた、進出した引き出し電極11及び加速電極12の鉛直下方には、探針8から放出された電子を集束させて電子ビームを生成するコンデンサレンズコイル13(電子レンズ)と、集束した電子ビームを試料S表面に照射させるための対物レンズコイル14(電子レンズ)とが配されている。また、電子ビームが照射された試料Sから放出される二次電子を検出し、検出結果を出力する二次電子検出部15が第2真空室1bの適宜箇所に配されている。
【0044】
また、走査型粒子検出装置は、装置全体を制御する制御部18を備える。制御部18は、例えばCPU、該CPUにRAM、タイマ、I/Oポート等を備えたマイクロコンピュータである。I/Oポートには、マイクロ波発生器2、探針駆動機構6、可動ステージ16、マイクロ波検出部4、二次電子検出部15等が接続されており、制御部18は、各部に制御信号を与えることによって、マイクロ波発生器2、探針駆動機構6、可動ステージ16の動作を制御すると共に、マイクロ波検出部4及び二次電子検出部15から出力された検出信号が入力されるように構成されている。また、制御部18には記憶部19、表示部20及び操作部21が設けられている。記憶部19は、各構成部の動作を制御するためのコンピュータプログラムを記憶するハードディスク、半導体メモリ等であり、表示部20は、制御部18から与えられた画像データに基づいて、画像を表示するCRT、液晶ディスプレイである。操作部21は、使用者の操作内容に応じた操作信号を制御部18に与えるキーボード、マウス等で構成される。
【0045】
図3及び図4は、粒子検出に係る制御部18の処理手順を示すフローチャートである。粒子検出の開始指示を受けた場合、制御部18は、まず可動ステージ16を所定位置へ移動させる(ステップS11)。そして、制御部18は、電極駆動部10に制御信号を与え、図2に示すように、引き出し電極11及び加速電極12を後退方向へ移動させる(ステップS12)。次いで、制御部18は、マイクロ波発生器2に制御信号を与え、マイクロ波を発生させる(ステップS13)。そして、制御部18は、探針8を近接方向、即ち鉛直下方へ移動させる(ステップS14)。
【0046】
次いで、制御部18は、マイクロ波検出部4にて検出したマイクロ波の共振周波数を監視することによって、探針8及び試料S間の距離が所定距離未満、例えば100nm未満であるか否かを判定する(ステップS15)。所定距離未満でないと判定した場合(ステップS15:NO)、制御部18は処理をステップS14へ戻し、探針8の移動を継続させる。所定距離未満であると判定した場合(ステップS15:YES)、制御部18は、マイクロ波検出部4にてマイクロ波の共振周波数を検出する(ステップS16)。そして、試料Sの走査に伴う共振周波数の変化を算出する(ステップS17)。次いで、制御部18は、共振周波数の変化に基づいて、探針8が近接している試料Sの検査対象領域に粒子Pが存在するか否かを判定する(ステップS18)。
【0047】
なお、マイクロ波の共振周波数の変化率は下記式で表される。但し、Fは共振周波数、ε0 は真空の誘電率、μ0 は真空の透磁率、Z0 はマイクロ波伝送線路8aに特有のインピーダンス、Lは共振部の伝送方向の長さ、εeff はマイクロ波伝送線路8aの誘電率、ΔCtは探針8先端部の静電容量の変化率である。
ΔF/F=−Z0 /L(ε0 μ0 εeff 1/2 ΔCt・・・(1)
【0048】
粒子Pが存在しないと判定した場合(ステップS18:NO)、制御部18は、可動ステージ16に制御信号を与え、可動ステージ16を粗駆動させることによって、探針8で試料S表面を走査させ(ステップS19)、処理をステップS16へ戻す。
【0049】
粒子Pが存在すると判定した場合(ステップS18:YES)、制御部18は、マイクロ波発生器2に制御信号を与え、マイクロ波発生器2を停止させる(ステップS20)。
【0050】
次いで、制御部18は、探針駆動機構6に制御部18を与え、探針8を離隔方向へ移動させる(ステップS21)。そして、制御部18は、電極駆動部10に制御信号を与え、引き出し電極11及び加速電極12を進出方向へ移動させる(ステップS22)。
【0051】
そして、制御部18は、引き出し電極11及び加速電極12、コンデンサレンズコイル13、対物レンズコイル14に電圧を印加させる(ステップS23)。次いで、制御部18は、可動ステージ16を微駆動させることによって、検査対象領域を電子ビームにて走査し、二次電子検出部15にて二次電子の放出量を検出する(ステップS24)。
