説明

超音波探傷検査装置及び超音波探傷検査方法

【課題】作業時間を短縮し、かつノイズ信号を欠陥に起因する欠陥信号と誤認してしまうおそれを低減できる超音波探傷検査装置及び超音波探傷検査方法を提供する。
【解決手段】超音波探傷検査装置は、熱交換器の管部材に挿入され、かつ管部材にガイド波を伝播させるプローブ部と、プローブ部を介してガイド波となる超音波を送信可能であり、かつ管部材に伝播したガイド波の反射波を受信可能な超音波送受信部と、プローブ部及び超音波送受信部を制御可能な制御装置と、を有し、制御装置は、異なる計測条件における超音波送受信部での複数の計測データを信号処理することにより、計測データのノイズ信号又は欠陥信号を特定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱交換器又は配管等を非破壊で検査する超音波探傷検査装置及び超音波探傷検査方法に関する。
【背景技術】
【0002】
火力発電プラント、原子力プラント等に設けられる熱交換器では、配管の内部に高温、高圧の流体等が通水されることになるので、配管の傷、割れ、減肉等を検査する必要がある。一般的に、配管の検査は超音波を使用した非破壊検査で行われる。非破壊検査に用いる超音波探触子としては、例えば流水等により挿入される管内挿型超音波探触子がある(特許文献1)。
【0003】
また、特許文献2には、ガイド波を使用して熱交換器管を検査する方法であり、本方法は、熱交換器管の開放端部に、柱状波案内プローブを挿入し、該波案内プローブの連結端部は、少なくとも前記開放端部から熱交換器管シートへの距離だけ隔てた該開放端部からの距離のところに配置され、電子送信パルスを前記波案内プローブに取り付けられた磁気歪みセンサーに印加し、前記磁気歪みセンサーによって、前記波案内プローブ内に、ねじれ波パルスを発生、送信し、前記送信されたねじれ波を、前記熱交換器管の長さに沿って伝播するように前記波案内プローブから前記熱交換器管の内部壁まで連結し、前記熱交換器管の欠陥及び遠い方の端部からの反射ねじれ波信号を前記波案内プローブに連結し、前記反射ねじれ波信号を磁気歪みセンサーにより検出し、前記熱交換器管壁内の前記欠陥の位置及び特性を決定するため、前記検出された信号を電子処理する、各工程を備える技術が記載されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平7−049336号公報
【特許文献2】特表2007−514140号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に記載の管内挿型超音波探触子では、配管内の全長に渡り搬送される必要があり、配管が長い場合や数が多い場合に作業時間が増大するおそれがある。また、特許文献2に記載の反射ねじれ波を使用して熱交換器管を検査する方法では、本来検査したい傷、割れ、減肉等の欠陥に起因する欠陥信号に加えて、プローブ部の電気回路や発信子等を起因とするノイズ信号を計測してしまうため、ノイズ信号を欠陥に起因する欠陥信号と誤認してしまうおそれがある。
【0006】
本発明は、上述した課題を解決するものであり、作業時間を短縮し、かつノイズ信号を欠陥に起因する欠陥信号と誤認してしまうおそれを低減できる超音波探傷検査装置及び超音波探傷検査方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上述の目的を達成するために、本発明の超音波探傷検査装置は、熱交換器の管部材に挿入され、かつ前記管部材にガイド波を伝播させるプローブ部と、前記プローブ部を介して前記ガイド波となる超音波を送信可能であり、かつ前記管部材に伝播したガイド波の反射波を受信可能な超音波送受信部と、前記プローブ部及び前記超音波送受信部を制御可能な制御装置と、を有し、前記制御装置は、異なる計測条件における前記超音波送受信部での複数の計測データを信号処理することにより、計測データのノイズ信号又は欠陥信号を特定することを特徴とする。
【0008】
このため、プローブ部の電気回路や超音波探触子等を起因とするノイズ信号を計測して欠陥に起因するノイズ信号を欠陥信号として誤認してしまうおそれを低減できる。この結果、長尺の構造物の検査において、ガイド波を利用した超音波探傷検査をしても、傷、割れ、減肉等の欠陥を把握することができる。
【0009】
本発明の望ましい態様として本発明の超音波探傷検査装置は、前記管部材にプローブが挿入される長さを変更する長さ調整手段をさらに有し、前記制御装置が、前記長さ調整手段を制御し前記異なる計測条件を設定することが好ましい。これにより、超音波探触子が配管内の全長に渡り搬送される必要がなく、作業時間を低減できる。
【0010】
本発明の望ましい態様として本発明の超音波探傷検査装置は、前記異なる計測条件として、前記管部材に前記プローブ部が挿入される長さを変更しつつ前記超音波送受信部での複数の計測データを取得することが好ましい。波形信号の移動を捉えることで容易にノイズ信号又は欠陥信号を特定することができる。
【0011】
本発明の望ましい態様として本発明の超音波探傷検査装置は、前記異なる計測条件として、前記超音波送受信部での入力周波数を変えて複数の計測データを取得することが好ましい。これにより、プローブ部近傍で発生する送信波を含む不要な波形信号を低減し、欠陥信号を見やすくすることができる。
【0012】
本発明の望ましい態様として本発明の超音波探傷検査装置は、複数のプローブ部と、各々のプローブ部を介して前記ガイド波となる超音波を送信可能であり、かつ前記管部材に伝播したガイド波を受信可能な超音波送受信部とを有し、前記異なる計測条件として、熱交換器の前記管部材に前記複数のプローブ部のうち異なるプローブ部同士で計測した計測データを各々比較することが好ましい。これにより、プローブ部の個体差に起因するノイズ信号を低減し、欠陥信号を見やすくすることができる。
【0013】
本発明の望ましい態様として本発明の超音波探傷検査装置は、複数の管部材を有する熱交換器を計測する超音波探傷検査装置であって、複数のプローブ部と、各々のプローブ部を介して前記ガイド波となる超音波を送信可能であり、かつ前記管部材に伝播したガイド波を受信可能な超音波送受信部とを有し、前記複数のプローブ部が前記複数の管部材を同時に検査可能であることが好ましい。このため、各々超音波送受信部での入力周波数が異なる複数のプローブ部を複数の伝熱管に挿入して計測するので、同時に複数の伝熱管を検査することができる。これにより、短時間で伝熱管を検査することができる。
【0014】
本発明の望ましい態様として本発明の超音波探傷検査装置は、前記制御装置は、異なる計測条件における前記超音波送受信部での複数の計測データのうち、受信信号が変動している波形信号をノイズ信号と判断することが好ましい。これにより、ノイズ信号を欠陥に起因する欠陥信号と誤認してしまうおそれを低減できる。
【0015】
本発明の望ましい態様として本発明の超音波探傷検査装置は、複数の計測データ同士を加算、減算、乗算のいずれか1以上の前記信号処理し、信号処理後の信号強度の変化を捉え、ノイズ信号又は欠陥信号が特定されることが好ましい。これにより、ノイズ信号を欠陥に起因する欠陥信号と誤認してしまうおそれを低減できる。
【0016】
また、上述の目的を達成するために、本発明の超音波探傷検査方法は、熱交換器の管部材へガイド波を送受信する第1の計測条件を設定するステップと、前記第1の計測条件において、ガイド波を送受信することで超音波探傷を行い第1の計測データを取得し記憶するステップと、前記第1の計測条件と異なる計測条件に変更し、第2の計測条件を設定するステップと、前記第2の計測条件において、ガイド波を送受信することで超音波探傷を行い第2の計測データを取得し記憶するステップと、前記第1の計測データと、前記第2の計測データと、に対し、加算、減算、乗算のいずれか1以上の前記信号処理し、信号処理後の信号強度の変化を捉え、ノイズ信号又は欠陥信号を特定することを特徴とする。
