説明

配管検査装置

【課題】探傷精度を向上させることができる配管検査装置を提供する。
【解決手段】分岐管2の外周側に取付けられたガイドレール5と、ガイドレール5の外周面を走行する走行輪43,46a,46b及び内周面を走行する二対のガイドローラ50A〜50Dを有し、ガイドレール5に対し第1フレーム6を移動させる周方向移動機構7と、第1フレーム6に対し第2フレーム8を移動させる軸方向移動機構9と、第2フレーム8に対し超音波探触子4を移動させる半径方向移動機構11とを備える。ガイドレール5は、楕円形状の溶接線3aに相似となる軌道を有する。そして、第1フレーム6に対するガイドローラ50A,50Bの位置を移動可能とし、それらの移動方向及び移動範囲が基準線D(超音波発信方向線A2)に対して線対称となるように構成し、ガイドローラ50A,50Bを分岐管2の略半径方向外側に引っ張る引張りばね53A,53Bを設ける。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波探触子を用いて配管の溶接部を探傷検査する配管検査装置に係わり、特に、母管と分岐管が互いに異径でほぼ直交するように母管の外周部に分岐管の端部が突合せ溶接された溶接部を検査対象とした配管検査装置に関する。
【背景技術】
【0002】
例えば沸騰水型原子力発電プラントの一次再循環系配管の管台部等においては、図17で示すように、母管1より分岐管2の径寸法が小さく、母管1と分岐管2がほぼ直交するように、母管1の外周部に分岐管2の端部が突合せ溶接された溶接部3(但し、図17では溶接線3aで示す)が存在する。従来、このような溶接部3を探傷検査する前に、溶接部3の中心線である溶接線3aを特定する配管検査支援装置が開示されている(例えば、特許文献1参照)。
【0003】
この配管検査支援装置は、分岐管の外周側に取付けられ分岐管の周方向に延在する環状のガイドレールと、このガイドレールに対し周回可能に、すなわち分岐管の周方向に移動可能に取付けられた探触子旋回装置と、ガイドレールに対し探触子旋回装置を分岐管の周方向に移動させる旋回駆動装置と、探触子旋回装置に固定され分岐管の軸方向(例えば上下方向)に延在する第1支持アームと、この第1支持アームに対しスライド可能に、すなわち分岐管の軸方向に移動可能に取付けられた探触子移動装置と、第1支持アームに対し探触子移動装置を分岐管の軸方向に移動させる上下駆動装置と、探触子移動装置に対しスライド可能に、すなわち分岐管の半径方向(例えば水平方向)に移動可能に取付けられた第2支持アームと、この第2支持アームに球面軸受を介して設けられた超音波探触子(例えば垂直探触子)と、探触子移動装置に対し第2支持アーム及び超音波探触子を分岐管の半径方向に移動させる水平駆動装置とを備えている。そして、旋回駆動装置、上下駆動装置、及び水平駆動装置の駆動によって、超音波探触子を分岐管の周方向、軸方向、及び半径方向に移動可能としている。
【0004】
また、配管検査支援装置は、入力装置で指示された超音波探触子の位置に基づき、旋回駆動装置、上下駆動装置、及び水平駆動装置を駆動制御する制御装置と、超音波探触子に超音波を送信させる励起指令を出力するとともに、超音波探触子で受信した超音波の反射信号を処理する超音波信号処理装置(溶接線特定装置)とを備えている。そして、例えば作業員が入力装置で超音波探触子の位置及び超音波送信開始を指示すると、超音波探触子が入力装置で指示された位置に移動し、その後、分岐管の半径方向に移動(走査)するとともに、溶接部3等に向かって超音波を送信し、その反射信号を受信する。そして、超音波信号処理装置は、超音波探触子で受信した超音波の反射信号に基づき、溶接部3の中心位置(詳細には、分岐管2の半径方向における中心位置)を特定し、少なくとも2箇所(例えば方位角θ=0°,90°)の中心位置から溶接線3aの楕円形状及び位置を特定し、この特定した溶接線3aの位置情報を表示装置に表示させるようになっている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−138979号公報(図1等)
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記特許文献1では、配管検査支援装置で溶接線3aを特定した後、作業員が超音波探触子を手で持って走査して、溶接部3を探傷検査している。そこで、この溶接部3の探傷検査においても、配管検査支援装置と同様の構成を用いて超音波探触子を自動的に走査したいという要望がある。しかしながら、この場合には、以下のような課題が存在する。
【0007】
上記ガイドレールは、特許文献1の図7(B)等で示されるように、ほぼ真円形状の軌道を有している。そのため、図18で示すように、分岐管2の軸方向から見た場合に(言い換えれば、分岐管2の半径方向断面に射影した場合に)、超音波探触子(例えば斜角探触子)4は、分岐管2の軸心Oに向かう方向に超音波を発信しており、その超音波発信方向線A1が方位角(詳細には、分岐管2の軸心Oを中心とし図18中反時計回りに進む角度であって、母管1の軸心線位置を0°,180°とするもの)の方向線Bと重なる。一方、溶接線3aは、分岐管2の軸方向から見た場合に、方位角θ=0°,180°で短径、方位角θ=90°,270°で長径となる楕円形状である。したがって、0°,90°,180°,270°以外の方位角θでの超音波発信方向線A1は、楕円形状の溶接線3aに対する直角方向線(詳細には、楕円形状の溶接線3aにおける所定の位置を接点とした接線に対し、前記所定の位置を交点とした垂直線)Cとの間に角度差Δθが生じ、その角度差Δθも方位角θに応じて変動する。
【0008】
ここで、社団法人日本電気協会の原子力規格委員会が定めている規格JEAC4207−2008では、超音波探触子の超音波発信方向を溶接線に対して直角方向とすることが提唱されている。その理由は、溶接部3にひび等が生じた場合に、ひびは溶接線3aに沿うような形状で生じやすく、超音波探触子4の超音波発信方向を溶接線3aに対して直角方向とすれば探傷精度が向上するからである。そのため、方位角θに応じて、超音波探触子4の超音波発信方向線を楕円形状の溶接線3に対する直角方向線Cに近づけ、探傷精度を向上させることが課題となる。
【0009】
本発明の第1の目的は、探傷精度を向上させることができる配管検査装置を提供することにある。
【0010】
また、図19(A)で示すように、方位角θ=0°(及びθ=180°)の断面では、母管1の表面が分岐管2の軸方向に対し垂直な直線状線に延在する。一方、図19(B)で示すように、方位角θ=90°(及びθ=270°)の断面では、母管1の表面が真円弧状に延在する。また、図示しないが、0°<θ<90°の範囲、90°<θ<180°の範囲、180°<θ<270°の範囲、及び270°<θ<360°の範囲の断面では、母管1の表面が楕円弧状に延在し、その楕円弧の扁平率は方位角θに応じて変動する。このようにして、方位角θに応じて母管1の表面形状すなわち走査面形状が変化する。
【0011】
しかし、上記特許文献1では、第1支持アームと第2支持アームとの間の角度が90°程度に固定されており、超音波探触子を分岐管の半径方向に走査するときの走査角度が固定されている。そのため、方位角θに応じて超音波探触子を母管1の表面に位置決めすることが困難であり、走査性能の点で課題となる。
【0012】
本発明の第2の目的は、走査性能を向上させることができる配管検査装置を提供することにある。
【課題を解決するための手段】
【0013】
(1)上記第1の目的を達成するために、本発明は、母管と分岐管が互いに異径でほぼ直交するように前記母管の外周部に前記分岐管の端部が突合せ溶接された溶接部であって、前記分岐管の軸方向から見た場合にその溶接線が楕円形状となる溶接部を検査対象とし、前記分岐管の外周側に取付けられ、前記分岐管の周方向に延在する環状のガイドレールと、前記ガイドレールと第1フレームとの間で介在し、かつ、前記ガイドレールの外周面を走行する少なくとも1つの走行輪、及び前記走行輪に対し前記ガイドレールの周方向の一方側及び反対側に配置されて前記ガイドレールの内周面を走行する対のガイドローラを有し、前記ガイドレールに対し前記第1フレームを前記分岐管の周方向に移動させる周方向移動機構と、前記第1フレームと第2フレームとの間で介在し、前記第1フレームに対し前記第2フレームを前記分岐管の軸方向に移動させる軸方向移動機構と、前記第2フレームと超音波探触子との間で介在し、前記第2フレームに対し前記超音波探触子を前記分岐管の略半径方向に移動させる半径方向移動機構とを備えた配管検査装置であって、前記分岐管の軸方向から見た場合に、前記超音波探触子の超音波発信方向線が、前記楕円形状の溶接線における超音波入射位置を接点とした接線に対する前記超音波入射位置を交点とした垂直線とほぼ重なるように、前記第1フレームの移動位置に応じて前記第1フレームの前記ガイドレールに対する姿勢角を自動調整する姿勢角調整手段を有する。