【0052】
そして、制御部18は、ステップS24の検出結果に基づいて、粒子Pが付着した試料SのSEM画像を生成する(ステップS25)。次いで、制御部18は、走査を終了したか否かを判定する(ステップS26)。走査を終了しないと判定した場合(ステップS26:NO)、制御部18は、可動ステージ16に制御信号を与え、可動ステージ16を粗駆動させ(ステップS27)、処理をステップS12へ戻す。走査を終了すると判定した場合(ステップS26:YES)、制御部18は、各構成部の動作を停止させる停止処理を実行し(ステップS28)、処理を終える。
【0053】
このように構成された走査型粒子検出装置及び粒子検出方法にあっては、探針8の先端にマイクロ波の近接場を発生させて試料S表面を走査することによって、試料S表面に付着した粒子Pを短時間で粗検出することができ、しかも粗検出された検査対象領域を電子ビームで走査することによって、粒子Pを微検出し、該粒子Pに関する詳細な情報を得ることができる。
具体的には、検査対象領域のSEM画像を生成することによって、該検査対象領域に存在する粒子Pの粒子数、粒子径等の情報を得ることができる。
このように、従来不可能とされていた50nm以下の粒子Pを検出することが可能になり、次世代の低塵な半導体製造装置を早期開発することができる。また、半導体デバイス工場においても、次世代デバイスの歩留まりをいち早く向上させることが可能になる。
【0054】
また、探針8に曲率半径約1μmの先端部を形成し、該先端部にマイクロ波の近接場を発生させるように構成することによって、試料S表面に付着した粒子Pが存在する検査対象領域を好適に粗検出することができる。
【0055】
更に、検査対象領域を検出した場合、そのまま探針8を鉛直上方へ移動させ、該探針8を用いて電子ビームを照射させるように構成してあるため、粗検出と、微検出とを別装置で行う場合に必要なSEM観察領域の位置合わせの手間を省くことができる。
【0056】
更にまた、近接場を用いた探針8にて試料S表面を走査する場合、引き出し電極11及び加速電極12を後退させるように構成してあるため、各電極と探針8との干渉及び相互作用を低減させることができる。
【0057】
なお、実施の形態では、マイクロ波の近接場を用いて試料S表面に付着した粒子Pを粗検出するように構成してあるが、粒子Pを粗検出、つまり電子ビームの照射によって粒子検出方法に比べて、短時間で試料S表面を走査し、粒子Pが存在する領域を検出することができる方法であれば、他の構成を採用しても良い。例えば、マイクロ波以外の電磁波に係る近接場、探針8及び試料S間の原子間力、電気力、磁気力、その他各種相互作用を検出することによって、粒子Pを粗検出しても良い。
【0058】
電子ビームの照射によって試料S表面から放出される二次電子を用いて、粒子Pを微検出しているが、粒子Pの詳細な情報を得ることができるのであれば他の二次粒子、例えば、特性X線、紫外線等の光子、オージェ電子、反対電子、二次イオン等を検出するように構成しても良い。
【0059】
更にまた、本実施の形態に係る走査型粒子検出装置及び粒子検出方法は、オフライン計測のみならず、インライン計測、オンライン計測又はイン・シチュ計測のいずれに適用しても良い。
【0060】
更にまた、本実施の形態に係る走査型粒子検出装置及び粒子検出方法の適用範囲は、特に限定されず、例えば半導体の加工水準、品質を検査する品質検査目的、欠陥、不良原因の解析目的、新規半導体回路の研究開発目的等、種々の目的に使用される装置及び工程に適用しても良い。
【0061】
(変形例1)
変形例1に係る走査型粒子検出装置及び粒子検出方法は、試料S表面に粒子Pが付着した複数の検査対象領域を先に粗検出しておき、粗検出を終えた後、各検査対象領域をSEM観察する点が上述の実施の形態とは異なる。以下では、主に上記相違点を説明する。
図5及び図6は、変形例1における粒子検出に係る制御部18の処理手順を示すフローチャートである。制御部18は、ステップS11〜17と同様、探針8を試料S表面に近接させ、マイクロ波の共振周波数の検出、及び共振周波数の変化を算出する処理をステップS31〜37で実行する。
【0062】
ステップS37の処理を終えた場合、制御部18は、共振周波数の変化に基づいて、探針8が近接している試料Sの検査対象領域に粒子Pが存在するか否かを判定する(ステップS38)。粒子Pが存在すると判定した場合(ステップS38:YES)、制御部18は、検査対象領域の位置座標を記憶する(ステップS39)。