【0017】
このため、プローブ部の電気回路や超音波探触子等を起因とするノイズ信号を計測して欠陥に起因するノイズ信号を欠陥信号として誤認してしまうおそれを低減できる。この結果、長尺の構造物の検査において、ガイド波を利用した超音波探傷検査をしても、傷、割れ、減肉等の欠陥を把握することができる。
【0018】
また、上述の目的を達成するために、本発明の超音波探傷検査方法は、熱交換器の管部材へガイド波を送受信する第1の計測条件を設定するステップと、前記第1の計測条件において、ガイド波を送受信することで超音波探傷を行い第1の計測データを取得し記憶するステップと、前記管部材に前記プローブ部が挿入される長さを可変に変更し、第2の計測条件を設定するステップと、前記第2の計測条件において、ガイド波を送受信することで超音波探傷を行い第2の計測データを取得し記憶するステップと、前記第1の計測データと、前記第2の計測データと、を比較する信号処理し、信号処理後の波形信号の位置変化を捉え、ノイズ信号又は欠陥信号を特定することを特徴とする。
【0019】
このため、プローブ部の電気回路や超音波探触子等を起因とするノイズ信号を計測して欠陥に起因するノイズ信号を欠陥信号として誤認してしまうおそれを低減できる。この結果、長尺の構造物の検査において、ガイド波を利用した超音波探傷検査をしても、傷、割れ、減肉等の欠陥を把握することができる。
【発明の効果】
【0020】
本発明によれば、作業時間を短縮し、かつノイズ信号を欠陥に起因する欠陥信号と誤認してしまうおそれを低減できる。
【図面の簡単な説明】
【0021】
【図1】図1は、一般的な原子力プラントの構成図である。
【図2】図2は、図1に示す原子力プラントにおける蒸気発生器の水室の構成図である。
【図3】図3は、図2のA−A断面図である。
【図4】図4は、本実施形態1に係る超音波探傷検査装置を示す模式図である。
【図5】図5は、制御装置を示す模式図である。
【図6】図6は、本実施形態に係る超音波探傷検査装置の検査手順を示すフローチャートである。
【図7】図7は、本実施形態2に係る超音波探傷検査装置を示す模式図である。
【図8】図8は、本実施形態3に係る超音波探傷検査装置を示す模式図である。
【図9】図9は、本実施形態4に係る超音波探傷検査装置を示す模式図である。
【図10】図10は、本実施形態5に係る超音波探傷検査装置を示す模式図である。
【図11】図11は、本実施形態6に係る超音波探傷検査装置を示す模式図である。
【発明を実施するための形態】
【0022】
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
【0023】
(実施形態1)
実施形態1について、図面を参照して説明する。図1は、一般的な原子力プラントを示す。図2は、図1に示す原子力プラントにおける蒸気発生器の水室の構成図である。図3は、図2のA−A断面図である。原子力プラント100は、例えば、加圧水型原子炉(PWR:Pressurized Water Reactor)がある。この原子力プラント100は、構造物としての原子炉容器110、加圧器120、蒸気発生器130及びポンプ140が、一次冷却材管150により順次連結されて、一次冷却材の循環経路が構成されている。また、蒸気発生器130とタービン(図示省略)との間には、二次冷却材の循環経路が構成されている。
【0024】
この原子力プラント100では、一次冷却材が原子炉容器110にて加熱されて高温・高圧となり、加圧器120にて加圧されて圧力を一定に維持されつつ、一次冷却材管150を介して蒸気発生器130に供給される。蒸気発生器130では、一次冷却材が入口側水室131に流入し、この入口側水室131からU字状で複数本の伝熱管132に供給される。そして、伝熱管132にて一次冷却材と二次冷却材との熱交換が行われることにより、二次冷却材が蒸発して蒸気となる。すなわち、蒸気発生器130は、熱交換器である。熱交換により蒸気となった二次冷却材は、タービンに供給される。タービンは、二次冷却材の蒸発により駆動される。そして、タービンの動力が発電機(図示省略)に伝達されて発電される。タービンの駆動に供された蒸気は、凝縮して水となり蒸気発生器130に供給される。一方、熱交換後の一次冷却材は、一次冷却材管150を介してポンプ140側に回収される。
【0025】
図2及び図3に示すように、蒸気発生器130は、入口側水室131に入口管台135が設けられている。入口管台135は、入口側の一次冷却材管150が溶接されて接続される。また、蒸気発生器130は、出口側水室133に出口管台136が設けられている。出口管台136は、出口側の一次冷却材管150が溶接されて接続される。入口側水室131と出口側水室133とは、天井部に管板137が設置されていると共に、仕切板134を介して仕切られている。管板137は、伝熱管132の下端部を支持し、かつ蒸気発生器130の上部と各水室131、133とを区画するものである。また、入口側水室131及び出口側水室133は、作業員が水室131、133内に出入りするためのマンホール138が設けられている。なお、入口側水室131及び出口側水室133は、1/4球形に形成されている。原子力プラント100では、熱交換器である蒸気発生器130の伝熱管132が複数あり、伝熱管132の検査の作業時間を短縮することが望まれている。また、伝熱管132の状態は安全に直結するためノイズ信号を欠陥に起因する欠陥信号と誤認してしまうと、再検査となり安全が確認されるまでの検査期間が延びることになり好ましくない。なお、ナトリウム等で原子炉炉心を冷却する高速炉型原子炉では、ナトリウム−水反応による影響を軽減するために、1次ナトリウム系と2次ナトリウム系を設けており、この2系統間の熱交換を行う中間熱交換器を有する。2次ナトリウムの熱は蒸気発生器において水に熱伝達されて蒸気をえる。本実施形態の超音波探傷検査装置が検査する熱交換器は、高速炉型原子炉の中間熱交換器、及び蒸気発生器をも検査対象として含んでいる。
【0026】
以下、本実施形態の超音波探傷検査装置1について説明する。図4は、本実施形態に係る超音波探傷検査装置を示す模式図である。図5は、制御装置を示す模式図である。
【0027】
図4に示すように、超音波探傷検査装置1は、上述した蒸気発生器130の水室131、133の内部で熱交換器の管部材である伝熱管132の検査を行う検査装置である。伝熱管132には、管の一対の端部132a、132bがある。伝熱管132は、図1に示すように、実際にはU字状であるが、管の一対の端部132a、132b間の距離を理解しやすくするために、図4では模式的に直線状としている。また、伝熱管132には、傷Qがある仮定で説明する。
【0028】
図4に示す超音波探傷検査装置1は超音波トランスデューサとして作用し、プローブ部10と、超音波送受信部20と、支持手段30と、プローブ挿入長さ可変手段31と、制御装置80とを備えている。
【0029】
プローブ部10は、伝熱管132内に一部が挿入され、伝熱管132へガイド波を伝播させる深触子である。プローブ部10は、ガイド波案内部11と、ガイド波伝達部12とを有している。ガイド波案内部11は、後述する超音波送受信部20からのガイド波を伝熱管内132へ案内するため棒状となっている。ガイド波伝達部12は、ガイド波案内部11の先端近傍に取り付けられ、伝熱管132内へ挿入されると共に伝熱管132の内壁に接触している。ガイド波伝達部12は、ガイド波案内部11からガイド波を伝熱管132へ伝達する。
