説明

長時間持続するエキセンジン−4

【課題】それらの低い毒性および治療上の利点を維持しながら、インビボでより長期間持
続する作用を提供するように、GLP−1、エキセンジン3、エキセンジン4、および他
のインシュリン向性ペプチドを改変することが提供された。
【解決手段】エキセンジン−4(1−39)−Lys40(ε−MPA)−NHからな
る、改変されたインシュリン向性ペプチド、エキセンジン−4(1−39)−Lys40
(ε−AEEA−MPA)−NHからなる、改変されたインシュリン向性ペプチド、血
液成分に共有結合した、上述の改変されたインシュリン向性ペプチドを含む、結合体、上
記の血液成分が、血清アルブミンである、結合体。

【発明の詳細な説明】
【技術分野】
【0001】
(発明の分野)
本発明は、改変されたインシュリン向性ペプチドに関する。詳細には、本発明は、グル
カゴンのレベルに関連する、糖尿病ならびに他のインシュリン向性ペプチドに関連する疾
患、消化管の機能および活性の処置のための長期間の作用を有する、改変されたグルカゴ
ン様ペプチドおよびエキセンジンペプチドに関する。
【背景技術】
【0002】
(発明の背景)
インシュリン向性ペプチドホルモングルカゴン様ペプチド(GLP−1)は、2型のイ
ンシュリン非依存性真性糖尿病、ならびに関連する代謝障害(例えば、肥満)の管理のた
めの、可能性のある治療薬として関係している。他の有用なインシュリン向性ペプチドと
して、エキセンジン3およびエキセンジン4が挙げられる。有用であるが、GLP−1、
エキセンジン3、およびエキセンジン4は、主に迅速な血清のクリアランスおよびタンパ
ク質分解性分解に起因して、インビボでの短い血漿半減期に関連する作用の限定された持
続期間に苦しむ。GLP−1の分解の原因である酵素ジペプチジルペプチダーゼIVが同
定されている。このペプチダーゼを阻害するため、または。なお生物学的な活性を維持し
ながらその分解を鈍化させるような様式でGLP−1を改変するための、広範囲の研究が
行われている。これらの広範囲にわたる努力にもかかわらず、長期間持続する活性なGL
P−1は産生されていない。このように、糖尿病の集団は、改良されたGLP−1ペプチ
ド、エキセンジン3ペプチド、およびエキセンジン4ペプチドについての相当の必要性を
有している。
【発明の開示】
【発明が解決しようとする課題】
【0003】
従って、それらの低い毒性および治療上の利点を維持しながら、インビボでより長期間
持続する作用を提供するように、GLP−1、エキセンジン3、エキセンジン4、および
他のインシュリン向性ペプチドを改変することが必要とされている。
【課題を解決するための手段】
【0004】
(項目1) 血液成分上のアミノ基、ヒドロキシル基、またはチオール基と反応して、安
定な共有結合を形成する反応性基を含む、改変されたインシュリン向性ペプチドまたはそ
の誘導体。
(項目2) 前記反応性基が、スクシンイミジル基およびマレイミド基からなる群より選
択される、項目1に記載のペプチド。
(項目3) 前記誘導体が、血液タンパク質上のチオール基と反応性である、項目2に記
載のペプチド。
(項目4) 前記ペプチドが、配列番号2、配列番号3、配列番号11、配列番号13、
配列番号14、および配列番号15からなる群より選択される、項目1に記載のペプチド