【0063】
粒子Pが存在しないと判定した場合(ステップS38:NO)、又はステップS39の処理を終えた場合、試料S表面の走査を終えたか否かを判定する(ステップS40)。走査を終了していないと判定した場合(ステップS40:NO)、制御部18は、可動ステージ16に制御信号を与え、可動ステージ16を粗駆動させることによって、探針8で試料S表面を走査させ(ステップS41)、処理をステップS36へ戻す。
【0064】
試料S表面の走査を終えたと判定した場合(ステップS40:YES)、制御部18は、マイクロ波発生器2に制御信号を与え、マイクロ波発生器2を停止させる(ステップS42)。
【0065】
次いで、制御部18は、検査対象領域位置座標を記憶しているか否かを判定する(ステップS43)。検査対象領域位置座標を記憶していないと判定した場合(ステップS43:NO)、制御部18は、処理を終える。
【0066】
検査対象領域位置座標を記憶していると判定した場合(ステップS43:YES)、制御部18は、検査対象領域位置座標を記憶部19から読み出し(ステップS44)、検査対象領域位置座標に基づいて、検査対象領域位置に可動ステージ16を移動させる(ステップS45)。
【0067】
そして、制御部18は、ステップS21〜25と同様、SEM画像の生成に係る処理をステップS46〜50で実行する。
【0068】
ステップS50の処理を終えた場合、制御部18は、SEMによる未検出粒子Pがあるか否かを判定する(ステップS51)。未検出粒子Pがあると判定した場合(ステップS51:YES)、制御部18は、処理をステップS44へ戻す。未検出粒子Pが無いと判定した場合(ステップS51:NO)、制御部18は、各構成部の動作を停止させる停止処理を実行し(ステップS52)、処理を終える。
【0069】
変形例1に係る走査型粒子検出装置及び粒子検出方法にあっては、先に複数の検査対象領域を粗検出し、次いで、各検査対象領域のSEM画像を生成するように構成してあるため、探針8、引き出し電極11及び加速電極12の駆動回数を減少させ、より効率的に粒子Pの検出、粒子径の測定を行うことができる。
【0070】
(変形例2)
変形例2に係る走査型粒子検出装置は、粒子Pの検出に加え、オージェ電子の検出によって粒子Pの組成を検出するように構成している点が上述の実施の形態とは異なる。以下では主に上記相違点を説明する。
図7は、変形例2に係る走査型粒子検出装置の構成を模式的に示す側断面図である。変形例2に係る走査型粒子検出装置は、試料Sから放出されたオージェ電子のエネルギーを検出するオージェ検出部を第1真空室1aの適宜箇所に備える。また、記憶部19は、複数の元素と、該元素に電子ビームを照射した場合に放出されるオージェ電子のエネルギーを対応付けたオージェ電子エネルギーテーブル219aを記憶する。なお、オージェ電子のエネルギーは、元素に固有のものである。
【0071】
図8は、変形例2における粒子検出に係る制御部18の処理手順を示すフローチャートである。制御部18は、ステップS25の処理と、ステップS26の処理との間で以下の処理を更に実行する。
制御部18は、オージェ電子検出部222にてオージェ電子のエネルギーを検出する(ステップS251)。そして、制御部18は、記憶部19からオージェ電子エネルギーテーブル219aを読み出し(ステップS252)、ステップS251で検出したオージェ電子のエネルギーと、オージェ電子エネルギーテーブル219aとに基づいて、粒子Pの組成分析を行う(ステップS253)。
【0072】
変形例2に係る走査型粒子検出装置及び粒子検出方法にあっては、オージェ電子を検出することによって、試料S表面に付着した粒子Pの組成を特定することができる。
【0073】
(変形例3)
変形例3に係る走査型粒子検出装置は、粒子Pの検出に加え、特性X線の検出によって粒子Pの組成を検出するように構成している点が上述の実施の形態とは異なる。以下では主に上記相違点を説明する。
図9は、変形例3に係る走査型粒子検出装置の構成を模式的に示す側断面図である。変形例3に係る走査型粒子検出装置は、試料Sから放出された特性X線のエネルギーを検出する特性X線検出部322を第1真空室1aの適宜箇所に備える。また、記憶部19は、複数の元素と、該元素に電子ビームを照射した場合に放出される特性X線のエネルギーを対応付けた特性X線エネルギーテーブル319aを記憶する。なお、特性X線のエネルギーは、元素に固有のものである。
【0074】