【0030】
ここでガイド波とは、管部材等の長手方向に伝わる超音波伝播形態の総称である。ガイド波は、超音波エネルギーが媒質外へ漏洩し難いため、長距離伝播可能である。このため、本実施形態の超音波探傷検査装置1では、熱交換器等の管部材は比較的距離が長いので、熱交換器等の管部材の非破壊検査にガイド波を用いている。
【0031】
管部材に傷、割れ、減肉等の欠陥がある場合を仮定する。上述の通り、ガイド波は、管部材の長手方向へ伝播する。ガイド波が管部材の伝播の途中で、傷、割れ、減肉等の欠陥に遭遇すると、伝播経路が不連続となり、ガイド波が反射する。このため、ガイド波が反射する位置を特定できれば、管部材に傷、割れ、減肉等の欠陥がある位置を特定できる。
【0032】
超音波送受信部20は、ガイド波案内部11に接続されており、送受部21と、電気変換部22とを有している。実施形態1では、送受部21は、磁歪材料で形成される。例えば、磁歪材料は、ニッケル、ニッケル合金、ケイ素鋼、フェライト材料等を使用することができる。また、電気変換部22は、銅等の導電体で形成されたコイルを有している。電気変換部22のコイルが励磁されると、送受部21の磁歪材料が磁気歪み効果により振動し、超音波が送信波として送出される。超音波としては、ねじれ波信号がより好ましい。上述したプローブ部10からガイド波の反射波が送受部21に伝達されると、逆磁気歪み効果により、送受部21の磁歪材料が反射波の振動を磁界変化へ変換する。変換された磁界変化が電気変換部22のコイルで電気信号に変換される。超音波送受信部20は、送受部21を圧電材料、例えばチタン酸ジルコン酸鉛(PZT)で構成し、電気変換部22が圧電材料を挟む導電性の電極で構成されてもよい。なお、送受部21は、超音波の送信と超音波の受信とに分け、別体として構成してもよい。
【0033】
ここで図4では、超音波探傷検査装置1の動作の説明のため、プローブ部10が伝熱管132内に挿入長さT1挿入され、伝熱管132へガイド波を伝播させる第1の計測条件の状態と、プローブ部10が伝熱管132内に挿入長さT2挿入され、伝熱管132へガイド波を伝播させる第2の計測条件の状態とを図中上下に伝熱管132の位置を揃えて記載している。図4に示す計測軸P0は、第1の計測条件の状態における伝熱管132の位置に対応する位置座標である。図4では、計測軸P0には、超音波送受信部20により波形信号W1と、波形信号W2と、波形信号W3とが計測されている。また、図4に示す計測軸P1は、第2の計測条件の状態における伝熱管132の位置に対応する位置座標である。図4では、計測軸P1には、超音波送受信部20により波形信号W11と、波形信号W12と、波形信号W13とが計測されている。図4では、計測軸P2は、後述する計測データの信号処理後の状態における伝熱管132の位置に対応する位置座標である。図4では、計測軸P2には、計測データの信号処理により合成された波形信号W21と、波形信号W22と、波形信号W23と、波形信号W24と、波形信号W25と、波形信号W26とが伝熱管132の位置と揃えて記載されている。
【0034】
支持手段30は、プローブ部10を所定位置に支持する。支持手段30は、例えば樹脂等の防振材料で形成されていると、ノイズを低減できて好ましい。プローブ挿入長さ可変手段31は、支持手段30と接続されており、プローブ部10の挿入長さを可変可能な機構、例えばサーボモータ駆動のアーム機構等を有している。
【0035】
制御装置80は、プローブ部10及び超音波送受信部20を制御する装置である。図5を用いて、制御装置80を説明する。図5に示す制御装置80は、入力処理回路81と、入力ポート82と、処理部90と、記憶部94と、出力ポート83と、出力処理回路84と、表示装置85、必要があればキーボード等の入力装置86とを有する。処理部90は、例えば、CPU(Central Processing Unit:中央演算装置)91と、RAM(Random Access Memory)92と、ROM(Read Only Memory)93とを含んでいる。
【0036】
処理部90と、記憶部94と、入力ポート82及び出力ポート83とは、バス87、バス88、バス89を介して接続される。バス87、バス88及びバス89により、処理部90のCPU91は、記憶部94と、入力ポート82及び出力ポート83と相互に制御データをやり取りしたり、一方に命令を出したりできるように構成される。
【0037】
入力ポート82には、入力処理回路81が接続されている。入力処理回路81には、電気変換部22からの計測データisが接続されている。そして、計測データisは、入力処理回路81に備えられるノイズフィルタやA/Dコンバータ等により、処理部90が利用できる信号に変換されてから、入力ポート82を介して処理部90へ送られる。これにより、処理部90は、必要な情報を取得することができる。
【0038】
出力ポート83には、出力処理回路84が接続されている。出力処理回路84には、表示装置85や、外部出力用の端子が接続されている。出力処理回路84は、表示装置制御回路、プローブ挿入長さ可変手段31等の制御信号回路、信号増幅回路等を備えている。出力処理回路84は、処理部90が算出したガイド波の信号データを、表示装置85に表示させる表示信号として出力したり、プローブ挿入長さ可変手段31へ伝達する指示信号idとして出力したりする。表示装置85は、例えば液晶表示パネルやCRT(Cathode Ray Tube)等を用いることができる。
【0039】
記憶部94は、超音波探傷検査装置1の動作手順を含むコンピュータプログラム等が記憶されている。ここで、記憶部94は、RAMのような揮発性のメモリ、フラッシュメモリ等の不揮発性のメモリ、ハードディスクドライブあるいはこれらの組み合わせにより構成することができる。
【0040】
上記コンピュータプログラムは、処理部90へすでに記録されているコンピュータプログラムとの組み合わせによって、超音波探傷検査装置1の動作手順を実行するものであってもよい。また、この制御装置80は、コンピュータプログラムの代わりに専用のハードウェアを用いて、超音波探傷検査装置1の動作手順を実行するものであってもよい。
【0041】
また、超音波探傷検査装置1の動作手順は、予め用意されたプログラムをパーソナル・コンピュータやワークステーション、あるいはプラント制御用コンピュータ等のコンピュータシステムで実行することによって実現することもできる。また、このプログラムは、ハードディスク等の記録装置、フレキシブルディスク(FD)、ROM、CD−ROM、MO、DVD、フラッシュメモリ等のコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することもできる。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
【0042】
また、「コンピュータ読み取り可能な記録媒体」には、インターネット等のネットワークや電話回線等の通信回線網を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものを含むものとする。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
【0043】
