説明

配管内位置検知装置

【課題】水で満たされた配管内で、音響の送受信位置に関する情報がなくても、音速を正確に与え、結果として、検査装置の位置を正確に検知することができる配管内位置検知装置を提供することにある。
【解決手段】検査用ROV11に搭載した音波発信器32から発した水中音響47は、PLR配管7内の水中を伝播して支援用ROV13に搭載した音波受信器39で受信できる。検査用ROV11と支援用ROV13のPLR配管7内の道程距離、即ち支援用ROV13と検査用ROV11との間の相対距離は、水中音響47の送受信タイミングの差と、水中音速とから算出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、配管の内部を検査する検査装置の位置を検知する配管内位置検知装置に係り、特に、原子炉圧力容器内の水面下で、原子炉の構成部分を目視点検、いわゆるVT(ビジュアルテスティング;Visual Testing)を実施する検査装置に用いられ、原子炉を構成する、一次冷却材再循環配管(PLR配管)やジェットポンプ等の周辺配管内部のVTを実施する際に好適な配管内位置検知装置に関する。
【背景技術】
【0002】
配管内での位置検知技術としては、第1に、埋設管のガス漏洩検知方法に関するもので、内部に水を満たした検知管内に水中マイクロホンを移動させながら、配管外部でのガス漏洩音を検知するものが知られている(例えば、特許文献1参照)。
【0003】
また、第2に、配管内の距離計測装置、流速計測装置、音速計測装置に関するもので、音波の受信時刻を正確に検出するために、受信波形のエンベロープから受信時刻を正確に検出するための信号処理装置を搭載し、音響の到達時間差に音速を乗じて距離を算出するものが知られている(例えば、特許文献2参照)。
【0004】
【特許文献1】特開平8−94481号公報
【特許文献2】特開2004−28967号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1記載のものでは、水中マイクロホンの位置は、挿入したワイヤに目印を付けておき目視にて移動距離を読み取るか、回転式距離計等の距離計によって検知するものであり、この方法では、配管内を航行するために浮遊型のケーブルで接続した検査用ビークルには適用できないものである。その理由は、浮遊型のケーブルで接続した検査用ビークルでは、ケーブルが浮遊しているために、進行距離とケーブルの繰出し距離の間に誤差が生じるためである。
【0006】
また、特許文献2記載のものでは、音響伝播時間と音速を乗じるためケーブルの弛みによる誤差は発生しないが、音速の与え方に誤差があると、結果として検知距離の誤差となるという問題がある。また、特許文献2は、他の技術として、音響の送受信位置と音響伝播時間から音速を正確に構成するための技術も開示しているが、音響の送受信位置に関する情報が無い環境には適用できない。
【0007】
本発明の目的は、水で満たされた配管内で、音響の送受信位置に関する情報がなくても、音速を正確に与え、結果として、検査装置の位置を正確に検知することができる配管内位置検知装置を提供することにある。
【課題を解決するための手段】
【0008】
(1)上記目的を達成するために、本発明は、水で満たされた配管内を検査する検査用ビークルに搭載した音源から発生した音響と、前記検査用ビークルの航行を支援する支援用ビークルに搭載した音響検出器で受信した音響の時間差から前記検査用ビークルと前記支援用ビークルの間の音響伝播時間を検知する音響伝播時間検知手段を有する配管内位置検知装置であって、前記配管内の音速を設定する音速設定手段と、この音速設定手段において設定された配管内の音速と前記音響伝播時間から2つの該ビークル間の距離を算出するビークル間距離検知手段とを備えるようにしたものである。
かかる構成により、検査装置の位置を正確に検知することができるものとなる。
【0009】
(2)上記(1)において、好ましくは、前記音速設定手段は、配管内の音速を入力する音速入力手段としたものである。
【0010】
(3)上記(1)において、好ましくは、前記音速設定手段は、前記配管の内径を入力する配管径入力手段と、前記配管の内径から配管内の固有の音速を算出する直管音速算出手段とから構成されるものである。
【0011】
(4)上記(1)において、好ましくは、前記音速設定手段は、前記配管の内径を入力する配管径入力手段と、前記配管の曲りの数を入力する配管曲数入力手段と、前記配管の内径および配管曲数から配管内の固有の音速を算出する曲管音速算出手段とから構成されるものである。
【0012】
(5)上記(1)において、好ましくは、前記音速設定手段は、前記検査用ビークルの位置を入力する検査用ビークル基準位置入力手段と、前記支援用ビークルの位置を入力する支援用ビークル基準位置入力手段と、前記検査用ビークルと前記支援用ビークルの位置と前記音響伝播時間とから配管内の音速を算出する校正音速算出手段とから構成されるものである。
【発明の効果】
【0013】
本発明によれば、水で満たされた配管内で、音響の送受信位置に関する情報がなくても、音速を正確に与え、結果として検査装置の位置を正確に検知し得るものとなる。
【発明を実施するための最良の形態】
【0014】
以下、図1〜図17を用いて、本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置の構成及び動作について説明する。本実施形態は、原子炉内の目視検査、特にPLR(Primary Loop Re-circulationSystem:一次冷却材再循環系)配管検査に用いる検査装置に関するものである。
最初に、図1を用いて、本実施形態による配管内位置検知装置を搭載する水中検査装置により検査される原子炉の構成とその検査方法について説明する。
図1は、本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置により検査される原子炉の構成を示す要部断面図である。
【0015】
原子炉1の内部には、シュラウド2,上部格子板3,炉心支持板4,シュラウドサポート5,ジェットポンプ6等の構造物があり、また、PLR配管7などの配管が接続されている。
【0016】
原子炉の一次冷却水再循環系における一次冷却水の流れは、出口ノズル8b,PLRポンプ(図示せず),PLR配管7を経由し、入口ノズル8aから原子炉1に戻るものである。また、原子炉1の上部には、作業スペースであるオペレーションフロア9があり、また同じく上方には、燃料交換装置10がある。