図10は、変形例3における粒子検出に係る制御部18の処理手順を示すフローチャートである。制御部18は、ステップS25の処理と、ステップS26の処理との間で以下の処理を更に実行する。
制御部18は、特性X線検出部322にて特性X線のエネルギーを検出する(ステップS351)。そして、制御部18は、記憶部19から特性X線エネルギーテーブル319aを読み出し(ステップS352)、ステップS351で検出した特性X線のエネルギーと、特性X線エネルギーテーブル319aとに基づいて、粒子Pの組成分析を行う(ステップS353)。
【0075】
変形例3に係る走査型粒子検出装置及び粒子検出方法にあっては、特性X線のエネルギーを検出することによって、試料S表面に付着した粒子Pの組成を特定することができる。
【0076】
(変形例4)
変形例4に係る走査型粒子検出装置は、実施の形態に係る走査型粒子検出装置を構成する探針408の構成が上述の実施の形態とは異なるため、以下では主に上記相異点を説明する。変形例4に係る走査型粒子検出装置は、メカニカルプローブを用いた走査型顕微鏡及びSEMの機能を融合し、ウエハ等の試料Sに付着した粒子Pを効率的に検出し、粒子数及び粒子径を測定することを可能にしたものである。
【0077】
図11及び図12は、変形例4に係る走査型粒子検出装置の構成を模式的に示す側断面図である。探針408は、共振器5を構成する底部の孔部に垂設され、第2真空室1bの天部に設けられた真空ベローズ7を介して真空室1側に配されている。探針408は、共振器5に接続された棒状ステンレス製のリード電極408aと、リード電極408aの先端部に設けられたタングステンチップ408bとを備える。探針408は、引き出し電極11及び加速電極12と共に、Field Emission Electron方式の電子銃を構成している。
【0078】
リード電極408aは、タングステンチップ408bに電圧を印加する手段と、マイクロ波発生器2で発生した高周波をタングステンチップ408bに印加する手段とを兼ねている。リード電極408aは電源30に接続され、引き出し電極11及び加速電極12と、リード電極408aとの間に数kVの電圧が印加されるように構成されている。
【0079】
タングステンチップ408bは、先端が100nm程度の太さに形成されており、SEMチップと、メカニカルプローブとを兼ねている。リード電極408aを通じてタングステンチップ408bと、引き出し電極11との間に電圧が印加された場合、タングステンチップ408bから電子が引き出され、引き出し電極11にて引き出された電子は、加速電極12によって加速され、試料Sを走査する電子線となる。一方、タングステンチップ408bに印加された高周波は、試料S表面との相互作用によって応答変動し、該応答変動は、マイクロ波検出部4によって検出される。
変形例4にあっては、実施の形態と同様の作用効果を奏する。
【0080】
(変形例5及び6)
変形例5に係る走査型粒子検出装置は、変形例2係る走査型粒子検出装置を構成する探針408の構成が上述の実施の形態とは異なる。同様に、変形例5に係る走査型粒子検出装置は、変形例3係る走査型粒子検出装置を構成する探針408の構成が上述の実施の形態とは異なる。
図13は、変形例5に係る走査型粒子検出装置の構成を模式的に示す側断面図、図14は、変形例6に係る走査型粒子検出装置の構成を模式的に示す側断面図である。探針408の構成及び作用は、変形例4に係る走査型粒子検出装置と同様である。

変形例5及び6にあっては、変形例2及び3と同様の作用効果を奏する。
【0081】
なお、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0082】
1 真空室
2 マイクロ波発生器
3 サーキュレータ
4 マイクロ波検出部
5 共振器
6 探針駆動機構
7 真空ベローズ
8,408 探針
8a マイクロ波伝送線路
8b 導体部
10 電極駆動部
11 引き出し電極
12 加速電極
13 コンデンサレンズコイル
14 対物レンズコイル
15 二次電子検出部
16 可動ステージ
18 制御部
19 記憶部
20 表示部
21 操作部
222 オージェ電子検出部
219a オージェ電子エネルギーテーブル
322 特性X線検出部
319a 特性X線エネルギーテーブル
408a リード電極
408b タングステンチップ
S 試料
P 粒子

【特許請求の範囲】
【請求項1】
導体部を有する探針にて試料表面を走査し、該試料表面に付着した粒子が存在する検査対象領域を検出する走査型粒子検出装置において、