【0014】
このような本発明においては、姿勢角調整手段によって、第1フレームの移動位置(方位角)に応じて、第1フレームのガイドレールに対する姿勢角を自動調整する。これにより、分岐管の軸方向から見た場合に、超音波探触子の超音波発信方向線を、楕円形状の溶接線に対する直角方向線(詳細には、楕円形状の溶接線における超音波入射位置を接点とした接線に対し、超音波入射位置を交点とした垂直線)とほぼ重ねるようになっている。したがって、探傷精度を向上させることができる。
【0015】
(2)上記(1)において、好ましくは、前記ガイドレールは、前記楕円形状の溶接線に対して相似形となる軌道を有し、前記走行輪は、前記分岐管の軸方向から見た場合に、前記ガイドレールの外周面における前記走行輪の当接点と前記走行輪の回転中心点とを結ぶ基準線が、前記超音波探触子の超音波発信方向線と重なるように、前記第1フレームに取付けられており、前記姿勢角調整手段は、前記第1フレームに対する前記対のガイドローラのそれぞれの位置を前記分岐管の略半径方向に移動可能とし、それらの移動方向及び移動範囲が前記基準線に対して線対称となるように構成した対のローラ移動機構と、先端側が前記対のガイドローラの回転軸のそれぞれに接続され起端側が第1フレームに回転可能に支持され、前記対のガイドローラを前記分岐管の略半径方向外側に引張る対の引張りばねとを有し、前記対の引張りばねは、それらの起端側の回転中心位置が前記基準線に対して線対称となるように配置される。
【0016】
(3)上記(2)において、好ましくは、前記対のローラ移動機構は、前記第1フレームに対する前記対のガイドローラの回転軸のそれぞれの位置を前記分岐管の略半径方向に回動させる対のアームを有する。
【0017】
(4)上記(2)において、好ましくは、前記対のローラ移動機構は、前記第1フレームに対する前記対のガイドローラの回転軸のそれぞれの位置を前記分岐管の略半径方向にスライドさせる対のスライダを有する。
【0018】
(5)上記(1)〜(4)において、上記第2の目的を達成するために、好ましくは、前記第2フレームに対し前記半径方向移動機構を前記分岐管の軸方向に回動させる回転機構を備える。
【0019】
このような本発明においては、回転機構によって第2フレームに対し半径方向移動機構を分岐管の軸方向に回動させ、超音波探触子を分岐管の略半径方向に移動(走査)するときの走査角度を調整することができる。したがって、方位角に応じて超音波探触子を母管の表面に位置決めすることができ、走査性能を向上させることができる。
【0020】
(6)上記(5)において、好ましくは、制御テーブルとして、前記周方向移動機構による前記第1フレームの移動位置毎に、前記回転機構による前記半径方向移動機構の回動角、前記軸方向移動機構による前記第2フレームの軸方向移動位置、及び前記半径方向移動機構による前記超音波探触子の走査範囲を記憶する記憶手段と、前記記憶手段で記憶された制御テーブルに基づき前記周方向移動機構、前記回転機構、前記軸方向移動機構、及び前記半径方向移動機構を制御する探触子移動制御手段とを有する。
【0021】
(7)上記(6)において、好ましくは、前記周方向移動機構の移動量ピッチに基づき、前記周方向移動機構による前記第1フレームの移動位置を演算する周方向移動位置演算手段と、前記周方向移動位置演算手段で演算された前記第1フレームの移動位置毎に、前記超音波発信方向調整手段で自動調整される前記第1フレームの姿勢角を演算する姿勢角演算手段と、前記周方向移動位置演算手段で演算された前記第1フレームの移動位置毎に、前記姿勢角演算手段で演算された前記第1フレームの姿勢角並びに予め記憶された前記母管、前記分岐管、及び前記溶接部の構造データに基づき配管の断面形状を演算し、この配管の断面形状に基づき、前記回転機構による前記半径方向移動機構の回動角、前記軸方向移動機構による前記第2フレームの軸方向移動位置、及び前記半径方向移動機構による前記超音波探触子の走査範囲を演算する回動角・軸方向移動位置・走査範囲演算手段とをさらに有し、前記記憶手段は、制御テーブルとして、前記周方向移動位置演算手段で演算された前記第1フレームの移動位置毎に、前記回動角・軸方向移動位置・走査範囲演算手段で演算された前記半径方向移動機構の回動角、前記第2フレームの軸方向移動位置、及び前記超音波探触子の走査範囲を記憶する。
【0022】
(8)上記(6)又は(7)において、好ましくは、前記ガイドレールの所定の周方向位置にはスリットが形成されており、前記周方向移動機構による前記第1フレームの移動位置の原点として、前記ガイドレールのスリットの位置を検出する原点位置検出器を前記第1フレームに設ける。
【発明の効果】
【0023】
本発明によれば、探傷精度を向上させることができる。
【図面の簡単な説明】
【0024】
【図1】本発明の配管検査装置の一実施形態の全体構成を検査対象である溶接部と共に表す側面図である。
【図2】本発明の配管検査装置の一実施形態におけるガイドレール及び周方向移動機構の詳細構造を表す部分拡大側面図である。
【図3】図1中矢視断面III−IIIにおける断面図であり、軸方向移動機構等の詳細構造を表す。
【図4】図3中矢視断面IV−IVにおける断面図であり、半径方向移動機構及び回転機構の詳細構造を表す。
【図5】図4中矢視断面V−Vにおける断面図であり、半径方向移動機構の詳細構造を表す。
【図6】図2中矢視断面VI−VIにおける断面図であり、ガイドレール及び周方向移動機構の詳細構造を表し、第1フレームが方位角θ=0°に位置する場合を示す。
【図7】図6中矢視断面VII−VIIにおける断面図であり、ガイドレールのスリット及び近接センサを表す。
【図8】本発明の配管検査装置の一実施形態における周方向移動機構の作用を説明するための図であり、第1フレームが方位角θ=50°に位置する場合を示す。
【図9】本発明の配管検査装置の一実施形態における制御系の機能的構成を表すブロック図である。
【図10】本発明の配管検査装置の一実施形態におけるコントローラの制御テーブル作成の処理内容を表すフローチャートである。
【図11】本発明の配管検査装置の一実施形態における配管の走査方向断面を半径方向移動機構と共に表す図であり、第1フレームが方位角θ=90°に位置する場合を示す。
【図12】本発明の配管検査装置の一実施形態の動作状態を配管の走査方向断面と共に表す図であり、第1フレームが方位角θ=0°に位置する場合及び方位角θ=90°に位置する場合を示す。
【図13】本発明の配管検査装置の一実施形態におけるコントローラで記憶された制御テーブルを一例として表す図である。
【図14】本発明の配管検査装置の一実施形態におけるコントローラの探傷制御の処理内容を表すフローチャートである。
【図15】本発明の配管検査装置の他の実施形態におけるガイドレール及び周方向移動機構の詳細構造を表す側面図である。
【図16】図15中矢視断面XVI−XVIにおける断面図であり、ガイドレール及び周方向移動機構の詳細構造を表し、第1フレームが方位角θ=0°に位置する場合を示す。
【図17】本発明の配管検査装置の検査対象である溶接部を表す側面図である。
【図18】本発明の配管検査装置の検査対象である溶接部を分岐管の軸方向から見た平面図である。
【図19】本発明の配管検査装置の検査対象である溶接部の断面図であり、方位角θ=0°の断面及び方位角θ=90°の断面をそれぞれ表す。
【発明を実施するための形態】
【0025】
以下、本発明の配管検査装置の一実施形態を、図面を参照しつつ説明する。
【0026】