【0017】
本実施例では、原子炉のPLR配管7の内面のVT検査を目的とし、以下の様な機器配置を取る。配管内に挿入した検査用ROV(Remotely Operated Vehicle :遠隔操作ビークル)11は、二次ケーブル12を介して、支援用ROV13に接続される。ここで、検査用ROV11は検査用ビークルとも称し、支援用ROV13は支援用ビークルとも称する。
【0018】
PLR配管7内の点検作業においては、支援用ROV13を遠隔操作で泳動させて、上部を取り外したジェットポンプ6の上方に位置させて停留させる。その後に、支援用ROV13から発進させた支援用ROV13を、ジェットポンプ6内および入口ノズル8a内を通過させ、PLR配管7内に進入させる。なお、ジェットポンプ6の上部は、燃料交換装置10の作業スペースから、クレーン等によりジェットポンプ6の上部を引っかけて吊り上げることで取り外せる。
【0019】
支援用ROV13では、二次ケーブル12を繰出す機構(後述)を搭載し、検査用ROV11の航行を支援するとともに、検査用ROV11の位置を検知するための位置検知手段(後述)を搭載している。支援用ROV13は、一次ケーブル14を介して、制御装置15に接続される。
【0020】
制御装置15は、検査用ROV11および支援用ROV13を水中で泳動させて航行せしめるために、電力を供給するとともに、検査用ROV11および支援用ROV13の位置を検知するための信号処理機能(後述)を搭載している。また、制御装置15には表示装置16を接続し、検査用ROV11および支援用ROV13に撮像手段として搭載したカメラ(後述)の画像を表示するとともに、制御装置15で検知した検査用ROV11および支援用ROV13の位置を表示する。さらに、制御装置15にはコントローラ17を接続し、ROV操作員18aが操作する。
【0021】
一方、支援用ROV13の位置を検知するために、ステレオカメラ(後述)を搭載した水中ITVカメラ19を、支援用ROV13を視認できる位置に投下する。その方法は、水中ITVカメラ19に間隔を開けて二本の水中ITVカメラ操作ケーブル20を連結し、その水中ITVカメラ操作ケーブル20で水中ITVカメラ19を燃料交換装置10の上から懸垂して水中ITVカメラ操作員18bが原子炉1の水中に投下する。なお、水中ITVカメラ19の映像は、水中ITVカメラ用ケーブル21を介して、制御装置15に入力される。
【0022】
水中に投下された水中ITVカメラ19は、水中ITVカメラ操作ケーブル20の垂れ下がり長さを調整することでその水面下の深度が変更でき、その深度で水中ITVカメラ操作ケーブル20で支持されて位置が保持される。水中ITVカメラ19の上下及び左右の向きは二本の水中ITVカメラ操作ケーブル20を個別にROV操作員18bが操作することで調整できる。
【0023】
例えば、二本の水中ITVカメラ操作ケーブル20を燃料交換装置10の上から同時に上方へたぐり上げれば水中ITVカメラ19の位置は上方へ移動し、逆に下方へ繰出せば水中ITVカメラ19の位置は下方へ移動する。また、二本の水中ITVカメラ操作ケーブル20のうち、一方の水中ITVカメラ操作ケーブル20をたぐり上げるないしは下方へ繰出すことで燃料交換装置10上から水中ITVカメラ19までの二本の水中ITVカメラ操作ケーブル20の長さを相対的に相違させるようにすることで水中ITVカメラ19の上下方向の向きが変更できる。
【0024】
また、二本の水中ITVカメラ操作ケーブル20のうち、一方の水中ITVカメラ操作ケーブル20を他方の水中ITVカメラ操作ケーブル20を中心に旋回移動させることで水中ITVカメラ19の左右の向きを調整できる。
【0025】
また、水中ITVカメラ19は燃料交換装置10から垂直に水中ITVカメラ操作ケーブル20で懸垂支持されているから、燃料交換装置10から水中ITVカメラ19までの水中ITVカメラ操作ケーブル20の長さを水中ITVカメラ操作ケーブル20につけた目盛りを観察してROV操作員18aが認識することで燃料交換装置10上の懸垂位置からの上下方向における水中ITVカメラ19の垂直座標が判る。また、燃料交換装置10上の懸垂位置は平面座標が予め判明しているので、先の垂直座標と合わせて水中ITVカメラ19の位置に関する三次元座標が判る。
【0026】
次に、図2を用いて、本実施形態による配管内位置検知装置を搭載する水中検査装置による他の検査方法について説明する。
図2は、本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置による他の検査方法の説明図である。なお、図1と同一符号は、同一部分を示している。
【0027】
本検査方法では、図1とは異なり、PLR配管7へ接続されている一次冷却材再循環系の原子炉内への出口ノズル8b側から水中検査装置を進入させる。この場合、ジェットポンプ6が無いため、支援用ROV13は、PLR配管7の内部に進入できる。このように、支援用ROV13はPLR配管7内に進入できる外観形状を有するが、検査用ROV11よりは幅が大きい。
【0028】
水中ITVカメラ19は、出口ノズル8bからPLR配管7内部を撮影して視認できる位置に投下させる。支援用ROV13が、水中ITVカメラ19の視野から外れない範囲、例えば、出口ノズル8bからみて初めのPLR配管7のコーナーの手前まで進行させ停留させる。そこで、検査用ROV11を発進させて、その先のPLR配管7の内部のVTによる目視検査を実施する。
【0029】
次に、図3を用いて、本実施形態による配管内位置検知装置を搭載する水中検査装置を構成する検査用ROV11の構成について説明する。
図3は、本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置を構成する検査用ROVの要部断面図である。なお、図1と同一符号は、同一部分を示している。
【0030】
検査用ROV11には、検査用カメラ22と照明23が内蔵されており、前方の目視検査を可能にする。また、その映像を見ながら、ROV操作員18aは、検査用ROV11をコントロールする。
【0031】
検査用ROV11の本体には、前後方向の中央部に上下の貫通部があり、その内部に昇降用スラスタ26が設置されている。また、後方には、前後進用の推進用スラスタ24が水平に2基設置されている。
【0032】