次に、図4、図5及び図6を用いて、超音波探傷検査装置1の動作について手順を説明する。図6は、本実施形態に係る超音波探傷検査装置の検査手順を示すフローチャートである。図6に示すフローチャートに沿って超音波探傷検査装置1の動作について手順を説明する。超音波探傷検査装置1の制御装置80は、第1の計測条件の設定を行う(ステップS11)。本実施形態では、制御装置80はプローブ挿入長さ可変手段31を制御し、プローブ部10が伝熱管132内に挿入長さT1挿入される状態(第1の計測条件)とする。
【0044】
次に、制御装置80は、超音波送受信部20を制御し、ガイド波を送受信することで超音波探傷を行い、第1の計測データを取得する(ステップS12)。第1の計測データは、RAM92又は記憶部94に記憶される。
【0045】
制御装置80は、計測条件の変更設定を行う(ステップS21)。本実施形態では、図4において、制御装置80がプローブ挿入長さ可変手段31を制御し、プローブ部10が伝熱管132内に挿入長さT2挿入される状態(第2の計測条件)とする。本実施形態では、挿入長さT2>挿入長さT1である。なお、挿入長さT1と挿入長さT2は異なっていればよい。
【0046】
次に、制御装置80は、超音波送受信部20を制御し、ガイド波を送受信することで超音波探傷を行い、変更した条件での計測データ(第2の計測データ)を取得する(ステップS22)。第2の計測データは、RAM92又は記憶部94に記憶される。
【0047】
次に、制御装置80は、所定の計測データが終了されたかどうかを判断する(ステップS23)。本実施形態では、計測データは2回であるので、計測終了判断は可と判断される(ステップS23、Yes)。なお、本実施形態では、計測データは2回ではあるが、3回以上であってもよい。この場合、計測終了判断は否となり(ステップS23、No)、ステップS21からの手順が繰り返されることになる。
【0048】
次に、制御装置80は、計測データの信号処理を行う(ステップS31)。具体的には、CPU91がRAM92又は記憶部94に記憶した第1の計測データと、第2の計測データとをRAM92のワークエリアに読み出して、第1の計測データと第2の計測データとを加算する。図4における計測軸P2には、第1の計測データと第2の計測データとを加算処理後の状態における伝熱管132の位置に対応する位置座標に、波形信号W21、W22、W23、W24、W25、W26が存在する。CPU91が波形信号W21、W22、W23、W24、W25、W26の位置及び信号強度を認識し、RAM92又は記憶部94に記憶する。
【0049】
次に、制御装置80は、ノイズ信号又は欠陥信号の特定を行う(ステップS32)。図4における計測軸P2では、波形信号W23が波形信号W2及びW12より信号強度が増していることが分かる。同様に、図4における計測軸P2では、波形信号W26が波形信号W4及びW14より信号強度が増していることが分かる。他方、波形信号W21、波形信号W22、波形信号W24、波形信号W25は、波形信号W1、波形信号W3、波形信号W11、波形信号W13と同程度の信号強度となる。
【0050】
本実施形態では、制御装置80は、波形信号W21、波形信号W22、波形信号W24、波形信号W25をノイズ信号として特定する。特定は、プローブ部10が伝熱管132内に挿入される挿入長さT1が挿入長さT2への変化に伴い計測軸P2において波形信号が増すことがないことで判断される。図4に示す計測軸P0と、計測軸P1とを比較すると、図4に示す計測軸P0での波形信号W1がプローブ部10の移動に伴って、計測軸P1での波形信号W11へ移動したものと考えられる。また、図4に示す計測軸P0での波形信号W3がプローブ部10の移動に伴って、計測軸P1での波形信号W13へ移動したものと考えられる。プローブ部10の移動に伴って、信号波形が移動しているということは、欠陥に起因する信号ではなく、ノイズ信号と考えられる。プローブ部10の移動に伴って、信号波形が移動しているため、第1の計測データと第2の計測データとを加算しても、例えばW1とW11とは位置が重なり合わず、信号強度が増すことはない。
【0051】
本実施形態では、制御装置80は、傷Qに起因する波形信号W23を欠陥信号として特定する。特定は、プローブ部10が伝熱管132内に挿入される挿入長さT1が挿入長さT2への変化に伴い計測軸P2において波形信号が増すことで判断される。図4に示す計測軸P0と、計測軸P1とを比較すると、計測軸P0での波形信号W2がプローブ部10の移動に伴って、計測軸P1での波形信号W12となっている。波形信号W2と波形信号12とは、伝熱管132との相対位置は変化していない。第1の計測データと第2の計測データとを加算すると、信号強度が重なり合い、信号強度が増すことになる。これにより、波形信号W2、W12又はW23の位置から、伝熱管132における傷Qの位置を特定できる。
【0052】
なお、波形信号W26も信号強度が増している。これは、伝熱管132の端部132bで反射する反射信号波形を捉えている。プローブ部10の移動によらず、伝熱管132の端部132bで反射する反射信号波形は捕捉してしまうので、伝熱管132の端部132bで信号強度が増しても欠陥信号としては取り扱わないこととしている。図4では、図示はしていないが、伝熱管132の端部132aでも同様の反射信号波形を計測することがあるので、伝熱管132の端部132aで信号強度が増しても欠陥信号としては取り扱わない。なお、欠陥信号は計測されないことの方が多く、ノイズ信号も計測されないことも想定される。ステップS32では、ノイズ信号又は欠陥信号がある場合に特定すれば足りる。
【0053】
ステップS31の計測データの信号処理は、加算処理に限られない。例えば、第1の計測データの絶対値と第2の計測データの絶対値とを加算又は乗算してもよい。又は、第1の計測データの包絡線と、第2の計測データの包絡線とを予めCPU91で演算し、包絡線同士を加算又は乗算して、元の包絡線よりも強度が増した場合に、欠陥信号として特定してもよい。あるいは、他の変形例としては、第1の計測データと第2の計測データとを減算してもよい。第1の計測データと第2の計測データの差をとると、プローブ部10の移動によらず、波形信号の位置が変わらない欠陥信号は、減算処理後に信号強度がなくなるか、信号強度の減じる割合が他の信号より大きいことをもって特定する。
【0054】
本実施形態1の超音波探傷検査装置1では、熱交換器の管部材に挿入され、かつ前記管部材にガイド波を伝播させるプローブ部と、プローブ部を介して前記ガイド波となる超音波を送信可能であり、かつ前記管部材に伝播したガイド波を受信可能な超音波送受信部と、前記プローブ部及び前記超音波送受信部を制御可能な制御装置と、を有し、前記制御装置は、異なる計測条件における前記超音波送受信部での複数の計測データを各々比較することにより、管部材のノイズ信号又は欠陥信号を特定する。
【0055】
このため、プローブ部の電気回路や超音波探触子等を起因とするノイズ信号を計測して欠陥に起因するノイズ信号を欠陥信号として誤認してしまうおそれを低減できる。この結果、長尺の構造物の検査において、ガイド波を利用した超音波探傷検査をしても、傷、割れ、減肉等の欠陥を把握することができる。
【0056】
本実施形態1の超音波探傷検査装置1では、前記管部材にプローブが挿入される長さを変更する長さ調整手段をさらに有し、前記制御装置が、前記長さ調整手段を制御し前記異なる計測条件を設定する。これにより、超音波探触子が配管内の全長に渡り搬送される必要がなく、作業時間を低減できる。
【0057】
本実施形態1の超音波探傷検査装置1では、前記制御装置は、異なる計測条件における前記超音波送受信部での複数の計測データのうち、受信信号が変動している波形信号をノイズ信号と判断することが好ましい。本実施形態1では、波形信号W1、W3の位置が波形信号W11、W13の位置に変動している。これにより、ノイズ信号を欠陥に起因する欠陥信号と誤認してしまうおそれを低減できる。