図1は、本発明の配管検査装置の一実施形態の全体構成を、検査対象である溶接部3と共に表す側面図である。図2は、ガイドレール及び周方向移動機構の詳細構造を表す部分拡大側面図である。図3は、図1中矢視断面III−IIIにおける断面図で、軸方向移動機構等の詳細構造を表す。図4は、図3中矢視断面IV−IVにおける断面図で、半径方向移動機構及び回転機構の詳細構造を表す。図5は、図4中矢視断面V−Vにおける断面図で、半径方向移動機構の詳細構造を表す(なお、便宜上、回転機構等の図示を省略している)。
【0027】
配管検査装置は、超音波探触子4を用いて上述した溶接部3を探傷検査するためのものである。この配管検査装置は、図1等で示すように、分岐管2の外周側に取付けられ分岐管2の周方向に延在する環状のガイドレール5と、このガイドレール5と第1フレーム6との間で介在し、ガイドレール5に対し第1フレーム6を分岐管2の周方向に移動させる周方向移動機構7と、第1フレーム6と第2フレーム8との間で介在し、第1フレーム6に対し第2フレーム8を分岐管2の軸方向(図1中上下方向)に移動させる軸方向移動機構9と、第2フレーム8と超音波探触子4との間で介在し、第2フレーム8に対し超音波探触子4を分岐管2の略半径方向(図1中左右方向)に移動させる半径方向移動機構10と、第2フレーム8に対し半径方向移動機構10を分岐管2の軸方向に回動させる回転機構11とを備えている。そして、周方向移動機構7、軸方向移動機構9、及び半径方向移動機構10の駆動によって、超音波探触子4を分岐管2の周方向、軸方向、及び略半径方向に移動可能としている。また、超音波探触子4を分岐管2の略半径方向に移動(走査)するときの走査角度を、回転機構11の駆動によって可変とするようになっている。
【0028】
第1フレーム6は、図1〜図3で示すように、ガイドレール5の一端面側(図中上側)に配置された第1ベースプレート12と、この第1ベースプレート12に固定された第1補助プレート13と、この第1補助プレート13に固定された第2補助プレート14と、ガイドレール5の他端面側(図中下側)に配置された第2ベースプレート15とで構成されている。第2ベースプレート15と第1補助プレート13は、図3で示すように、軸受(図示せず)を介し軸方向移動機構9のボールねじ16を回転可能に支持している。このような構造により、第2ベースプレート15は第1補助プレート13等と一体的に構成されている。
【0029】
軸方向移動機構9は、図3で示すように、分岐管2の軸方向(図中上下方向)に延在するボールねじ16と、第2補助プレート14に固定され、出力軸が継手17を介しボールねじ16に接続された軸方向駆動用モータ18とを有している。軸方向駆動用モータ18には、その回転量(回転角)を検出するエンコーダ19が設けられている。
【0030】
第2フレーム8は、図3等で示すように、ボールねじ16が螺合するナット20aを有し、ボールねじ16の回転に伴ってボールねじ16の延在方向に移動する移動プレート20と、門型プレート21と、それら移動プレート20と門型プレート21との間で連結された一対のスライドシャフト22A,22Bと、門型プレート21に2つの連結ねじ23を用いて固定されたボックス24とで構成されている。スライドシャフト22A,22Bは、第2ベースプレート15に設けられたスリーブ25A,25Bに挿通しており、これによって第2フレーム8の移動方向が案内されるようになっている。そして、軸方向駆動用モータ18の駆動によってボールねじ16が回転すると、第2フレーム8がボールねじ16の延在方向(すなわち、分岐管2の軸方向)に移動するようになっている。
【0031】
半径方向移動機構10は、図4等で示すように、分岐管2の略半径方向(図4中左右方向)に延在するフレーム枠26と、このフレーム枠26に軸受(図示せず)を介し回転可能に支持され、分岐管2の略半径方向に延在するボールねじ27と、フレーム枠26に固定され、分岐管2の略半径方向に延在する一対のスライドシャフト28A,28Bと、ボールねじ27が螺合したねじ穴及びスライドシャフト28A,28Bが挿通した挿通穴を有し、ボールねじ27の回転に伴ってボールねじ27等の延在方向に移動する移動台座29と、フレーム枠26に固定され、出力軸が一組のかさ歯車30A,30B(図5参照)を介しボールねじ27に接続された半径方向移動用モータ31とを有している。そして、半径方向駆動用モータ31の駆動によってボールねじ27が回転すると、移動台座29がボールねじ27等の延在方向(すなわち、分岐管2の略半径方向)に移動するようになっている。なお、半径方向駆動用モータ31には、その回転量(回転角)を検出するエンコーダ32が設けられている。
【0032】
図3及び図5等で示すように、移動台座29には、ボールねじ27と直交する方向に延在する一対の支持シャフト33A,33Bが挿通されており、これら支持シャフト33A,33Bの先端部に2軸ジンバル34を介して超音波探触子4が取付けられている。また、支持シャフト33A,33Bには圧縮ばね35A,35Bが取付けられており、これら圧縮ばね35A,35Bの付勢力によって超音波探触子4が母管1側(図3及び図5中下側)に押付けられるようになっている。2軸ジンバル34は、この種のものとして公知のものであり、分岐管2の周方向(図4中上下方向)及び略半径方向(図4中左右方向)に揺動可能とし、超音波探触子4を母管2の表面形状にある程度追従させるようになっている。
【0033】
超音波探触子4は、例えば斜角探触子であり、母管1側(図1中下側)に向けて且つ分岐管2の略半径方向内側(図1及び図4中左側)に向けて超音波を発信するとともに、その反射信号を受信するようになっている。この超音波探触子4の超音波発信方向線A2は、図4で示すように分岐管2の軸方向から見た場合に(言い換えれば、分岐管2の半径方向断面に射影した場合に)、半径方向移動機構10のボールねじ27の軸心線(言い換えれば、超音波探触子4を分岐管2の略半径方向に走査するときの走査方向線)と重なるようになっている。
【0034】
図3及び図4で示すように、半径方向移動機構10のフレーム枠26の幅方向両外側(図3中右側及び左側、図4中下側及び上側)には、互いに同軸となる回転シャフト36及び補助シャフト37が設けられている。第2フレーム8の門型プレート48には、フレーム枠26の回転シャフト36及び補助シャフト37を回転可能に支持する軸受38A,38Bが設けられている。これにより、半径方向移動機構10は、第2フレーム8に対し分岐管2の軸方向に回動可能としている。
【0035】
回転機構11は、図3及び図4で示すように、第2フレーム8のボックス24内に収納されている。この回転機構11は、フレーム枠26の回転シャフト36の先端部に固定されたウォームホイール39と、このウォームホイール39と噛合いながら回転するウォーム40と、このウォーム40が出力軸に取付けられた回転駆動用モータ41とを有している。そして、回転駆動用モータ41の駆動によってフレーム枠26の回転シャフト36が駆動回転し、これに伴い補助シャフト37が従動回転する。これにより、第2フレーム8に対して半径方向移動機構10が分岐管2の軸方向に回動するようになっている。なお、回転駆動用モータ41には、その回転量(回転角)を検出するエンコーダ42が設けられている。
【0036】
次に、本実施形態の要部であるガイドレール5及び周方向移動機構7の詳細を、図6、図7、及び前述の図2により説明する。図6は、図2中矢視断面VI−VIにおける断面図であり、図7は、図6中矢視断面VII−VIIにおける断面図である。
【0037】
ガイドレール5は、図6(及び後述する図8)で部分的に示すが、分岐管2の軸方向から見た場合に楕円形状となる溶接線3a(詳細には、方位角θ=0°,180°で短径、方位角θ=90°,270°で長径となる楕円形状の溶接線)に対して相似形となる軌道を有しており、分岐管2に同心円状に取付けられている。また、図2で示すように、ガイドレール5の外周面の幅方向中央部には、全周にわたってラック5aが設けられている。
【0038】