昇降用スラスタ26は、マグネットカップリング29Aとギア28を介して昇降用モータ27で駆動される。また、推進用スラスタ24は、推進用モータ25により、マグネットカップリング29Bを介して駆動されるる。推進用スラスタ24の周囲には、スラスタガード30が設けられている。
【0033】
また、後方下部には。支援用ROV13に格納する際に引っ掛ける格納用ツメ31を、支援用ROV13に検査用ROV11を引っ掛ける手段として取り付ける。格納用ツメ31の使用方法については、図5を用いて後述する。さらに、後方上部には、検査用ROVの位置検知に用いる音響発信器32を取り付けてある。
【0034】
次に、図4を用いて、本実施形態による配管内位置検知装置を搭載する水中検査装置を構成する支援用ROV13の構成について説明する。
図4は、本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置を構成する支援用ROVの要部断面図である。なお、図1と同一符号は、同一部分を示している。
【0035】
支援用ROV13の前部には、カメラ33が設置され、自身の航行時の目視、および離脱した後の検査用ROV11を目視監視に用いられる。また、検査用ROV11と同様に、スラスタ用モータ35Aを用いて、昇降用スラスタ34Aを駆動し、推進用モータ35B,35Cを用いて、推進用スラスタ34B,34Cを駆動する。
【0036】
さらに、支援用ROV13には、検査用ROV11と接続する二次ケーブル12の繰出しおよび巻取りをするためのウインチ37aが搭載され、ウインチ用モータ37bで駆動する。ウインチ37aに巻取る二次ケーブル12を通した信号は、通信回路36および一次ケーブル14を介して制御装置15に伝送される。また、音響受信器39で受信された水中音響は、水中音響処理回路40で処理された後、通信回路36および一次ケーブル14を介して制御装置15に伝送される。さらに、通信回路36は、支援用ROV13の各モータと、検査用ROV11の各モータのいずれを駆動するかを選択し、制御装置15からのスラスタ駆動電力を、選択したROVの各モータに供給する。
【0037】
さらに、支援用ROV13には、検査用ROV収納レール38を設置し、検査用ROV11と一体化させる構造となっている。
【0038】
次に、図5を用いて、本実施形態による配管内位置検知装置を搭載する水中検査装置を構成する検査用ROV11と支援用ROV13の格納状態について説明する。
図5は、本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置を構成する検査用ROVと支援用ROVの格納状態の説明図である。図5(a)は斜視図であり、図5(b)は正面図である。なお、図1と同一符号は、同一部分を示している。
【0039】
図5(a)に示すように、遊泳状態の検査用ROV11Aは、ウインチ37の巻取り動作により、支援用ROV13の前部まで引きつけ、検査用ROV11A自身のスラスタの動作により、検査用ROV格納レール38の前方から後進で格納される。格納状態の検査用ROV11Bは、図5(b)に示すように、格納用ツメ31により、検査用ROV収納レール38に固定される。
【0040】
次に、図6を用いて、本実施形態による配管内位置検知装置を搭載する水中検査装置に用いる水中ITVカメラ19の構成について説明する。
図6は、本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置に用いる水中ITVカメラの斜視図である。なお、図1と同一符号は、同一部分を示している。
【0041】
水中ITVカメラ19は、支援用ROV13を監視するとともに、位置を検知することを目的としてステレオカメラ43と、視認性を確保するためのハロゲンランプ44を搭載している。ステレオカメラ43の信号は、カメラ用ケーブル45,カメラ用中継部46および水中ITVカメラ用ケーブル21を介して、制御装置15に伝送される。それと同時に、制御装置15からは、同様の伝送経路によりカメラ43やランプ44の電力を供給する。
【0042】
次に、図7を用いて、本実施形態による配管内位置検知装置の検知原理について説明する。
図7は、本発明の第1の実施形態による配管内位置検知装置の検知原理の説明図である。なお、図1と同一符号は、同一部分を示している。
【0043】
検査用ROV11に搭載した音波発信器32から水中音響を発すると、PLR配管7内の水中を音波が水中音響47として伝播して支援用ROV13に搭載した音波受信器39により受信される。水中音響47は、ホイヘンスの原理により、PLR配管7にコーナーがあっても伝播することが知られている。ここで、水中音響47が配管内の水中からPLR配管7に入射し、PLR配管7を伝播する成分も存在するが、水中の音響インピーダンスは、PLR配管7の音響インピーダンスと比較し極めて小さいため、水中に再び戻ってくることは無く、水中で音波を受ける場合には無視できる。また、二次ケーブル12がPLR配管7に接触し、そこから音波が伝播するルートも考えられるが、ケーブルの表面は樹脂若しくはゴムであり、水中と同様、音響インピーダンスはPLR配管7と比較して十分小さいため、音波受信器39に受信されず無視することができる。
【0044】
従って、本例の構成により、支援用ROV13に搭載した音波受信器39は、PLR配管7の内部の水中を伝わってきた水中音響47のみを受信することができ、検査用ROV11と支援用ROV13のPLR配管7内の道程距離、即ち支援用ROV13と検査用ROV11との間の相対距離を水中音響47の送受信タイミングの差(音響伝搬時間)と水中音速により算出できる。
【0045】
次に、図8を用いて、本実施形態による配管内位置検知装置の構成について説明する。
図8は、本発明の第1の実施形態による配管内位置検知装置の構成を示すブロック図である。なお、図1と同一符号は、同一部分を示している。
【0046】
パルス発生器51で発生したパルス信号は、電力増幅器52で増幅され、二次ケーブル12を介して、検査用ROV11内にある音波発生器32に伝えられる。音波発生器32で発生した水中音響47は、支援用ROV13の前部に設置された音波受信器39で受信される。音波受信器39は、水中音響処理回路40に接続され、そこで受信した水中音響47は電気信号に変えられて信号処理される。その後、信号増幅器53で増幅され、相互相関処理をするCPU54に入力される。CPU54は、パルス発生器51からのパルス信号と相互相関処理を行い、時間差を算出し、水中音速を乗じて、伝播距離を算出する。その結果を通信ユニット55で入力し、一次ケーブル14を介して、制御装置15に伝送する。