【0058】
本実施形態1の超音波探傷検査装置1では、複数の計測データ同士を加算、減算、乗算のいずれかの前記信号処理し、信号処理後の信号強度の変化を捉え、ノイズ信号又は欠陥信号が特定されることが好ましい。これにより、ノイズ信号を欠陥に起因する欠陥信号と誤認してしまうおそれを低減できる。
【0059】
本実施形態1の超音波探傷検査方法は、熱交換器の管部材へガイド波を送受信する第1の計測条件を設定するステップと、前記第1の計測条件において、ガイド波を送受信することで超音波探傷を行い第1の計測データを取得し記憶するステップと、前記第1の計測条件と異なる計測条件に変更し、第2の計測条件を設定するステップと、前記第2の計測条件において、ガイド波を送受信することで超音波探傷を行い第2の計測データを取得し記憶するステップと、前記第1の計測データと、前記第2の計測データと、に対し、加算、減算、乗算のいずれか1以上の前記信号処理し、信号処理後の信号強度の変化を捉え、ノイズ信号又は欠陥信号を特定する。
【0060】
このため、プローブ部の電気回路や超音波探触子等を起因とするノイズ信号を計測して欠陥に起因するノイズ信号を欠陥信号として誤認してしまうおそれを低減できる。この結果、長尺の構造物の検査において、ガイド波を利用した超音波探傷検査をしても、傷、割れ、減肉等の欠陥を把握することができる。また、前記第1の計測データと、前記第2の計測データと、に対し、加算、減算、乗算のいずれか2以上の前記信号処理とすることで、特定した管部材のノイズ信号又は欠陥信号の信頼度合いを高めることができる。例えば、前記第1の計測データと、前記第2の計測データと、に対し、加算して特定した管部材のノイズ信号又は欠陥信号と、減算、乗算のいずれかの信号処理として特定した管部材のノイズ信号又は欠陥信号とが一致すれば、特定したノイズ信号又は欠陥信号の確度を高めることができる。
【0061】
(実施形態2)
図7は、実施形態2に係る超音波探傷検査装置2の模式図である。本実施形態に係る超音波探傷検査装置2は、管部材である伝熱管に挿入される長さを可変しつつ超音波送受信部での複数の計測データを取得することに特徴がある。次の説明においては、実施形態1で説明したものと同じ構成要素には同一の符号を付して、重複する説明は省略する。
【0062】
ここで図7では、超音波探傷検査装置2の動作の説明のため、プローブ部10が伝熱管132内に挿入長さT1挿入され、伝熱管132へガイド波を伝播させる第1の計測条件の状態と、プローブ部10が伝熱管132内に挿入長さT3挿入され、伝熱管132へガイド波を伝播させる第2の計測条件の状態とを図中上下に伝熱管132の位置を揃えて記載している。図7に示す計測軸P0は、第1の計測条件の状態における伝熱管132の位置に対応する位置座標である。図7では、計測軸P0には、超音波送受信部20により波形信号W1と、波形信号W2と、波形信号W3とが計測されている。また、図7に示す計測軸P1は、第2の計測条件の状態における伝熱管132の位置に対応する位置座標である。図7では、計測軸P1には、超音波送受信部20により波形信号W11と、波形信号W12と、波形信号W13とが計測されている。
【0063】
図6及び図7を参照して、超音波探傷検査装置2の動作について説明する。超音波探傷検査装置2の制御装置80は、第1の計測条件の設定を行う(ステップS11)。本実施形態では、制御装置80はプローブ挿入長さ可変手段31を制御し、プローブ部10が伝熱管132内に挿入長さT1挿入される状態(第1の計測条件)とする。次に、制御装置80は、超音波送受信部20を制御し、ガイド波を送受信することで超音波探傷を行い、第1の計測データを取得する(ステップS12)。第1の計測データは、RAM92又は記憶部94に記憶される。
【0064】
制御装置80は、計測条件の変更設定を行う(ステップS21)。本実施形態では、制御装置80はプローブ挿入長さ可変手段31を制御し、プローブ部10が伝熱管132内に矢印V1に沿って移動させ、挿入長さT3が徐々に長くなるように挿入される動作状態(第2の計測条件)とする。
【0065】
次に、制御装置80は、超音波送受信部20を制御し、ガイド波を送受信することで超音波探傷が行なわれ計測データ(第2の計測データ)を取得する(ステップS22)。第2の計測データは、RAM92又は記憶部94に記憶される。
【0066】
制御装置80は、所定の計測データが終了されたかどうかを判断する(ステップS23)。本実施形態では、計測データは連続的に測定するので、否となり(ステップS23、No)、ステップS21からの手順を繰り返すことになる。なお、本実施形態では、挿入長さT3が所定長さになる場合、計測終了判断は可となる(ステップS23、Yes)。
【0067】
次に、制御装置80は、計測データの信号処理を行う(ステップS31)。具体的には、CPU91がRAM92又は記憶部94に保存した第2の計測データが連続データであるので、計測軸P1上にデータを読み出して重ね合わせる。図7における計測軸P1には、波形信号W11、W12、W13、W14が存在する。次に、制御装置80は、ノイズ信号又は欠陥信号の特定を行う(ステップS32)。図7における計測軸P1での波形信号W11は、プローブ部10が伝熱管132内に矢印V1に沿って移動するにつれ、矢印V2方向へ計測軸P1上を移動する。同様に、計測軸P1での波形信号W13は、プローブ部10が伝熱管132内に矢印V1に沿って移動するにつれ、矢印V2方向へ計測軸P1上を移動する。計測軸P1での波形信号W12及びW14は、プローブ部10が伝熱管132内に矢印V1に沿って移動しても、計測軸P1上の位置は変化がない。
【0068】
本実施形態では、制御装置80は、波形信号W11、波形信号W13をノイズ信号として特定する。特定は、プローブ部10が伝熱管132内に矢印V1に沿って移動するにつれ、矢印V2方向へ計測軸P1上を移動する信号波形をノイズ信号として判断する。波形信号W11、波形信号W13は、図7に示す計測軸P0での波形信号W1、W3よりプローブ部10の移動に伴って移動したものと考えられるからである。
【0069】
制御装置80は、波形信号W12を傷Qに起因する欠陥信号として特定する。特定は、プローブ部10が伝熱管132内に矢印V1に沿って移動しても計測軸P1上で位置が変化しない信号波形を欠陥信号として判断する。波形信号W12は、図7に示す計測軸P0での波形信号W2よりプローブ部10の移動に伴って移動しないからである。これにより、波形信号W2又はW12の位置から、伝熱管132における傷Qの位置を特定できる。
なお、波形信号W14も図7に示す計測軸P0での波形信号W4よりプローブ部10の移動に伴って移動しない。これは、上述の通り伝熱管132の端部132bで反射する反射信号波形を捉えている。このため、伝熱管132の端部132bで波形信号が移動しなくても欠陥信号としては取り扱わないこととしている。
【0070】
本実施形態2の超音波探傷検査装置2では、前記異なる計測条件として、前記伝熱管に挿入される長さを変更しつつ前記超音波送受信部での複数の計測データを取得する。波形信号の移動を捉えることで容易にノイズ信号か、欠陥信号かを特定することができる。
【0071】
本実施形態2の超音波探傷検査装置2では、前記制御装置は、異なる計測条件における前記超音波送受信部での複数の計測データのうち、受信信号が変動している波形信号をノイズ信号と判断することが好ましい。本実施形態2では、波形信号W1、W3の位置は、プローブ部10が伝熱管132内に矢印V1に沿って移動するにつれ、矢印V2方向へ計測軸P1上を移動し波形信号W11、W13の位置となっている。これにより、ノイズ信号を欠陥に起因する欠陥信号と誤認してしまうおそれを低減できる。