周方向移動機構7は、図2で示すように、ガイドレール5のラック5aと噛合ってガイドレール5の外周面を走行する駆動走行輪43と、第1フレーム6の第1ベースプレート12に軸受(図示せず)を介し回転可能に支持され、駆動走行輪43の回転中心を貫通して連結した回転シャフト44と、この回転シャフト44における駆動走行輪43より軸方向一方側(図2中上側)に配置され、かつ回転シャフト44に軸受45A,45Bを介して回転可能に支持されて、ガイドレール5の外周面(詳細には、図2中ラック5aより上側部分)を走行する従動走行輪46Aと、回転シャフト44における駆動走行輪43より軸方向他方側(図2中上側)に配置され、かつ回転シャフト44に軸受45C,45Dを介して回転可能に支持されて、ガイドレール5の外周面(詳細には、図2中ラック5aより下側部分)を走行する従動走行輪46Bと、第1フレーム6の第1補助プレート13に固定され、出力軸が継手47を介し回転シャフト44に接続された周方向駆動用モータ48とを有している。そして、周方向駆動用モータ48の駆動によって回転シャフト44が回転すると、駆動走行輪43が駆動回転するとともに従動走行輪46A,46Bが従動回転してガイドレール5の外周面を走行し、第1フレーム6が分岐管2の周方向に移動するようになっている。なお、周方向駆動用モータ48には、その回転量(回転角)を検出するエンコーダ49が設けられている。
【0039】
また、図6で示すように分岐管2の軸方向から見た場合に(言い換えれば、分岐管2の半径方向断面に射影した場合に)、ガイドレール5の外周面における走行輪43,46A,46Bの当接点と走行輪43,46A,46Bの回転中心点(言い換えれば、回転シャフト44の軸中心点)とを結ぶ基準線Dは、上述した超音波探触子4の超音波発信方向線A2(図4参照)と重なるようになっている。
【0040】
また、周方向移動機構7は、図2及び図6で示すように、ガイドレール5の一端面側(図2中上側)に配置され、かつ走行輪43,46A,46Bに対しガイドレール5の周方向の一方側(図6中下側)及び反対側(図6中上側)に配置されて、ガイドレール5の内周面を走行する一対のガイドローラ50A,50Bと、これらガイドローラ50A,50Bを回転可能に支持する可動ピン51A,51Bと、第1ベースプレート12に対する可動ピン51A,51Bのそれぞれの位置を分岐管2の略半径方向に回動させる一対のアーム52A,52Bと、可動ピン51A,51Bを分岐管2の略半径方向外側に引張る一対の引張りばね53A,53Bとを有している。このような構成により、ガイドローラ50A,50Bは、楕円形状のガイドレール5の内周面に追従するようになっている。
【0041】
アーム52Aは、起端側が第1ベースプレート12に軸受54Aを介し回転可能に支持され、先端側に可動ピン51Aが固定されている。同様に、アーム52Bは、起端側が第1ベースプレート12に軸受54Bを介し回転可能に支持され、先端側に可動ピン51Bが固定されている。これにより、第1フレーム6に対する可動ピン51A,51B(言い換えれば、ガイドローラ50A,50B)のそれぞれの位置を分岐管2の略半径方向に回動可能としている。なお、アーム52A,52Bは、長さ寸法(詳細には、起端側の軸受の軸心位置から先端側の可動ピンの軸心位置までの長さ)が互いに同じであり、それらの回転中心位置及び回転範囲が上述した基準線Dに対して線対称となるように設けられている。すなわち、ガイドローラ50A,50Bのそれぞれの移動方向及び移動範囲が基準線Dに対して線対称となるように構成されている。
【0042】
引張りばね53Aは、起端側が第1ベースプレート12に固定ピン55Aを介し回転可能に支持され、先端側が可動ピン51Aに接続されている。同様に、引張りばね53Bは、起端側が第1ベースプレート12に固定ピン55Bを介し回転可能に支持され、先端側が可動ピン51Bに接続されている。そして、これら引張りばね53A,53Bの引張り力によってガイドローラ50A,50Bを分岐管2の略径方向外側に移動させ、ガイドレール5の内周面に押付けるようになっている。なお、引張りばね53A,53Bは、仕様(詳細には、自由長さ及びばね定数等)が互いに同じであり、それらの起端側の回転中心位置が基準線Dに対して線対称となるように配置されている。
【0043】
また、周方向移動機構7は、図2で示すように、ガイドレール5の他端面側(図2中下側)に配置され、かつ走行輪43,46A,46Bに対しガイドレール5の周方向の一方側及び反対側に配置されて、ガイドレール5の内周面を走行する一対のガイドローラ50C,50D(但し、図2中50Cのみ示す)と、これらガイドローラ50C,50Dを回転可能に支持する可動ピン51C,51D(但し、図2中51Cのみ示す)と、第2ベースプレート15に対する可動ピン51C,51Dのそれぞれの位置を分岐管2の略半径方向に回動させる一対のアーム52C,52D(但し、図2中52Cのみ示す)と、可動ピン51C,51Dを分岐管2の略半径方向外側に引張る一対の引張りばね53C,53Dとを有している。このような構成により、ガイドローラ50C,50Dは、楕円形状のガイドレール5の内周面に追従するようになっている。
【0044】
アーム52Cは、起端側が第2ベースプレート15に軸受54Cを介し回転可能に支持され、先端側に可動ピン51Cが固定されている。同様に、アーム52Dは、図示しないものの、起端側が第2ベースプレート15に軸受54Dを介し回転可能に支持され、先端側に可動ピン51Dが固定されている。これにより、第1フレーム6に対する可動ピン51C,51D(言い換えれば、ガイドローラ50C,50D)のそれぞれの位置を分岐管2の略半径方向に回動可能としている。なお、アーム52C,52Dは、アーム52A,52Bと同様、長さ寸法(詳細には、起端側の軸受の軸心位置から先端側の可動ピンの軸心位置までの長さ)が互いに同じであり、それらの回転中心位置及び回転範囲が上述した基準線Dに対して線対称となるように設けられている。すなわち、ガイドローラ50C,50Dのそれぞれの移動方向及び移動範囲が基準線Dに対して線対称となるように構成されている。
【0045】
引張りばね53Cは、起端側が第2ベースプレート15に固定ピン55Cを介し回転可能に支持され、先端側が可動ピン51Cに接続されている。同様に、引張りばね53Dは、図示しないものの、起端側が第2ベースプレート15に固定ピン55Dを介し回転可能に支持され、先端側が可動ピン51Dに接続されている。そして、これら引張りばね53C,53Dの引張り力によってガイドローラ50C,50Dを分岐管2の略径方向外側に移動させ、ガイドレール5の内周面に押付けるようになっている。なお、引張りばね53C,53Dは、引張りばね53A,53Bと同様、仕様(詳細には、自由長さ及びばね定数等)が互いに同じであり、それらの起端側の回転中心位置が基準線Dに対して線対称となるように配置されている。
【0046】
そして、引張りばね53A,53Bの引張り力によってガイドレール5を狭持するガイドローラ50A,50Bと従動走行輪46Aの3点支持、並びに引張りばね53C,53Dの引張り力によってガイドレール5を狭持するガイドローラ50C,50Dと従動走行輪46Bの3点支持により、ガイドレール5の周方向における第1フレーム6の位置決めが行われている。
【0047】
また、周方向移動機構7は、第1ベースプレート12に回転可能に支持され、かつ走行輪43,46A,46Bに対しガイドレール5の周方向の一方側及び反対側にそれぞれ配置されて、ガイドレール5の一端面を走行する一対の従輪56A,56Bと、第2ベースプレート15に回転可能に支持され、かつ走行輪43,46A,46Bに対しガイドレール5の周方向の一方側及び反対側にそれぞれ配置されて、ガイドレール5の他端面を走行する一対の従輪56C,56Dとを有している。そして、従輪56A.56Bと従輪56C,56Dにより、ガイドレール5の軸方向における第1フレーム6の位置決めが行われている。
【0048】
なお、図7で示すように、ガイドレール5における方位角θ=0°の位置にはスリット5bが形成されており、このスリット5bを検出するための近接センサ57が第1ベースプレート12に設けられている。
【0049】
ところで、溶接線3aは、上述したように、分岐管2の軸方向から見た場合に、方位角θ=0°,180°で短径、方位角θ=90°,270°で長径となる楕円形状である。そのため、θ=0°,90°,180°,270°以外の方位角では、方位角方向線Bと楕円形状の溶接線3aに対する直角方向線(詳細には、楕円形状の溶接線3aにおける所定の位置を接点とした接線に対し、前記所定の位置を交点とした垂直線)Cとの間で角度差が生じ、その角度差も方位角θに応じて変動する。そこで、上述した周方向移動機構7は、分岐管2の軸方向から見た場合に、基準線D(すなわち、超音波探触子4の超音波発信方向線A2)が楕円形状の溶接線3aに対する直角方向線Cとほぼ重なるように、第1フレーム6の移動位置(方位角θ)に応じて第1フレーム6のガイドレール5に対する姿勢角θpを自動調整するようになっている。その詳細を、図8を用いて説明する。