【0047】
次に、図9を用いて、本実施形態による配管内位置検知装置を搭載する水中検査装置に用いる表示装置16における表示例について説明する。
図9は、本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置に用いる表示装置における表示例の説明図である。なお、図1と同一符号は、同一部分を示している。
【0048】
表示装置16のROV位置表示部60には、構造物簡略図61,支援用ROV位置表示マーク62、および検査用ROV位置表示マーク63が表示される。また、ROV座標表示部64には、支援用ROV13および検査用ROV11の絶対位置が表示される。さらに、支援用ROV映像表示部65には、支援用ROV13のカメラ33の画像が表示され、検査用ROV映像表示部66には、支援用ROV13のカメラ22の画像が表示される。なお、図9においては、検査用ROV映像表示部66内に、欠陥67を示している例を示している。
【0049】
次に、図10を用いて、本実施形態による配管内位置検知装置を搭載する水中検査装置に用いるコントローラ17の構成について説明する。
図10は、本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置に用いるコントローラの構成を示す平面図である。なお、図1と同一符号は、同一部分を示している。
【0050】
コントローラ17は、検査用ROV11および支援用ROV13をコントロールするのに用いられる。電源スイッチ70を入れ、電源用LED71で通電を確認し、コントロールするROVをROV切替スイッチ72で選択する。選択したROVの三次元的動作を、前後進・左右レバー73および、昇降レバー74で操作する。さらに、二次ケーブル操作レバー75は、ROV切替スイッチ72で支援用ROV13を選択した時のみ操作可能となり、二次ケーブル12の送出および巻取の動作をさせる際に用いる。なお、ケーブル76は制御装置15に接続し、以上の操作を検査用ROV11および支援用ROV13に伝送する。
【0051】
次に、図11を用いて、本実施形態による配管内位置検知装置を搭載する水中検査装置のシステム構成について説明する。
図11は、本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置のシステム構成図である。なお、図3,図4,図6,図8〜図10と同一符号は、同一部分を示している。
【0052】
図中、コントローラ17の操作,支援用ROV13内の切替動作,モータ駆動については、前述した通りである。また、支援用ROV13内の水中音響処理回路40の信号は、制御装置15内の位置標定用CPU80に入力される。
【0053】
また、制御装置15は、CADデータを記憶した記憶装置81を備え、CPU80にデータを伝送する。また、制御装置15に付属のキーボード82からは、水中ITVカメラ19の座標や、配管内の音速を入力できる。さらに、水中ITVカメラ19のステレオカメラ43の映像は、画像処理ボード83に入力され、デジタル化されてCPU80に入力する。CPU80で演算した検査用ROV11および支援用ROV13の位置情報は、表示装置16に伝えられ、ROV座標表示部64に表示される。さらに、検査用ROV11の検査用カメラ22の画像は、検査用ROV映像表示部66に表示される。
【0054】
支援用ROV13の絶対位置を検知する支援用ROV絶対位置検知手段は、上述の水中ITVカメラ19と、それに内蔵されているステレオカメラ43と、そのステレオカメラ43で撮影した画像を入力とする画像処理ボード83と、その画像処理ボード83でその画像の情報をデジタル化したそのデジタル信号を入力とするCPU80と、CPU80で絶対位置が既知の水中ITVカメラ19からの支援用ROV13の相対位置を求め、その相対位置と水中ITVカメラ19の絶対位置とから支援用ROV13の絶対位置を演算する処理プログラムと、その演算で算出された支援用ROV13の位置情報を表示する表示装置16とから構成されている。
【0055】
検査用ROV11の絶対位置を検知する検査用ビークル絶対位置算出手段は、水中音響処理回路40で算出した音響の伝播時間と、検査用ROV11の進行方向方向を定義するに必要な点検対象の配管の設定方向を含むCADデータベースとを記憶させた記憶装置81及びキーボード82から入力した音速Vwと、に基づいて検査用ROV11の位置を演算する処理プログラムと、その処理プログラムでその演算を実行するCPU80と、その演算処理によって求められた検査用ROV11の位置を表示する表示装置16を備えている。
【0056】
次に、図12〜図16を用いて、本実施形態による配管内位置検知装置における検査用ROV11の位置算出処理の内容について説明する。
図12〜図16は、本発明の第1の実施形態による配管内位置検知装置における検査用ROV11の位置算出処理の内容を示すフローチャートである。
【0057】
最初に、図12を用いて、検査用ROV11の位置算出手順の全体的な処理内容について説明する。
【0058】
ステップ90により処理を開始すると、ステップ91において、検査用ROV11が検査対象の配管入口に到着したかを判断する。検査用ROV11が検査対象の配管入口に到着したか否かは、支援用ROV13の前部のカメラ33によって得られた画像により判断する。
【0059】
検査用ROV11が検査対象の配管入口に到着すると、ステップS92において、制御装置15の位置標定用CPU80は、初期化処理を実行する。初期化処理の詳細は、図13により後述する。
【0060】
初期化処理が終了すると、位置標定用CPU80は、ステップ93において、支援用ROV位置検出を行い(詳細は、図15)、ステップ94において、検査用ROV位置検出を行い(詳細は、図16)、ステップ95において結果を表示装置16のROV位置表示部60およびROV座標表示部64に表示し、ステップ93〜ステップ95を繰返す。
【0061】
次に、図13を用いて、検査用ROV11の位置算出時の初期化処理(図12のステップ92)の内容について説明する。図13の各ステップは、制御装置15の位置標定用CPU80で実行される。
【0062】
最初に、ステップ100において、水中ITVカメラ19の位置(XITV,YITV,ZITV)をキーボード82から入力する。ここで、XITV,YITV,ZITV は、夫々水中ITVカメラ19の位置を表すX,Y,Zの三次元座標である。
【0063】