【0072】
本実施形態2の超音波探傷検査方法では、熱交換器の管部材へガイド波を送受信する第1の計測条件を設定するステップと、前記第1の計測条件において、ガイド波を送受信することで超音波探傷を行い第1の計測データを取得し記憶するステップと、前記管部材に前記プローブ部が挿入される長さを可変に変更し、第2の計測条件を設定するステップと、前記第2の計測条件において、ガイド波を送受信することで超音波探傷を行い第2の計測データを取得し記憶するステップと、前記第1の計測データと、前記第2の計測データと、を比較する信号処理し、信号処理後の波形信号の位置変化を捉え、ノイズ信号又は欠陥信号を特定する。
【0073】
このため、プローブ部の電気回路や超音波探触子等を起因とするノイズ信号を計測して欠陥に起因するノイズ信号を欠陥信号として誤認してしまうおそれを低減できる。この結果、長尺の構造物の検査において、ガイド波を利用した超音波探傷検査をしても、傷、割れ、減肉等の欠陥を把握することができる。
【0074】
(実施形態3)
図8は、実施形態3に係る超音波探傷検査装置3の模式図である。本実施形態に係る超音波探傷検査装置3は、前記伝熱管に挿入される長さを可変せず、超音波送受信部での入力周波数を変えて複数の計測データを取得することに特徴がある。次の説明においては、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して、重複する説明は省略する。
【0075】
ここで図8では、超音波探傷検査装置3の動作の説明のため、プローブ部10が伝熱管132内に挿入され、第1の入力周波数(周波数1)で伝熱管132へガイド波を伝播させる第1の計測条件(計測条件1)の計測データと、第2の入力周波数(周波数2)でプローブ部10が伝熱管132内に挿入され、第2の入力周波数(周波数2)で伝熱管132へガイド波を伝播させる第2の計測条件(計測条件2)の計測データとを図中上下に伝熱管132の位置を揃えて記載している。図8に示す計測軸U0は、第1の計測条件の状態における伝熱管132の位置に対応する位置座標である。図8では、計測軸U0には、超音波送受信部20により波形信号W31、W32、W33、W34、W35、W36が計測されている。また、図8に示す計測軸U1は、第2の計測条件の状態における伝熱管132の位置に対応する位置座標である。図8では、計測軸U1には、超音波送受信部20により波形信号W41、W42、W43、W44、W45、W46が計測されている。図8では、計測軸U2は、後述する計測データの信号処理後の状態における伝熱管132の位置に対応する位置座標である。図8では、計測軸U2には、計測データの信号処理により合成された合成波形として、波形信号W51,W521、w522、W531、W532、W541、W542、W55、W56が伝熱管132の位置と揃えて記載されている。
【0076】
図6及び図8を参照して、超音波探傷検査装置3の動作について説明する。超音波探傷検査装置3の制御装置80は、第1の計測条件の設定を行う(ステップS11)。本実施形態では、制御装置80は超音波送受信部20を制御し、プローブ部10へ伝達するガイド波の入力周波数及び入力周波数に応じた検出周波数を設定する状態(第1の計測条件)とする。例えば、入力周波数(検出周波数)は、200kHzに設定する。次に、制御装置80は、超音波送受信部20を制御し、ガイド波を送受信することで超音波探傷を行い、第1の計測データを取得する(ステップS12)。第1の計測データは、RAM92又は記憶部94に記憶される。
【0077】
制御装置80は、計測条件の変更設定を行う(ステップS21)。本実施形態では、制御装置80は超音波送受信部20を制御し、プローブ部10へ伝達するガイド波の入力周波数及び入力周波数に応じた検出周波数を変更する状態(第2の計測条件)とする。例えば、入力周波数(検出周波数)は、220kHzに設定する。
【0078】
次に、制御装置80は、超音波送受信部20を制御し、ガイド波を送受信することで超音波探傷が行なわれ計測データ(第2の計測データ)を取得する(ステップS22)。第2の計測データは、RAM92又は記憶部94に記憶される。
【0079】
制御装置80は、所定の計測データが終了されたかどうかを判断する(ステップS23)。本実施形態では、計測データは2回であるので、計測終了判断は可と判断される(ステップS23、Yes)。なお、本実施形態では、計測データは2回ではあるが、3回以上であってもよい。この場合、計測終了判断は否となり(ステップS23、No)、ステップS21から繰り返すことになる。
【0080】
次に、制御装置80は、計測データの信号処理を行う(ステップS31)。具体的には、CPU91がRAM92又は記憶部94に記憶した第1の計測データと、第2の計測データとをRAM92のワークエリアに読み出して、第1の計測データと第2の計測データとを加算する。図8における計測軸U2には、第1の計測データと第2の計測データとを加算処理後の状態(合成波形)における伝熱管132の位置に対応する位置座標に、波形信号W51、W521、W522、W531、W532、W541、W542、W55、W56が存在する。ステップS31の計測データの信号処理は、加算処理に限られない。例えば、第1の計測データの絶対値と第2の計測データの絶対値とを加算又は乗算してもよい。又は、第1の計測データの包絡線と、第2の計測データの包絡線とを予めCPU91で演算し、包絡線同士を加算又は乗算して、元の包絡線よりも強度が増した場合に、欠陥信号として特定してもよい。あるいは、他の変形例としては、第1の計測データと第2の計測データとを減算してもよい。
【0081】
次に、制御装置80は、ノイズ信号又は欠陥信号の特定を行う(ステップS32)。図8における計測軸U2では、波形信号W55が波形信号W35及び波形信号W45より信号強度が増していることが分かる。同様に、図8における計測軸U2には、波形信号W51、W55、W56が波形信号W521、W522、W531、W532、W541及びW542より信号強度が増していることが分かる。他方、W521、W522、W531、W532、W541及びW542は、波形信号W32、波形信号W33、波形信号W34、波形信号W42、43及びW44と同程度の信号強度となる。
【0082】
本実施形態では、制御装置80は、波形信号W521、W522、波形信号W531、W532、波形信号W541及び波形信号W542をノイズ信号として特定する。特定は、超音波送受信部20での入力周波数(検出周波数)の変化に伴い計測軸U2において波形信号が増すことがないことで判断される。超音波送受信部20に由来するノイズ信号は、入力周波数(検出周波数)が変わることで変化する。入力周波数(検出周波数)が変わっても、欠陥に起因する信号は変化しないことを利用して欠陥の信号とノイズ信号とを特定する。これは、欠陥に起因する信号の波形や音速が入力周波数(検出周波数)によらず、ほぼ一定と見なせることを利用している。
【0083】
本実施形態では、波形信号W32、波形信号W33、波形信号W42、波形信号W43のように、プローブ部10近傍で発生する送信波を含む不要な波形信号が発現するガイド波を用いた超音波探傷において、ノイズ信号を特定できる。
【0084】