【0050】
例えば図8で示すように第1フレーム6(詳細には、ガイドレール5の外周面における走行輪43,46A,46Bの当接点の位置)が方位角θ=50°に位置する場合、走行輪43,46A,46Bに対するガイドレール5の周方向の一方側と反対側とでは曲率が異なり、方位角方向線Bに対するガイドローラ50Aとガイドローラ50Bの位置関係及びガイドローラ50Cとガイドローラ50Dの位置関係は、線対称とならない。このとき、ガイドレール5の外周面における従動走行輪46Aの当接点を支点とし、固定ピン55Aに作用する引張りばね53Aの引張り力F1によって図中右回りの回転モーメントM1(下記の式(1)参照)が生じ、また固定ピン55Bに作用する引張りばね53Bの引張り力F2によって図中左回りの回転モーメントM2(下記の式(2)参照)が生じる。
【0051】
M1=F1’×L=F1×sin α1×L ・・・(1)
M2=F2’×L=F2×sin α2×L ・・・(2)
F1’:固定ピン55Aに作用するモーメント荷重
F2’:固定ピン55Bに作用するモーメント荷重
L:分岐管2の半径方向断面に射影した場合のガイドレール5における従輪46Aの当接点と固定ピン55A又は55Bの軸中心点との距離
α1:引張りばね53Aの回転角
α2:引張りばね53Bの回転角
同様に、図示しないが、ガイドレール5の外周面における従動走行輪46Bの当接点を支点とし、固定ピン55Cに作用する引張りばね53Cの引張り力F3によって右回りの回転モーメントM3(下記の式(3)参照)が生じ、また固定ピン55Dに作用する引張りばね53Dの引張り力F4によって左回りの回転モーメントM4(下記の式(4)参照)が生じる。
【0052】
M3=F3’×L=F3×sin α3×L ・・・(3)
M4=F4’×L=F4×sin α4×L ・・・(4)
F3’:固定ピン55Cに作用するモーメント荷重
F4’:固定ピン55Dに作用するモーメント荷重
L:分岐管2の半径方向断面に射影した場合のガイドレール5における従輪46Bの当接点と固定ピン55C又は55Dの軸中心点との距離
α3:引張りばね53Cの回転角
α4:引張りばね53Dの回転角
そして、ガイドローラ50Aとガイドローラ50Bの位置関係が方位角方向線Bに対して線対称ではないから、引張りばね53Aと引張りばね53Bは互いに伸縮長さが異なって引張り力F1,F2が異なるとともに回転角α1,α2も異なるようになる。同様に、ガイドローラ50Cとガイドローラ50Dの位置関係が方位角方向線Bに対して線対称ではないから、引張りばね53Cと引張りばね53Dは互いに伸縮長さが異なって引張り力F3,F4が異なるとともに回転角α3,α4も異なるようになる。そのため、回転モーメントM1と回転モーメントM2のつり合い、並びに回転モーメントM3と回転モーメントM4のつり合いがとれるようになるまで、ガイドレール5に対する第1フレーム6の姿勢角θpが変わる。その結果、分岐管2の軸方向から見た場合に、基準線D(すなわち、超音波探触子4の超音波発信方向線A2)が楕円形状の溶接線3aに対する直角方向線Cとほぼ重なるようになっている。
【0053】
以上のように、本実施形態においては、方位角θに応じて超音波探触子4の超音波発信方向線A2を溶接線3aに対する直角方向線Cに近づけることができ、探傷精度を向上させることができる。
【0054】
また、本実施形態においては、回転機構11によって第2フレーム8に対し半径方向移動機構11を分岐管2の軸方向に回動させ、超音波探触子4を分岐管2の略半径方向に移動(走査)するときの走査角度を調整することができる。したがって、方位角θに応じて超音波探触子4を母管1の表面に位置決めすることができ、走査性能を向上させることができる。
【0055】
次に、本実施形態の配管検査装置の制御系について説明する。図9は、制御系の機能的構成を表すブロック図である。
【0056】
図9及び前述の図1で示すように、配管検査装置の制御系は、上述したモータ18,31,41,48を駆動制御する移動制御器60と、超音波探触子4に配線接続された超音波探傷器61と、これら移動制御器60及び超音波探傷器61に配線接続されたコントローラ62とで構成されている。
【0057】
移動制御器60は、周方向移動機構7のエンコーダ49からの検出信号を入力するとともに、コントローラ62からの指令信号に応じて周方向駆動用モータ48を駆動制御する周方向駆動用アンプ63と、回転駆動機構11のエンコーダ42からの検出信号を入力するとともに、コントローラ62からの指令信号に応じて回転駆動用モータ41を駆動制御する回転駆動用アンプ64と、軸方向移動機構9のエンコーダ19からの検出信号を入力するとともに、コントローラ62からの指令信号に応じて軸方向駆動用モータ18を駆動制御する軸方向駆動用アンプ65と、半径方向移動機構10のエンコーダ32からの検出信号を入力するとともに、コントローラ62からの指令信号に応じて半径方向駆動用モータ31を駆動制御する半径方向駆動用アンプ66とを有している。なお、周方向駆動用アンプ63には、近接センサ57からの検出信号も入力されるようになっている。
【0058】
超音波探傷器61は、詳細を図示しないが、パルス電圧発生部及び受信アンプを有している。超音波探傷器61のパルス電圧発生部は、コントローラ62からの指令信号に応じて超音波探触子4にパルス信号を出力し、超音波探触子4は、これに応じて超音波を発信するようになっている。また、超音波探傷器61の受信アンプは、超音波探触子4で受信された超音波反射信号を受信し、この受信した超音波反射信号をコントローラ62に出力するようになっている。
【0059】
コントローラ62は、母管1、分岐管2、及び溶接部3の構造データを予め記憶するとともに、探傷条件を設定する探傷条件設定部67と、前述した構造データ及び探傷条件に基づき各制御パラメータを演算して制御テーブルを作成する制御テーブル演算部68と、この制御テーブル演算部68で作成された制御テーブルを記憶する制御テーブル記憶部69と、この制御テーブル記憶部69で記憶された制御テーブルに基づき指令信号を生成して移動制御器60及び超音波探傷器61に出力する制御指令部70と、超音波探傷器61から入力した超音波反射信号を処理し、探傷データとして収録するデータ収録部71とを有している。なお、コントローラ62の制御指令部70には、エンコーダ19,32,42,49からの検出信号が入力されるようになっている。
【0060】
コントローラ62の制御テーブル作成機能における制御手順を図10により説明する。図10は、コントローラ62の制御テーブル作成の処理内容を表すフローチャートである。
【0061】
この図10において、まずステップ100において、コントローラ62の探傷条件設定部67は、周方向移動機構7の移動量ピッチ(以降、周方向移動量ピッチと称す)Δlを設定する。そして、ステップ110に進み、コントローラ62の制御テーブル演算部68は、探傷条件設定部67で設定された周方向移動量ピッチΔlに基づき、周方向移動機構7による第1フレーム6の移動位置(方位角)θ(i=0,1,2,…,n)を演算する(但し、θ=0°,θ≒360°)。その後、ステップ120に進み、第1フレーム6の移動位置θ毎に、第1フレーム6のガイドレール5に対する姿勢角θp(i=0,1,2,…,n)(詳細には、例えば楕円形状の溶接線3aに対する直角方向線Cの角度)を演算し、さらに、ステップ130に進み、第1フレーム6の移動位置θ毎に、第1フレーム6のガイドレール5に対する姿勢角θp及び探傷条件設定部67で予め記憶された構造データに基づき、超音波探触子4の走査方向における配管の断面形状及び溶接部3の中心位置を演算する。具体例として、第1フレーム6が移動位置θ=90°に位置する場合の配管の断面形状を、図11及び図12(B)に示す。
【0062】