次に、ステップ101において、支援用ROV13の位置(XS,YS,ZS) を検出する。ここで、XS,YS,ZS は、夫々支援用ROV13の位置を表すX,Y,Zの三次元座標である。なお、本ステップの処理は、図12のステップ93と同じものであり、その詳細は、図15を用いて後述する。
【0064】
次に、ステップ102において、配管の設置方向データ(Part,n,L,θ,φ)を、制御装置15の記憶装置81から読込む。
【0065】
次に、ステップ103において、検査用ROV11の位置(Xi,Yi,Zi)を初期化する 。この方法は、キーボード82から検査対象配管入口座標を入力する。
【0066】
最後に、ステップ104において、配管内水中音速Vwを、キーボード82から入力する。
【0067】
次に、図14を用いて、検査用ROV11の位置算出に用いる配管方向データベースの内容について説明する。
【0068】
このデータは、(Part,n,L,θ,φ)の5つの要素からなる。Partは、例えばPLR1の様な配管名であり、検査用ROV11が進行する配管の名称である。nは、配管の方向が変化した時の節の番号であり、スタート地点から通過するコーナーの数である。Lは、コーナー間の距離であり、該当する節の番号の直前のコーナーからの距離を意味する。θ,φは、それぞれ、該当する区間の配管の絶対方位角,絶対仰角を示す。なお、このデータは直線部のみであり、区間の切れ目はコーナーの中心位置とする。
【0069】
次に、図15を用いて、支援用ROV13の位置(XS,YS,ZS)の検出方法について説明する。なお、支援用ROV13に設けてある検査用ROV収納レール38に検査用ROV11の格納用ツメ31が引っ掛けられて支援用ROV13と検査用ROV11とが一体化されている場合には、支援用ROV13の位置(XS,YS,ZS) が検査用ROV11の位置(Xi,Yi,Zi) と認識する。図15の各ステップは、制御装置15内の位置標定用CPU80で実行される。
【0070】
最初に、ステップ110において、水中ITVカメラ19に搭載したステレオカメラ43で撮像した画像内における支援用ROV13の位置(XL,YL)(XR,YR)を検出する。ここで、位置(XL,YL)と(XR,YR)は、それぞれ、左のカメラおよび右のカメラの画像内における支援用ROV13のX座標とY座標を示す。ステップ110の処理のため、初めに、ステップ111において、水中ITVカメラ19に搭載したステレオカメラ43の画像を、制御装置15内の画像処理ボード83に入力し、次に、ステップ112において二値化処理する。二値化処理した画像情報は、CPU80に送り、ステップ113において、画像の中の支援用ROV13の位置(XL,YL),(XR,YR)を検出する。
【0071】
次に、ステップ114において、支援用ROV13の水中ITVカメラ19に対する相対位置(XSP,YSP,ZSP)を演算する。ここで、位置XSP,YSP,ZSPは、水中ITVカメラ19の位置を原点とした時の支援用ROV13のX,Y,Zの各相対座標である。ステップ114の処理のため、まず、ステップ115において、カメラパラメータとして、カメラ間隔d,水平画素数Px,カメラ水平画角αを読込む。次に、ステップ116において、3次元の相対位置を以下の式(1)により算出する。
【0072】
【数1】

【0073】
さらに、ステップ117において、水中ITVカメラ19の位置とステップ116で計算した相対位置から、支援用ROV13の絶対位置を、以下の式(2)により算出する。
【0074】
【数2】

【0075】
次に、図16を用いて、検査用ROV13の位置(Xi,Yi,Zi)の検出方法について説明する。図16の各ステップは、制御装置15内の位置標定用CPU80で実行される。
【0076】
まず、ステップ120において、予め初期化時に記憶装置81から読込んであるパラメータを定義する。すなわち、ステップ121において、進行方向(θp,φp)は、Lpn<積算進行距離L<Lwp+1 の時、(θp,φp)=(θpn,φpn)として定義する。ここで、配管入口からn回曲った時の配管の設置方位を、(θpn,φpn)としている。
【0077】
次に、ステップ122において、音響伝播時間Δtを音響検知時刻Tdと音響発生時刻Tsの差として計算する。
【0078】
さらに、ステップ123において、直前の積算進行距離Lからの進行距離の差分として、微小進行距離ΔLを式(3)として定義する。
【0079】
【数3】

【0080】
ここで、Vwは、予めキーボード82から入力した配管内水中音速である。
【0081】
最後に、ステップ125において、以上の情報を基に、検査用ROV11の位置を式(4)式により更新する。
【0082】
【数4】

【0083】
以上により、支援用ROV13の位置(XS,YS,ZS)が検出される。
【0084】
次に、図17を用いて、本実施形態による配管内位置検知装置を搭載する水中検査装置による検査手順について説明する。
図17は、本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置による検査手順の内容を示すフローチャートである。
【0085】
PLR配管7内を検査する作業手順は、入口ノズル8a側から進入する場合と、出口ノズル8b側から進入する場合とで異なる。これは、入口ノズル8a側には、ジェットポンプ6があるためである。
【0086】
ステップ130において、作業を開始すると、ステップ131において、進入口が入口ノズル8a側か出口ノズル8b側かに応じて、以下の処理を分岐する。入口ノズル8a側か出口ノズル8b側かは、検査を行うROV操作員によって判断される。
【0087】
入口ノズル8a側である場合、以下の手順で検査をする。まず、ステップ132において、対象とするPLR配管7の入口ノズル8aに最も近いジェットポンプ6の上部を外す。ジェットポンプ6の上部は、クレーン等を用いて外される。

【0088】
その後、ステップ133において、ジェットポンプ6の上部まで支援用ROV13で進行する。この時、検査用ROV11は支援用ROV13に格納され一体化されている。次に、ステップ134において、支援用ROV13を視認できる位置まで水中ITVカメラ19を投下する。
【0089】
次に、ステップ135において、検査用ROV11をジェットポンプ6の上部から進入させる。検査用ROV11が入口ノズル8aに到達したら、ステップ136において、位置算出機能をステップ132の方法で初期化する。そして、ステップ137において、PLR配管7の内部検査を実施する。