制御装置80は、波形信号W55を傷Qに起因する欠陥信号として特定する。特定は、超音波送受信部20での入力周波数(検出周波数)の変化に伴い計測軸U2において波形信号が増すことで判断される。波形信号W55は、図8に示す計測軸U0での波形信号W35より入力周波数(検知周波数)の変更に伴って移動しないからである。これにより、波形信号W35、W45又はW55の位置から、伝熱管132における傷Qの位置を特定できる。なお、波形信号W51、波形信号56も図8に示す計測軸U0での波形信号W31、波形信号W36より入力周波数(検出周波数)の変化に伴って移動しない。これは、上述の通り伝熱管132の端部132a、132bで反射する反射信号波形を捉えている。このため、伝熱管132の端部132a、132bで波形信号が移動しなくても欠陥信号としては取り扱わないこととしている。
【0085】
本実施形態3の超音波探傷検査装置3では、異なる計測条件として、超音波送受信部20での入力周波数を変えて複数の計測データを取得する。これにより、プローブ部10近傍で発生する送信波を含む不要な波形信号を低減し、欠陥信号を見やすくすることができる。
【0086】
本実施形態3の超音波探傷検査装置3では、前記制御装置は、異なる計測条件における前記超音波送受信部での複数の計測データのうち、受信信号が変動している波形信号をノイズ信号と判断することが好ましい。本実施形態3では、波形信号W32、W33、34の位置が波形信号W42、W43、W44の位置に変動している。これにより、ノイズ信号を欠陥に起因する欠陥信号と誤認してしまうおそれを低減できる。
【0087】
本実施形態3の超音波探傷検査装置3では、複数の計測データ同士を加算、減算、乗算のいずれか1以上の前記信号処理し、信号処理後の信号強度の変化を捉え、ノイズ信号又は欠陥信号が特定されることが好ましい。これにより、ノイズ信号を欠陥に起因する欠陥信号と誤認してしまうおそれを低減できる。また、前記第1の計測データと、前記第2の計測データと、に対し、加算、減算、乗算のいずれか2以上の前記信号処理とすることで、特定した管部材のノイズ信号又は欠陥信号の信頼度合いを高めることができる。例えば、前記第1の計測データと、前記第2の計測データと、に対し、加算して特定した管部材のノイズ信号又は欠陥信号と、減算、乗算のいずれかの信号処理として特定した管部材のノイズ信号又は欠陥信号とが一致すれば、特定したノイズ信号又は欠陥信号の確度を高めることができる。
【0088】
(実施形態4)
図9は、実施形態4に係る超音波探傷検査装置4の模式図である。本実施形態に係る超音波探傷検査装置4は、伝熱管に挿入されるプローブ部を複数有しており、1つの伝熱管に異なる複数のプローブ部を挿入して計測データを取得することに特徴がある。次の説明においては、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して、重複する説明は省略する。
【0089】
図9に示すように、超音波探傷検査装置4は、プローブ部10、プローブ部10A、プローブ部10B、プローブ部10Cを有している。プローブ部10A、プローブ部10B、プローブ部10Cは、プローブ部10と同じ構成となっている。伝熱管132は、複数設置されており、規則的に配置されている。そこで、伝熱管132の配置に対応するように、プローブ部10、プローブ部10A、プローブ部10B及びプローブ部10Cは、規則的に支持手段30に取り付けられている。
【0090】
超音波探傷検査装置4の制御装置80は、第1の計測条件の設定を行う(ステップS11)。本実施形態では、制御装置80はプローブ挿入長さ可変手段31を制御し、プローブ部10、プローブ部10A、プローブ部10B、プローブ部10Cが各々伝熱管132内に挿入される状態(第1の計測条件)とする。次に、制御装置80は、超音波送受信部20を制御し、ガイド波を送受信することで超音波探傷を行い、第1の計測データを取得する(ステップS12)。第1の計測データは、RAM92又は記憶部94に記憶される。
【0091】
制御装置80は、計測条件の変更設定を行う(ステップS21)。本実施形態では、制御装置80はプローブ挿入長さ可変手段31を制御し、プローブ部10、プローブ部10A、プローブ部10B、プローブ部10Cが各々第1の計測データを取得した伝熱管132と異なる伝熱管132内に例えば矢印V3に沿って移動させ、プローブ部10、プローブ部10A、プローブ部10B、プローブ部10Cが各々挿入される動作状態(第2の計測条件)とする。次に、制御装置80は、超音波送受信部20を制御し、ガイド波を送受信することで超音波探傷が行なわれ計測データ(第2の計測データ)を取得する(ステップS22)。第2の計測データは、RAM92又は記憶部94に記憶される。
【0092】
次に、制御装置80は、ノイズ信号又は欠陥信号の特定を行う(ステップS32)。制御装置80は、プローブ挿入長さ可変手段31を制御して、1つの伝熱管132に異なる複数のプローブ部10、10A、10B、10Cを少なくともいずれか2つを挿入させることになる。制御装置80は、異なる計測条件として、異なる複数のプローブ部10、10A、10B、10Cのいずれか挿入された時に、超音波送受信部20を制御し、計測データを取得する。次に、上述したようにステップS31の計測データの信号処理を経る。
【0093】
本実施形態の超音波探傷検査装置4は、複数のプローブ部と、各々のプローブ部を介して前記ガイド波となる超音波を送信可能であり、かつ前記管部材に伝播したガイド波を受信可能な超音波送受信部とを有し、前記異なる計測条件として、熱交換器の前記管部材に前記複数のプローブ部のうち異なるプローブ部同士で計測した計測データを各々比較する。これにより、プローブ部の個体差に起因するノイズ信号を低減し、欠陥信号を見やすくすることができる。
【0094】
(実施形態5)
図10は、実施形態5に係る超音波探傷検査装置の模式図である。本実施形態に係る超音波探傷検査装置5は、伝熱管に挿入されるプローブ部を複数有しており、各々超音波送受信部での入力周波数が異なるプローブ部を挿入して計測データを取得することに特徴がある。次の説明においては、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して、重複する説明は省略する。
【0095】
図10に示すように、超音波探傷検査装置5は、プローブ部10、プローブ部10Aを有している。伝熱管132A、132Bは、隣り合って設置されており、規則的に配置されている。そこで、伝熱管132の配置に対応するように、プローブ部10、プローブ部10Aは、規則的に支持手段30に取り付けられている。制御装置80は、超音波送受信部20を制御して、伝熱管132A及び伝熱管132Bに異なる入力周波数でプローブ部10、10Aを2つ挿入させる。制御装置80は、実施形態3にて説明したように、プローブ部に起因するノイズ信号を低減し、欠陥信号を見やすくすることができる。
【0096】
本実施形態に係る超音波探傷検査装置5は、複数の管部材を有する熱交換器を計測する超音波探傷検査装置であって、複数のプローブ部と、各々のプローブ部を介して前記ガイド波となる超音波を送信可能であり、かつ前記管部材に伝播したガイド波を受信可能な超音波送受信部とを有し、前記複数のプローブ部が前記複数の管部材を同時に検査可能である。このため、各々超音波送受信部での入力周波数が異なる複数のプローブ部を複数の伝熱管に挿入して計測するので、同時に複数の伝熱管を検査することができる。これにより、短時間で伝熱管を検査することができる。
【0097】
(実施形態6)
図11は、実施形態6に係る超音波探傷検査装置の模式図である。本実施形態に係る超音波探傷検査装置6は、伝熱管に挿入されるプローブ部を複数有しており、各々管部材である伝熱管への挿入長さが異なるプローブ部を複数の伝熱管へ挿入して計測データを取得することに特徴がある。次の説明においては、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して、重複する説明は省略する。