そして、ステップ140に進み、制御テーブル演算部68は、第1フレーム6の移動位置θi毎に、上述のステップ130で得られた配管の断面形状及び溶接部3の中心位置に基づき、超音波が溶接部3(詳細には、溶接金属、及び溶接金属と母材との境界から母材側に10mm程度の熱影響部)に伝播するように、母管1の表面における超音波の入射範囲を設定する。
【0063】
そして、ステップ150に進み、制御テーブル演算部68は、超音波探触子4を母管1側に押付ける圧縮ばね35A,35Bの変位が最小となるように、回転機構11による半径方向移動機構10の回動角φ(i=0,1,2,…,n)を演算する(但し、回動角φ=0°であって、これは分岐管2の軸方向に対して垂直な方向を示す)。具体的に説明すると、例えば図11で示すように、上述のステップ130で得られた超音波の入射範囲の両端位置P,Rにおいて、母管1の表面に対する接線と分岐管2の半径方向線(図11中左右方向線)との間の角度φa,φbを演算し、それらの平均値を演算し、この平均値を回転機構11による半径方向移動機構10の回動角φとして設定する。なお、超音波の入射範囲の中間位置Qにおいて、母管1の表面に対する接線と分岐管2の半径方向線との間の角度を演算し、これを回動角φとして設定してもよい。そして、第1フレーム6の移動位置θ毎に、前回の第1フレーム6の移動位置θi−1における半径方向移動機構10の回動角φi−1と今回の第1フレーム6の移動位置θにおける半径方向移動機構10の回動角φとの差分(回動角変化量)Δφ(i=1,2,…,n)を演算する。
【0064】
そして、ステップ160に進み、制御テーブル演算部68は、第1フレーム6の移動位置θ毎に、母管1の表面における超音波の各入射位置と半径方向移動機構10のボールねじ27の軸心線との距離の最小値が方位角θ=0°の場合の距離と等しくなるように、軸方向移動機構9による第2フレーム8の移動位置(以降、軸方向移動位置と称す)d(i=0,1,2,…,n)を演算する(但し、軸方向移動位置dは所定の設定値)。具体的に説明すると、例えば図11で示すように、上述のステップ130で得られた超音波の入射範囲の中間位置Q(言い換えれば、2軸ジンバル34による超音波探触子4の傾斜角と回転機構11による半径方向移動機構10の回動角とがほぼ等しくなる位置)と半径方向移動機構10のボールねじ27の軸心線(図11中点線で示す)との距離hが方位角θ=0°の場合の距離h(図12(A)参照)と等しくなるように、第2フレーム8の軸方向移動位置dを演算する。そして、第1フレーム6の移動位置θ毎に、前回の第1フレーム6の移動位置θi−1における第2フレーム8の軸方向移動位置di−1と今回の第1フレーム6の移動位置θにおける第2フレーム8の軸方向移動位置dとの差分(軸方向移動変化量)Δd(i=1,2,…,n)を演算する。
【0065】
そして、ステップ170に進み、制御テーブル演算部68は、第1フレーム6の移動位置θ毎に、半径方向移動機構10による超音波探触子4の移動範囲(以降、走査範囲と称す)pa,pb(i=0,1,2,…,n)を演算する。具体的に説明すると、例えば図11中一点鎖線で示すように、上述のステップ130で得られた超音波の入射範囲の両端位置P,Rのそれぞれを通るように、半径方向移動機構10のボールねじ27の軸心線に対する垂直線を引き、ボールねじ27の軸心線とそれら垂直線との交点を走査開始位置pa及び走査終了位置pbとして設定する。また、走査開始位置paと走査終了位置pbとの差分(走査距離)Δpを演算する。なお、走査開始位置pa及び走査終了位置pbは、第1フレーム6の移動位置θ毎に異なるように設定することが好ましいものの、同じとなるように設定してもよい。
【0066】
そして、ステップ180に進み、図13に示すように制御テーブルとして、第1フレーム6の移動位置θ毎に、周方向移動量ピッチΔl、回動角変化量Δφ、軸方向移動変化量Δd、並びに走査範囲pa,pb及び走査距離Δpを制御テーブル記憶部69に記憶(格納)させる。
【0067】
そして、コントローラ62の制御指令部70は、制御テーブル記憶部63で記憶された制御テーブルに基づき移動制御器60に移動指令信号を出力するとともに、超音波探傷器61に超音波発信指令信号を出力するようになっている。このようなコントローラ62の探傷制御機能における制御手順を図14により説明する。図14は、コントローラ62の探傷制御の処理内容を表すフローチャートである。
【0068】
この図14において、まず、例えば初期位置設定コマンドが入力されると、ステップ200において、コントローラ62の制御指令部70は、初期位置の指令信号を移動制御器60の周方向駆動用アンプ63、回転駆動用アンプ64、及び軸方向駆動用アンプ65に出力する。これにより、周方向駆動用アンプ63は、周方向駆動用モータ48を駆動し、近接センサ57でガイドレール5のスリット5bが検出される位置(すなわち、方位角θ=0°)まで第1フレーム6を移動させる。また、回転駆動用アンプ64は、回転駆動用モータ41を駆動し、半径方向移動機構10を回動角φ=0°まで回動させる。また、軸方向駆動用アンプ65は、軸方向駆動用モータ18を駆動し、所定の軸方向移動位置dまで第2フレーム8を移動させる。なお、所定の軸方向移動位置dに関しては、方位角θ=0°及び回動角φ=0°が設定された後、作業員の手動操作にて設定変更可能としてもよい。そして、ステップ210に進み、識別子i=0(初期値)が設定される。
【0069】
そして、例えば探傷検査開始コマンドが入力されると、ステップ220に進み、コントローラ62の制御指令部70は、識別子i=0であるから、制御テーブル記憶部69で記憶された走査開始位置paを読込み、走査開始位置paの指令信号(指令パルス)を移動制御器60の半径方向駆動用アンプ66に出力する。これにより、半径方向駆動用アンプ66は、半径方向駆動用モータ31を駆動し(詳細には、エンコーダ32の検出パルス数が指令バルス数と同じとなるまで駆動し)、走査開始位置paまで超音波探触子4を移動させる。その後、ステップ230に進み、コントローラ62の制御指令部70は、識別子i=0であるから、制御テーブル記憶部69で記憶された走査終了位置pbを読込み、走査終了位置Pbの指令信号(指令パルス)を移動制御器60の半径方向駆動用アンプ66に出力するとともに、超音波発信指令信号を超音波探傷器61に出力する。これにより、半径方向駆動用アンプ66は、半径方向駆動用モータ31を駆動し(詳細には、エンコーダ32の検出パルス数が指令バルス数と同じとなるまで駆動し)、走査終了位置pbまで超音波探触子4を移動させる。これと同時に、超音波探傷器61は、超音波探触子4に超音波を発信させるとともに、超音波探触子4で受信された超音波反射信号を受信し、この受信した超音波反射信号をコントローラ62のデータ収録部71に出力する。コントローラ62のデータ収録部71は、超音波探傷器61から入力した超音波反射信号を処理し、探傷データとして収録する。この探傷データには、超音波探触子4の位置情報(詳細には、少なくとも第1フレーム6の移動位置θ及び半径方向移動機構10による超音波探触子4の移動位置)が含まれている。なお、コントローラ62の制御指令部70は、超音波探触子4が走査終了位置pbまで移動すると、超音波探傷器61に超音波停止指令信号を出力する。これにより、超音波探傷器61は、超音波探触子4に超音波の発信を停止させる。
【0070】
そして、ステップ240に進み、コントローラ62の制御指令部70は、識別子i=nであるか否か(言い換えれば、探傷検査が終了したか否か)を判定する。最初は、ステップ240の判定が満たされないので、ステップ250に移る。ステップ250では、識別子i=i+1=1が演算される。そして、ステップ260に進み、コントローラ62の制御指令部70は、識別子i=1であるから、制御テーブル記憶部69で記憶された周方向移動量ピッチΔl、回動角変化量Δφ、及び軸方向移動変化量Δdを読込む。そして、周方向移動量ピッチΔlの指令信号(指令パルス)を移動制御器60の周方向駆動用アンプ63に出力し、回動角変化量Δφの指令信号(指令パルス)を移動制御器60の回転駆動用アンプ64に出力し、軸方向移動変化量Δdの指令信号を移動制御器60の軸方向駆動用アンプ65に出力する。これにより、周方向駆動用アンプ63は、周方向駆動用モータ48を駆動し(詳細には、エンコーダ49の検出パルス数が指令バルス数と同じとなるまで駆動し)、方位角θまで第1フレーム6を移動させる。また、回転駆動用アンプ64は、回転駆動用モータ42を駆動し(詳細には、エンコーダ41の検出パルス数が指令バルス数と同じとなるまで駆動し)、回動角φまで半径方向移動機構10を回動させる。また、軸方向駆動用アンプ65は、軸方向駆動用モータ18を駆動し(詳細には、エンコーダ19の検出パルス数が指令バルス数と同じとなるまで駆動し)、軸方向移動値dまで第2フレーム9を移動させる。