【0090】
検査終了後は、ステップ138において、検査用ROV11は支援用ROV13に戻り、支援用ROV13に格納され一体となってオペレーションフロア9に戻る。最後に、ステップ139において、外したジェットポンプ6の上部を戻し、ステップ140において、入口ノズル8aから進入した場合の検査を終了する。
【0091】
一方、ステップ131で、進入口を出口ノズル8bと指定した場合、以下の手順となる。まず、ステップ141において、対象のPLR配管7の出口ノズル8b内部が視認できる位置に水中ITVカメラ19を投下する。次に、ステップ142において、出口ノズル8bの入口に、支援用ROV13を到達させたら位置検知機能を初期化する。そして、ステップ143において、水中ITVカメラ19で視認可能な範囲は、支援用ROV13でPLR配管7内検査を実施する。
【0092】
次に、ステップ144において、水中ITVカメラ19の視野から支援用ROV13が外れる直前で停止させ、再初期化する。そして、ステップ145において、検査用ROV11を用いて、PLR配管7内検査を実施する。
【0093】
検査終了後は、ステップ146において、検査用ROV11は支援用ROVに戻り一体となって、オペレーションフロア9に戻し、ステップ140において、出口ノズル8bから進入した場合の検査を終了する。
【0094】
以上説明したように、本実施形態によれば、水で満たされた配管内で、音響の送受信位置に関する情報がなくても、音速を正確に与え、結果として、検査装置の位置を正確に検知することができる。すなわち、炉内のPLR配管内に進行した場合でも、検査用ROVの位置を把握でき、目視検査中の溶接線の同定が可能になるため、検査の効率を向上することができる。
【0095】
次に、図18及び図19を用いて、本発明の第2の実施形態による配管内位置検知装置を搭載する水中検査装置の構成及び動作について説明する。なお、第1の実施形態における図1〜図11に示した構成は、本実施形態でも、同様である。また、処理内容も、図12〜図17に示したものと基本的に同様であるが、本実施形態では、第1の実施形態とは、水中音速の設定方法が異なるため、第1の実施形態における図13の処理に代えて、図18に示す処理を実行するものである。
【0096】
図18は、本発明の第2の実施形態による配管内位置検知装置における検査用ROVの位置算出処理の内、検査用ROVの位置算出時の初期化処理の内容を示すフローチャートである。図19は、本発明の第2の実施形態による配管内位置検知装置における配管の内径と水中音速の対応パターンの説明図である。
【0097】
図18は、本発明の第2の実施形態による配管内位置検知装置における検査用ROVの位置算出処理の内容,具体的には、検査用ROVの位置算出時の初期化処理(図12のステップ92)の内容を示すフローチャートである。なお、図13と同一ステップ番号は、同じ処理内容を示している。図19は、本発明の第2の実施形態による配管内位置検知装置における検査用ROVの位置算出時の初期化処理に用いる配管の内径φpと、水中音速の対応パターンの説明図である。
【0098】
図19を用いて、配管の内径φpと、水中音速の対応パターンについて説明する。通常、配管径が大きい場合(図中のφ1)、水中自由空間の場合と、ほぼ同一の音速となる。しかしながら、配管内径が小さくなるに従って、音速が低下する傾向が見られる。特に、使用する水中音響の周波数を固定した場合、配管内径の減少と音速は一定の法則に従って単調減少する。本実施例では、この法則を数値的に保持し、使用する周波数に関する対応パターンとして用いることにしている。この対応パターンは、制御装置15内の記憶装置81に保存してある。
【0099】
次に、図18を用いて、本実施形態における音速の設定手順について説明する。第1実施形態においては、水中音速を直接設定したが、本実施形態では、ステップ150において、キーボード82から配管の内径φpを入力し、予め用意した対応パターンを用いて、水中音速Vw(φp)を算出する。ステップ151において、この算出された水中音速を設定する。
【0100】
以上説明したように、本実施形態によれば、水で満たされた配管内で、音響の送受信位置に関する情報がなくても、音速を正確に与え、結果として、検査装置の位置を正確に検知することができる。
【0101】
また、配管内においても、その内径に応じた速度を簡易的に用いることができ、距離算出の精度を上げることができる。
【0102】
次に、図20及び図21を用いて、本発明の第3の実施形態による配管内位置検知装置を搭載する水中検査装置の構成及び動作について説明する。なお、第1の実施形態における図1〜図11に示した構成は、本実施形態でも、同様である。また、処理内容も、図12〜図17に示したものと基本的に同様であるが、本実施形態では、第1,第2の実施形態とは、水中音速の設定方法が異なるため、図13,図18の処理に代えて、図20に示す処理を実行するものである。
【0103】
図20は、本発明の第3の実施形態による配管内位置検知装置における検査用ROVの位置算出処理の内、検査用ROVの位置算出時の初期化処理の内容を示すフローチャートである。図21は、本発明の第3の実施形態による配管内位置検知装置における配管の曲数と水中音速の対応パターンの説明図である。
【0104】
最初に、図20を用いて、第3実施例における音速の設定手順について説明する。第2実施例においては、キーボード82から配管の内径φpを入力し、予め用意した対応パターンを用いて、水中音速Vw(φp)を算出したが、本実施形態では、さらに、配管の曲数も入力し、音速の設定に反映させる。配管の曲数と、音速の関係も、第2の実施例の場合と同様に、配管の内径とともに、対応パターンとして制御装置15内の記憶装置81に保存してある。
【0105】
図21を用いて、配管の曲数NBと、水中音速の対応パターンについて説明する。図19において、内径をφ2とした場合を例に取って、配管の曲数が音速に与える影響を図示している。図に示した様に、音速は、配管の曲数の増加とともに一定割合で低下していく性質がある。本実施例では、この法則と、第2の実施例に示した内径と音速の関係に関する法則を数値的に保持し、使用する周波数に関する対応パターンとして用いることにしている。
【0106】
以上説明したように、本実施形態によれば、水で満たされた配管内で、音響の送受信位置に関する情報がなくても、音速を正確に与え、結果として、検査装置の位置を正確に検知することができる。
【0107】