【0098】
図11に示すように、超音波探傷検査装置6は、プローブ部10、プローブ部10Dと、超音波送受信部20と、支持手段30と、プローブ挿入長さ可変手段31と、プローブ挿入長さ可変手段31Dと、制御装置80と、を有している。伝熱管132A、132Bは、隣り合って設置されており、規則的に配置されている。そこで、伝熱管132の配置に対応するように、プローブ部10、プローブ部10Dは、規則的に支持手段30に取り付けられている。制御装置80は、プローブ挿入長さ可変手段31及びプローブ挿入長さ可変手段31Dを制御して、伝熱管132A及び伝熱管132Bに異なる挿入長さT1、T2でプローブ部10、10Dを2つ挿入させる。制御装置80は、実施形態1にて説明したように、第1の計測条件で第1の計測データを取得する(ステップS12)。その後、プローブ部10、プローブ部10Dの挿入長さを入れ替えて、変更した条件での計測データ(第2の計測データ)を取得する(ステップS22)。次に、制御装置80は、上述した実施形態1と同様に、計測データの信号処理を行う(ステップS31)。
【0099】
本実施形態に係る超音波探傷検査装置6は、複数の管部材を有する熱交換器を計測する超音波探傷検査装置であって、複数のプローブ部と、各々のプローブ部を介して前記ガイド波となる超音波を送信可能であり、かつ前記管部材に伝播したガイド波を受信可能な超音波送受信部とを有し、前記複数のプローブ部が前記複数の管部材を同時に検査可能である。超音波探傷検査装置6は、複数のプローブ部を複数の伝熱管に挿入して計測するので、同時に複数の伝熱管を検査することができる。これにより、短時間で伝熱管を検査することができる。
【0100】
以上説明した超音波探傷検査装置1から超音波探傷検査装置6の実施形態は、各々組み合わせて実施可能である。例えば、実施形態1の超音波探傷検査装置1で欠陥信号を特定した後、実施形態3の超音波探傷検査装置3で特定した欠陥信号を再検査することで、信頼できる検査結果をえることができる。
【0101】
上述した実施形態は加圧水型原子力プラントの熱交換器である蒸気発生器の伝熱管の検査を例に説明してきたが、沸騰水型、高速炉型及びその他の原子力プラントの管部材にも適用可能である。また、一般の熱交換器、火力発電プラントにも応用可能である。本発明に係る超音波探傷検査装置及び超音波探傷検査方法の検査対象は、管部材であればよく、熱交換器の管部材に限られない。
【産業上の利用可能性】
【0102】
以上のように、本発明に係る超音波探傷検査装置及び超音波探傷検査方法は、熱交換器の配管等を非破壊で検査することに適している。
【符号の説明】
【0103】
1、2、3、4、5、6 超音波探傷検査装置
10、10A、10B、10C、10D プローブ部
11 ガイド波案内部
12 ガイド波伝達部
20 超音波送受信部
21 送受部
22 電気変換部
30 支持手段
31 プローブ挿入長さ可変手段
80 制御装置
100 原子力プラント
110 原子炉容器
120 加圧器
130 蒸気発生器
131、133 水室
132 伝熱管
137 管板
138 マンホール

【特許請求の範囲】
【請求項1】
熱交換器の管部材に挿入され、かつ前記管部材にガイド波を伝播させるプローブ部と、
前記プローブ部を介して前記ガイド波となる超音波を送信可能であり、かつ前記管部材に伝播したガイド波の反射波を受信可能な超音波送受信部と、
前記プローブ部及び前記超音波送受信部を制御可能な制御装置と、を有し、
前記制御装置は、異なる計測条件における前記超音波送受信部での複数の計測データを信号処理することにより、計測データのノイズ信号又は欠陥信号を特定することを特徴とする超音波探傷検査装置。
【請求項2】
前記管部材にプローブが挿入される長さを変更する長さ調整手段をさらに有し、前記制御装置が、前記長さ調整手段を制御して前記異なる計測条件を設定することを特徴とする請求項1に記載の超音波探傷検査装置。
【請求項3】
前記異なる計測条件として、前記管部材に前記プローブ部が挿入される長さを変更しつつ前記超音波送受信部での複数の計測データを取得する請求項2に記載の超音波探傷検査装置。
【請求項4】
前記異なる計測条件として、前記超音波送受信部での入力周波数を変えて複数の計測データを取得する請求項1から3のいずれか1項に記載の超音波探傷検査装置。
【請求項5】
複数のプローブ部と、
各々のプローブ部を介して前記ガイド波となる超音波を送信可能であり、かつ前記管部材に伝播したガイド波を受信可能な超音波送受信部と、を有し、
前記異なる計測条件として、熱交換器の前記管部材に前記複数のうち異なるプローブ部同士で計測した計測データを各々比較する請求項1から4のいずれか1項に記載の超音波探傷検査装置。
【請求項6】
複数の管部材を有する熱交換器を計測する請求項1から5のいずれか1項に記載の超音波探傷検査装置であって、
複数のプローブ部と、
各々のプローブ部を介して前記ガイド波となる超音波を送信可能であり、かつ前記管部材に伝播したガイド波を受信可能な超音波送受信部と、を有し、
前記複数のプローブ部が前記複数の管部材を同時に検査可能である超音波探傷検査装置。
【請求項7】
前記制御装置は、異なる計測条件における前記超音波送受信部での複数の計測データのうち、受信信号が変動している波形信号をノイズ信号と判断する請求項1から6のいずれか1項に記載の超音波探傷検査装置。
【請求項8】
前記制御装置は、複数の計測データ同士を加算、減算、乗算のいずれか1以上の前記信号処理し、信号処理後の信号強度の変化を捉え、ノイズ信号又は欠陥信号が特定される請求項1から6のいずれか1項に記載の超音波探傷検査装置。
【請求項9】
熱交換器の管部材へガイド波を送受信する第1の計測条件を設定するステップと、
前記第1の計測条件において、ガイド波を送受信することで超音波探傷を行い第1の計測データを取得し記憶するステップと、
前記第1の計測条件と異なる計測条件に変更し、第2の計測条件を設定するステップと、
前記第2の計測条件において、ガイド波を送受信することで超音波探傷を行い第2の計測データを取得し記憶するステップと、
前記第1の計測データと、前記第2の計測データと、に対し、加算、減算、乗算のいずれかの前記信号処理し、信号処理後の信号強度の変化を捉え、ノイズ信号又は欠陥信号を特定することを特徴とする超音波探傷検査方法。
【請求項10】
熱交換器の管部材へガイド波を送受信する第1の計測条件を設定するステップと、
前記第1の計測条件において、ガイド波を送受信することで超音波探傷を行い第1の計測データを取得し記憶するステップと、
前記管部材に前記プローブ部が挿入される長さを可変に変更し、第2の計測条件を設定するステップと、
前記第2の計測条件において、ガイド波を送受信することで超音波探傷を行い第2の計測データを取得し記憶するステップと、
前記第1の計測データと、前記第2の計測データと、を比較する信号処理し、信号処理後の波形信号の位置変化を捉え、ノイズ信号又は欠陥信号を特定することを特徴とする超音波探傷検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2012−107959(P2012−107959A)
【公開日】平成24年6月7日(2012.6.7)
【国際特許分類】
【出願番号】特願2010−256282(P2010−256282)
【出願日】平成22年11月16日(2010.11.16)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】