【0071】
そして、上述のステップ220に戻り、コントローラ62の制御指令部70は、識別子i=1であるから、制御テーブル記憶部69で記憶された走査開始位置paを読込み、走査開始位置paの指令信号を移動制御器60の半径方向駆動用アンプ66に出力する。これにより、半径方向駆動用アンプ66は、半径方向駆動用モータ31を駆動し、走査開始位置paまで超音波探触子4を移動させる。その後、ステップ230に進み、コントローラ62の制御指令部70は、識別子i=1であるから、制御テーブル記憶部69で記憶された走査終了位置pbを読込み、走査終了位置Pbの指令信号を移動制御器60の半径方向駆動用アンプ66に出力するとともに、超音波発信指令信号を超音波探傷器61に出力する。これにより、半径方向駆動用アンプ66は、半径方向駆動用モータ31を駆動し、走査終了位置pbまで超音波探触子4を移動させる。これと同時に、超音波探傷器61は、超音波探触子4に超音波を発信させるとともに、超音波探触子4で受信された超音波反射信号を受信し、この受信した超音波反射信号をコントローラ62のデータ収録部71に出力する。
【0072】
そして、ステップ240の判定が満たされるまで、上述したステップ250,260,220,及び230が繰返し行われる。そして、識別子i=nとなってステップ240の判定が満たされると、探傷制御が終了する。
【0073】
以上のように構成された本実施形態においては、方位角θに応じて超音波探触子4の超音波発信方向線A2を溶接線3aに対する直角方向線Cに近づけながら、超音波探触子4を母管1の表面に位置決めすることができ、超音波探触子4を自動的に走査することができる。したがって、探傷精度を高めながら、効率よく探傷検査を行うことができる。
【0074】
次に、本発明の他の実施形態を図15及び図16により説明する。本実施形態は、上記アーム52A〜52Dに代えて、スライダを設けた実施形態である。なお、本実施形態において、上記一実施形態と同等の部分は同一の符号を付し、適宜説明を省略する。
【0075】
図15は、本実施形態におけるガイドレール及び周方向移動機構の詳細構造を表す側面図であり、図16は、図15中矢視断面XVI−XVIにおける断面図である(なお、第1フレーム及び周方向移動機構が方位角θ=0°に位置する場合を示す)。
【0076】
本実施形態では、周方向移動機構80は、一対のガイドローラ50A,50Bと、これらガイドローラ50A,50Bを回転可能に支持する可動ピン81A,81Bと、第1ベースプレート82に対する可動ピン81A,81Bのそれぞれの位置を分岐管2の略半径方向にスライドさせる一対のスライダ83A,83Bと、可動ピン81A,81Bを分岐管2の略半径方向外側に引張る一対の引張りばね53A,53Bとを有している。このような構成により、ガイドローラ50A,50Bは、楕円形状のガイドレール5の内周面に追従するようになっている。
【0077】
第1ベースプレート82には分岐管2の略半径方向に延在する一対のスライド溝82a,82bが形成されている。スライダ83Aは、第1ベースプレート82のスライド溝82aの両側に設けられた1組のリニアガイド84A,84Bと、これらリニアガイド84A,84Bでスライド可能に支持され、第1ベースプレート82のスライド溝82aに挿通された可動ピン81Aを支持するスライダプレート85Aとで構成されている。同様に、スライダ83Bは、第1ベースプレート82のスライド溝82bの両側に設けられた1組のリニアガイド84C,84Dと、これらリニアガイド84C,84Dでスライド可能に支持され、第1ベースプレート82のスライド溝82bに挿通された可動ピン81Bを支持するスライダプレート85Bとで構成されている。なお、第1ベースプレート82のスライド溝82a,82b及びスライダ83A,83Bは、可動ピン81A,81B(すなわち、ガイドローラ50A,50B)のそれぞれの移動方向及び移動範囲が基準線Dに対して線対称となるように構成されている。
【0078】
引張りばね53Aは、起端側が第1ベースプレート82に固定ピン55Aを介し回転可能に支持され、先端側が可動ピン81Aに接続されている。同様に、引張りばね53Bは、起端側が第1ベースプレート82に固定ピン55Bを介し回転可能に支持され、先端側が可動ピン81Bに接続されている。そして、これら引張りばね53A,53Bの引張り力によってガイドローラ50A,50Bを分岐管2の略径方向外側に移動させ、ガイドレール5の内周面に押付けるようになっている。なお、引張りばね53A,53Bは、仕様が互いに同じであり、それらの回転中心位置が基準線Dに対して線対称となるように配置されている。
【0079】
また、周方向移動機構7Aは、一対のガイドローラ50C,50D(但し、図15中50Cのみ示す)と、これらガイドローラ50C,50Dを回転可能に支持する可動ピン81C,81D(但し、図15中81Cのみ示す)と、第2ベースプレート86に対する可動ピン81C,81Dのそれぞれの位置を分岐管2の略半径方向にスライドさせるスライダ83C,83D(但し、図15中83Cのみ示す)と、可動ピン81C,81Dを分岐管2の略半径方向外側に引張る引張りばね53C,53Dとを有している。このような構成により、ガイドローラ50C,50Dは、楕円形状のガイドレール5の内周面に追従するようになっている。
【0080】
第2ベースプレート86には分岐管2の略半径方向に延在する一対のスライド溝86a,86b(但し、図15中86aのみ示す)が形成されている。スライダ83Cは、第2ベースプレート86のスライド溝86aの両側に設けられた1組のリニアガイド84E,84F(但し、図15中84Eのみ示す)と、これらリニアガイド84E,84Fでスライド可能に支持され、第2ベースプレート86のスライド溝86aに挿通された可動ピン81Cを支持するスライダプレート85Cとで構成されている。同様に、スライダ83Dは、図示しないものの、第2ベースプレート86のスライド溝86bの両側に設けられた1組のリニアガイド84G,84Hと、これらリニアガイド84G,84Hでスライド可能に支持され、第2ベースプレート86のスライド溝86bに挿通された可動ピン81Dを支持するスライダプレート85Dとで構成されている。なお、第2ベースプレート86のスライド溝86a,86b及びスライダ83C,83Dは、可動ピン81C,81D(すなわち、ガイドローラ50C,50D)のそれぞれの移動方向及び移動範囲が基準線Dに対して線対称となるように構成されている。
【0081】
引張りばね53Cは、起端側が第2ベースプレート86に固定ピン55Aを介し回転可能に支持され、先端側が可動ピン81Cに接続されている。同様に、引張りばね53Dは、起端側が第2ベースプレート86に固定ピン55Bを介し回転可能に支持され、先端側が可動ピン81Dに接続されている。そして、これら引張りばね53C,53Dの引張り力によってガイドローラ50C,50Dを分岐管2の略径方向外側に移動させ、ガイドレール5の内周面に押付けるようになっている。なお、引張りばね53C,53Dは、仕様が互いに同じであり、それらの回転中心位置が基準線Dに対して線対称となるように配置されている。
【0082】
そして、引張りばね53A,53Bの引張り力によってガイドレール5を狭持するガイドローラ50A,50Bと従動走行輪46Aの3点支持、並びに引張りばね53C,53Dの引張り力によってガイドレール5を狭持するガイドローラ50C,50Dと従動走行輪46Bの3点支持により、ガイドレール5の周方向における第1フレーム6の位置決めが行われている。
【0083】