また、曲りのある配管内においても、その内径と曲数に応じた速度を簡易的に用いることができ、距離算出の精度を、さらに上げることができる。
【0108】
次に、図22及び図23を用いて、本発明の第4の実施形態による配管内位置検知装置を搭載する水中検査装置の構成及び動作について説明する。なお、第1の実施形態における図1〜図11に示した構成は、本実施形態でも、同様である。また、処理内容も、本実施形態では、第1〜第3の実施形態とは、水中音速の設定方法が異なるため、図22に示す処理を実行するものである。
【0109】
図22は、本発明の第4の実施形態による配管内位置検知装置における検査用ROVの位置算出処理の内容を示すフローチャートである。図23は、本発明の第4の実施形態による配管内位置検知装置における速度校正処理の内容を示すフローチャートである。
【0110】
図22を用いて、第4実施例における音速の設定手順について説明する。第2実施例および第3実施例においては、配管の形状に関する情報を入力し、予め用意した対応パターンを用いて水中音速を算出したが、複雑な形状の配管では、正確な音速を設定することは困難である。本実施例では、速度校正すなわち検査用ROVの位置が既知の場合にキャリブレーションによる速度検出を行い、その速度を用いる方法をとるものである。
【0111】
図22において、ステップ90〜ステップ93までは、図12の処理と同一である。次に、ステップ154において、検査ROVの位置が既知であるかを判断する。既知の位置とは、例えば、配管の始点や終点、配管の曲り部分や、位置の特定できている溶接部分が、これにあたる。既知の位置に、検査ROVが在機している場合、ステップ155において、速度校正をし、ステップ95で検査用ROVの位置を表示して、通常の手順に戻る。
【0112】
ここで、図23を用いて、ステップ155の速度校正手順について説明する。まず、ステップ156において、支援等ROVの位置を読込み、ステップ57において、キーボード82から検査用ROVの位置を入力する。併せて、ステップ158において、配管の方向データも読込む。これらの情報をもとに、ステップ159において、配管内での伝播距離Ltを計算する。これは、支援ROVおよび検査ROVの位置を配管のCADデータ上に展開し、配管に沿って道程を算出することにより実現する。次に、音響伝播時間を、ステップ160において、第1〜第3の実施形態と同様に測定し、水中音速Vwcを、ステップ161において、以下の式(5)により設定する。
【0113】
【数5】

【0114】
以上説明したように、本実施形態によれば、水で満たされた配管内で、音響の送受信位置に関する情報がなくても、音速を正確に与え、結果として、検査装置の位置を正確に検知することができる。
【0115】
また、複雑な形状の配管内においても、正確に音速を設定することが可能になり、距離算出の精度を、さらに上げることができる。
【0116】
本発明の各実施の形態は以上の通りであるから、本発明の各実施形態には以下の特徴を備えた発明の実施の態様が内在する。すなわち第1の発明は、水で満たされた配管内を検査する検査用ビークルに音源を搭載し、該検査用ビークルの航行を支援する支援用ビークルに音響検出器を搭載し、該音源で発生した音響と該受信器で受信した音響の時間差から前記2つのビークル間の音響伝播時間を検知する音響伝播時間検知手段と、を備えた配管内位置検知装置において、配管内の固有の音速を設定する音速設定手段と、該音速設定手段において設定された配管内の音速と前記音響伝播時間から2つの該ビークル間の距離を算出するビークル間距離検知手段と、を備えることを特徴とする。
【0117】
第2の発明は、第1の発明の、該音速設定手段は、配管内の音速を入力する音速入力手段であることを特徴とする。
【0118】
第3の発明は、第1の発明の、該音速設定手段は、配管の内径を入力する配管径入力手段と、配管の内径から配管内の固有の音速を算出する直管音速算出手段と、から構成されることを特徴とする。
【0119】
第4の発明は、第1の発明の、該音速設定手段は、配管の内径を入力する配管径入力手段と、配管の曲りの数を入力する配管曲数入力手段と、配管の内径および配管曲数から配管内の固有の音速を算出する曲管音速算出手段と、から構成されることを特徴とする。
【0120】
第5の発明は、第1の発明の、該音速設定手段は、前記検査用ビークルの位置を入力する検査用ビークル基準位置入力手段と、前記支援用ビークルの位置を入力する支援用ビークル基準位置入力手段と、該2つのビークルの位置と前記音響伝播時間とから配管内の音速を算出する校正音速算出手段と、から構成されることを特徴とする。
【0121】
このような特徴を有する各発明は以下の効果を発揮する。即ち、第1の発明により、配管内に進入する検査用ビークルの位置を把握することが可能になる。
【0122】
第2の発明により、細い配管の内部に進入する検査用ビークルの位置を正確に把握することが可能になる。
【0123】
第3の発明により、細い配管で、かつ曲りのある配管の内部に進入する検査用ビークルの位置を正確に把握することが可能になる。
【0124】
第4の発明により、細い配管で、且つ、複雑な形状の配管の内部に進入する検査用ビークルの位置を正確に把握することが可能になる。
【図面の簡単な説明】
【0125】
【図1】本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置により検査される原子炉の構成を示す要部断面図である。
【図2】本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置による他の検査方法の説明図である。
【図3】本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置を構成する検査用ROVの要部断面図である。
【図4】本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置を構成する支援用ROVの要部断面図である。
【図5】本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置を構成する検査用ROVと支援用ROVの格納状態の説明図である。
【図6】本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置に用いる水中ITVカメラの斜視図である。
【図7】本発明の第1の実施形態による配管内位置検知装置の検知原理の説明図である。