検査対象領域を検出した場合、前記試料表面から離隔する方向へ前記探針を移動させる探針駆動手段と、
前記探針を前記試料表面から離隔させた状態で、前記探針から電子を放出させる電子放出手段と、
前記探針から放出された電子を検査対象領域の面積よりも小さい断面積を有する電子ビームに集束させ、該電子ビームを検査対象領域に照射させる電子レンズと、
電子ビームの照射によって検査対象領域から放出された二次粒子を検出する二次粒子検出手段と
を備えることを特徴とする走査型粒子検出装置。
【請求項2】
前記電子ビームにて検査対象領域を走査し、前記試料表面の検査対象領域に付着した粒子を検出するようにしてある
ことを特徴とする請求項1に記載の走査型粒子検出装置。
【請求項3】
前記探針は、
基端側から前記試料表面に臨む先端側へマイクロ波を伝送する伝送線路を備え、
更に、マイクロ波を前記基端側から前記伝送線路へ供給するマイクロ波発生器と、
前記伝送線路の前記基端側に接続されており、マイクロ波を共振させる共振器と、
該共振器で共振したマイクロ波を検出するマイクロ波検出部と、
該マイクロ波検出部にて検出されたマイクロ波の周波数に基づいて、検査対象領域を検出する手段と
を備えることを特徴とする請求項1又は請求項2に記載の走査型粒子検出装置。
【請求項4】
前記電子放出手段は、
前記探針から電子を引き出す引き出し電極と、
前記探針から引き出された電子を加速させる加速電極と
を備えることを特徴とする請求項1乃至請求項3のいずれか一つに記載の走査型粒子検出装置。
【請求項5】
電子ビームを前記試料表面に照射させる場合、前記引き出し電極及び加速電極を前記探針及び前記試料表面間に進出させ、前記探針の走査によって粒子を検出する場合、前記引き出し電極及び加速電極を後退させる電極駆動手段を備える
ことを特徴とする請求項4に記載の走査型粒子検出装置。
【請求項6】
前記二次粒子検出手段は、
電子ビームの照射によって検査対象領域から放出された二次電子の放出量を検出する二次電子検出部を備え、
更に、該二次電子検出部にて検出された二次電子の放出量に基づいて、前記試料表面の検査対象領域に付着した粒子の画像を生成する画像生成手段を備える
ことを特徴とする請求項1乃至請求項5のいずれか一つに記載の走査型粒子検出装置。
【請求項7】
前記二次粒子検出手段は、
電子ビームの照射によって検査対象領域から放出されたオージェ電子のエネルギーを検出するオージェ検出部を備え、
更に、複数の元素及び該元素に固有の前記オージェ電子のエネルギーを対応付けたオージェ電子エネルギーテーブルと、
前記オージェ検出部にて検出されたオージェ電子のエネルギー及び前記テーブルに基づいて、前記試料表面に付着した粒子の組成を分析する手段と
を備えることを特徴とする請求項1乃至請求項6のいずれか一つに記載の走査型粒子検出装置。
【請求項8】
前記二次粒子検出手段は、
電子ビームの照射によって検査対象領域から放射された特性X線のエネルギーを検出する特性X線検出部を備え、
更に、複数の元素及び該元素に固有の前記特性X線のエネルギーを対応付けた特性X線エネルギーテーブルと、
前記特性X線検出部にて検出された特性X線のエネルギー及び前記テーブルに基づいて、前記試料表面に付着した粒子の組成を分析する手段と
を備えることを特徴とする請求項1乃至請求項7のいずれか一つに記載の走査型粒子検出装置。
【請求項9】
導体部を有する探針にて試料表面を走査し、該試料表面に付着した粒子が存在する検査対象領域を検出する粒子検出方法において、
検査対象領域を検出した場合、前記試料表面から離隔する方向へ前記探針を移動させ、
前記探針を前記試料表面から離隔させた状態で、前記探針から電子を放出させ、
前記探針から放出された電子を検査対象領域の面積よりも小さい断面積を有する電子ビームに集束させ、該電子ビームを検査対象領域に照射させ、
電子ビームの照射によって検査対象領域から放出された二次粒子を検出すること
を備えることを特徴とする粒子検出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2010−107492(P2010−107492A)
【公開日】平成22年5月13日(2010.5.13)
【国際特許分類】
【出願番号】特願2009−82926(P2009−82926)
【出願日】平成21年3月30日(2009.3.30)
【出願人】(000219967)東京エレクトロン株式会社 (5,184)
【Fターム(参考)】