このように構成された周方向移動機構80においても、上記一実施形態の周方向移動機構7と同様、分岐管2の軸方向から見た場合に、基準線D(すなわち、超音波探触子4の超音波発信方向線A2)が溶接線3aに対する直角方向線Cとほぼ重なるように、第1フレーム6の移動位置に応じて第1フレーム6のガイドレール5に対する姿勢角θpを自動調整するようになっている。したがって、上一実施形態と同様、方位角θに応じて超音波探触子4の超音波発信方向線A2を溶接線3aに対する直角方向線Cに近づけることができ、探傷精度を向上させることができる。
【0084】
なお、上記実施形態においては、周方向移動機構7,80は、ガイドレール5の外周面を走行する駆動走行輪43及び従動走行輪46A,46bと、ガイドレール5の内周面を走行する二対のガイドローラ50A〜50Dとを備えた構成を例にとって説明したが、これに限られない。すなわち、少なくとも1つの走行輪と少なくとも一対のガイドローラとを備えていればよい。このような場合も、上記同様の効果を得ることができる。
【0085】
また、上記実施形態においては、コントローラ62の制御テーブル記憶部63は、制御テーブルとして、第1フレーム6の移動位置θi毎に、周方向移動量ピッチΔl、回動角変化量Δφi、軸方向移動変化量Δdi、並びに走査範囲pai,pbi及び走査距離Δpiを記憶した場合を例にとって説明したが、これに限らない。すなわち、例えば、第1フレーム6の移動位置θi毎に、回動角φi、軸方向移動位置di、並びに走査範囲pai,pbi及び走査距離Δpiを記憶してもよい。このような場合も、上記同様の効果を得ることができる。
【符号の説明】
【0086】
1 母管
2 分岐管
3 溶接部
3a 溶接線
4 超音波探触子
5 ガイドレール
5b スリット
6 第1フレーム
7 周方向移動機構
8 第2フレーム
9 軸方向移動機構
10 半径方向移動機構
11 回転機構
43 駆動走行輪(走行輪)
46A,46B 従動走行輪(走行輪)
50A〜50D ガイドローラ
51A〜51D 可動ピン(回転軸)
52A〜52D アーム(ローラ移動機構、姿勢角調整手段)
53A〜53D 引張りばね(姿勢角調整手段)
57 近接センサ(原点位置検出器)
60 移動制御器(探触子移動制御手段)
62 コントローラ(記憶手段、探触子移動制御手段、周方向移動位置演算手段、姿勢角演算手段、回動角・軸方向移動位置・走査範囲演算手段)
80 周方向移動機構
81A〜81D 可動ピン(回転軸)
83A〜83D スライダ(ローラ移動機構、姿勢角調整手段)

【特許請求の範囲】
【請求項1】
母管と分岐管が互いに異径でほぼ直交するように前記母管の外周部に前記分岐管の端部が突合せ溶接された溶接部であって、前記分岐管の軸方向から見た場合にその溶接線が楕円形状となる溶接部を検査対象とし、
前記分岐管の外周側に取付けられ、前記分岐管の周方向に延在する環状のガイドレールと、
前記ガイドレールと第1フレームとの間で介在し、かつ、前記ガイドレールの外周面を走行する少なくとも1つの走行輪、及び前記走行輪に対し前記ガイドレールの周方向の一方側及び反対側に配置されて前記ガイドレールの内周面を走行する対のガイドローラを有し、前記ガイドレールに対し前記第1フレームを前記分岐管の周方向に移動させる周方向移動機構と、
前記第1フレームと第2フレームとの間で介在し、前記第1フレームに対し前記第2フレームを前記分岐管の軸方向に移動させる軸方向移動機構と、
前記第2フレームと超音波探触子との間で介在し、前記第2フレームに対し前記超音波探触子を前記分岐管の略半径方向に移動させる半径方向移動機構とを備えた配管検査装置であって、
前記分岐管の軸方向から見た場合に、前記超音波探触子の超音波発信方向線が、前記楕円形状の溶接線における超音波入射位置を接点とした接線に対する前記超音波入射位置を交点とした垂直線とほぼ重なるように、前記第1フレームの移動位置に応じて前記第1フレームの前記ガイドレールに対する姿勢角を自動調整する姿勢角調整手段を有することを特徴とする配管検査装置。
【請求項2】
請求項1記載の配管検査装置において、
前記ガイドレールは、前記楕円形状の溶接線に対して相似形となる軌道を有し、
前記走行輪は、前記分岐管の軸方向から見た場合に、前記ガイドレールの外周面における前記走行輪の当接点と前記走行輪の回転中心点とを結ぶ基準線が、前記超音波探触子の超音波発信方向線と重なるように、前記第1フレームに取付けられており、
前記姿勢角調整手段は、
前記第1フレームに対する前記対のガイドローラのそれぞれの位置を前記分岐管の略半径方向に移動可能とし、それらの移動方向及び移動範囲が前記基準線に対して線対称となるように構成した対のローラ移動機構と、
先端側が前記対のガイドローラの回転軸のそれぞれに接続され起端側が第1フレームに回転可能に支持され、前記対のガイドローラを前記分岐管の略半径方向外側に引張る対の引張りばねとを有し、
前記対の引張りばねは、それらの起端側の回転中心位置が前記基準線に対して線対称となるように配置されたことを特徴とする配管検査装置。
【請求項3】
請求項2記載の配管検査装置において、
前記対のローラ移動機構は、前記第1フレームに対する前記対のガイドローラの回転軸のそれぞれの位置を前記分岐管の略半径方向に回動させる対のアームを有することを特徴とする配管検査装置。
【請求項4】
請求項2記載の配管検査装置において、
前記対のローラ移動機構は、前記第1フレームに対する前記対のガイドローラの回転軸のそれぞれの位置を前記分岐管の略半径方向にスライドさせる対のスライダを有することを特徴とする配管検査装置。
【請求項5】
請求項1〜4のいずれか1項記載の配管検査装置において、
前記第2フレームに対し前記半径方向移動機構を前記分岐管の軸方向に回動させる回転機構を備えたことを特徴とする配管検査装置。
【請求項6】
請求項5記載の配管検査装置において、
制御テーブルとして、前記周方向移動機構による前記第1フレームの移動位置毎に、前記回転機構による前記半径方向移動機構の回動角、前記軸方向移動機構による前記第2フレームの軸方向移動位置、及び前記半径方向移動機構による前記超音波探触子の走査範囲を記憶する記憶手段と、
前記記憶手段で記憶された制御テーブルに基づき前記周方向移動機構、前記回転機構、前記軸方向移動機構、及び前記半径方向移動機構を制御する探触子移動制御手段とを有することを特徴とする配管検査装置。
【請求項7】
請求項6記載の配管検査装置において、
前記周方向移動機構の移動量ピッチに基づき、前記周方向移動機構による前記第1フレームの移動位置を演算する周方向移動位置演算手段と、
前記周方向移動位置演算手段で演算された前記第1フレームの移動位置毎に、前記超音波発信方向調整手段で自動調整される前記第1フレームの姿勢角を演算する姿勢角演算手段と、
前記周方向移動位置演算手段で演算された前記第1フレームの移動位置毎に、前記姿勢角演算手段で演算された前記第1フレームの姿勢角並びに予め記憶された前記母管、前記分岐管、及び前記溶接部の構造データに基づき配管の断面形状を演算し、この配管の断面形状に基づき、前記回転機構による前記半径方向移動機構の回動角、前記軸方向移動機構による前記第2フレームの軸方向移動位置、及び前記半径方向移動機構による前記超音波探触子の走査範囲を演算する回動角・軸方向移動位置・走査範囲演算手段とをさらに有し、
前記記憶手段は、制御テーブルとして、前記周方向移動位置演算手段で演算された前記第1フレームの移動位置毎に、前記回動角・軸方向移動位置・走査範囲演算手段で演算された前記半径方向移動機構の回動角、前記第2フレームの軸方向移動位置、及び前記超音波探触子の走査範囲を記憶することを特徴とする配管検査装置。
【請求項8】
請求項6又は7に記載の配管検査装置において、
前記ガイドレールの所定の周方向位置にはスリットが形成されており、
前記周方向移動機構による前記第1フレームの移動位置の原点として、前記ガイドレールのスリットの位置を検出する原点位置検出器を前記第1フレームに設けたことを特徴とする配管検査装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2011−174867(P2011−174867A)
【公開日】平成23年9月8日(2011.9.8)
【国際特許分類】
【出願番号】特願2010−40382(P2010−40382)
【出願日】平成22年2月25日(2010.2.25)
【出願人】(507250427)日立GEニュークリア・エナジー株式会社 (858)
【Fターム(参考)】