【図8】本発明の第1の実施形態による配管内位置検知装置の構成を示すブロック図である。
【図9】本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置に用いる表示装置における表示例の説明図である。
【図10】本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置に用いるコントローラの構成を示す平面図である。
【図11】本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置のシステム構成図である。
【図12】本発明の第1の実施形態による配管内位置検知装置における検査用ROV11の位置算出処理の内容を示すフローチャートである。
【図13】本発明の第1の実施形態による配管内位置検知装置における検査用ROV11の位置算出処理の内容を示すフローチャートである。
【図14】本発明の第1の実施形態による配管内位置検知装置における検査用ROV11の位置算出処理の内容を示すフローチャートである。
【図15】本発明の第1の実施形態による配管内位置検知装置における検査用ROV11の位置算出処理の内容を示すフローチャートである。
【図16】本発明の第1の実施形態による配管内位置検知装置における検査用ROV11の位置算出処理の内容を示すフローチャートである。
【図17】本発明の第1の実施形態による配管内位置検知装置を搭載する水中検査装置による検査手順の内容を示すフローチャートである。
【図18】本発明の第2の実施形態による配管内位置検知装置における検査用ROVの位置算出処理の内、検査用ROVの位置算出時の初期化処理の内容を示すフローチャートである。
【図19】本発明の第2の実施形態による配管内位置検知装置における配管の内径と水中音速の対応パターンの説明図である。
【図20】本発明の第3の実施形態による配管内位置検知装置における検査用ROVの位置算出処理の内、検査用ROVの位置算出時の初期化処理の内容を示すフローチャートである。
【図21】本発明の第3の実施形態による配管内位置検知装置における配管の曲数と水中音速の対応パターンの説明図である。
【図22】本発明の第4の実施形態による配管内位置検知装置における検査用ROVの位置算出処理の内容を示すフローチャートである。
【図23】本発明の第4の実施形態による配管内位置検知装置における速度校正処理の内容を示すフローチャートである。
【符号の説明】
【0126】
1…原子炉
2…シュラウド
3…上部格子板
4…炉心支持板
5…シュラウドサポート
6…ジェットポンプ
7…PLR配管
8a…入口ノズル
8b…出口ノズル
9…オペレーションフロア
10…燃料交換装置
11…検査用ROV
12…二次ケーブル
13…支援用ROV
14…一次ケーブル
15…制御装置
16…表示装置
17…コントローラ
18a…ROV操作員
18b…水中ITVカメラ操作員
19…水中ITVカメラ
20…水中ITVカメラ操作ケーブル
21…水中ITVカメラ用ケーブル
22…検査用カメラ
23…照明
24…推進用スラスタ
25…推進用モータ
26…昇降用スラスタ
27…昇降用モータ
28…ギア
29…マグネットカップリング
30…スラスタガード
31…格納用ツメ
32…音響発信器
33…カメラ
34…スラスタ
35…スラスタ用モータ
36…通信回路
37a…ウインチ
37b…ウインチ用モータ
38…収納用レール
39…音響受信器
40…水中音響処理回路
41…遊泳状態の検査用ROV
42…格納状態の検査用ROV
43…ステレオカメラ
44…ハロゲンランプ
45…カメラ用ケーブル
46…カメラ用中継部
47…水中音響
60…ROV位置表示部
61…構造物簡略図
62…支援用ROV位置表示マーク
63…検査用ROV位置表示マーク
64…ROV座標表示部
65…支援用ROV映像表示部
66…検査用ROV映像表示部
67…欠陥の例
70…電源スイッチ
71…電源用LED
72…ROV切替スイッチ
73…前後進・左右レバー
74…昇降レバー
75…二次ケーブル操作レバー
76…ケーブル

【特許請求の範囲】
【請求項1】
水で満たされた配管内を検査する検査用ビークルに搭載した音源から発生した音響と、前記検査用ビークルの航行を支援する支援用ビークルに搭載した音響検出器で受信した音響の時間差から前記検査用ビークルと前記支援用ビークルの間の音響伝播時間を検知する音響伝播時間検知手段を有する配管内位置検知装置であって、
前記配管内の音速を設定する音速設定手段と、
この音速設定手段において設定された配管内の音速と前記音響伝播時間から2つの該ビークル間の距離を算出するビークル間距離検知手段とを備えることを特徴とする配管内位置検知装置。
【請求項2】
請求項1記載の配管内位置検知装置において、
前記音速設定手段は、配管内の音速を入力する音速入力手段であることを特徴とする配管内位置検知装置。
【請求項3】
請求項1記載の配管内位置検知装置において、
前記音速設定手段は、
前記配管の内径を入力する配管径入力手段と、
前記配管の内径から配管内の固有の音速を算出する直管音速算出手段とから構成されることを特徴とする配管内位置検知装置。
【請求項4】
請求項1記載の配管内位置検知装置において、
前記音速設定手段は、前記配管の内径を入力する配管径入力手段と、
前記配管の曲りの数を入力する配管曲数入力手段と、
前記配管の内径および配管曲数から配管内の固有の音速を算出する曲管音速算出手段とから構成されることを特徴とする配管内位置検知装置。
【請求項5】
請求項1記載の配管内位置検知装置において、
前記音速設定手段は、
前記検査用ビークルの位置を入力する検査用ビークル基準位置入力手段と、
前記支援用ビークルの位置を入力する支援用ビークル基準位置入力手段と、
前記検査用ビークルと前記支援用ビークルの位置と前記音響伝播時間とから配管内の音速を算出する校正音速算出手段とから構成されることを特徴とする配管内位置検知装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate


【公開番号】特開2008−122078(P2008−122078A)
【公開日】平成20年5月29日(2008.5.29)
【国際特許分類】
【出願番号】特願2006−302608(P2006−302608)
【出願日】平成18年11月8日(2006.11.8)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】