(項目5) 前記ペプチドが、配列番号16、配列番号17、配列番号18、配列番号1
9、配列番号20、配列番号21、および配列番号22からなる群より選択される、項目
1に記載のペプチド。
(項目6) インシュリン向性ペプチドまたはそのアナログの誘導体を含む組成物であっ
て、該誘導体が、血液成分上のアミノ基、ヒドロキシル基、またはチオール基と反応して
、安定な共有結合を形成する反応性基を含み、ここで、該反応性基は、スクシンイミジル
基およびマレイミド基からなる群より選択される、ヒトの糖尿病を処置する方法における
使用のための、組成物。
(項目7) 前記誘導体が血液成分と反応性である、項目6に記載の組成物。
(項目8) 前記ペプチドが、配列番号2、配列番号3、配列番号11、配列番号13、
配列番号14、および配列番号15からなる群より選択される、項目6に記載の組成物。
(項目9) 前記ペプチドが、配列番号16、配列番号17、配列番号18、配列番号1
9、配列番号20、配列番号21、および配列番号22からなる群より選択される、項目
6に記載の組成物。
(項目10) インシュリン向性ペプチドの誘導体であって、該誘導体が、ヒト血清アル
ブミン上のチオール基と反応して共有結合を形成するマレイミド基を含む、誘導体。
(項目11) 前記ペプチドが、配列番号2、配列番号3、配列番号11、配列番号13
、配列番号14、および配列番号15からなる群より選択される、項目10に記載の誘導
体。
(項目12) 前記ペプチドが、配列番号16、配列番号17、配列番号18、配列番号
19、配列番号20、配列番号21、および配列番号22からなる群より選択される、項
目10に記載の誘導体。
(項目13) インシュリン向性ペプチドの誘導体を含む組成物であって、該誘導体が、
ヒト血清アルブミン上のチオール基と反応して共有結合を形成するマレイミド基を含む、
ヒトの糖尿病の処置方法における使用のための、組成物。
(項目14) 前記ペプチドが、配列番号2、配列番号3、配列番号11、配列番号13
、配列番号14、および配列番号15からなる群より選択される、項目13に記載の組成
物。
(項目15) 前記ペプチドが、配列番号16、配列番号17、配列番号18、配列番号
19、配列番号20、配列番号21、および配列番号22からなる群より選択される、項
目13に記載の組成物。
(項目16) 糖尿病の患者においてインシュリン向性ペプチドのインビボでの半減期を
長期化する医薬品の製造のための組成物の使用であって、該組成物は、インシュリン向性
ペプチドまたはそのアナログの誘導体を含み、該誘導体は、血液成分上のアミノ基、ヒド
ロキソ基、またはチオール基と反応して、安定な共有結合を形成する反応性基を含み、こ
こで、該反応性基が、スクシンイミジル基およびマレイミド基からなる群より選択される
、組成物の使用。
(項目17) 前記誘導体が血液タンパク質と反応する、項目16に記載の組成物の使用

(項目18) 前記ペプチドが、配列番号2、配列番号3、配列番号11、配列番号13
、配列番号14、および配列番号15からなる群より選択される、項目16に記載の組成
物の使用。
(項目19) 以下からなる群より選択される、インシュリン向性ペプチド:GLP−1
(1−36)−Lys37(ε−MPA)−NH2、GLP−1(1−36)−Lys37
ε−AEEA−AEEA−MPA)−NH2、GLP−1(7−36)−Lys37(ε−
MPA)−NH2、GLP−1(7−36)−Lys37(ε−AEEA−AEEA−MP
A)−NH2、D−Ala2GLP−1(7−36)−Lys37(ε−MPA)−NH2
D−Ala2GLP−1(7−36)−Lys37(ε−AEEA−AEEA−MPA)−
NH2、エキセンジン−4(1−39)−Lys40(ε−MPA)−NH2、エキセンジン
−4(1−39)−Lys40(ε−AEEA−AEEA−MPA)−NH2、エキセンジ
ン−3(1−39)−Lys40(ε−MPA)−NH2、およびエキセンジン−3(1−
39)−Lys40(ε−AEEA−AEEA−MPA)。
(項目20) 以下の式のD−Ala2GLP−1(7−36)−Lys37(ε−MPA
)−NH2
His−(D−Ala)−Glu−Gly−Thr−Phe−Thr−Ser−Asp−
Val−Ser−Ser−Tyr−Leu−Glu−Gly−Gln−Ala−Ala−
Lys−Glu−Phe−Ile−Ala−Trp−Leu−Val−Lys−Gly−
Arg−Lys(ε−MPA)−NH2;および
以下の式のD−Ala2GLP−1(7−36)−Lys37(ε−AEEA−AEEA
−MPA)−NH2
His−D−Ala−Glu−Gly−Thr−Phe−Thr−Ser−Asp−Va
l−Ser−Ser−Tyr−Leu−Glu−Gly−Gln−Ala−Ala−Ly
s−Glu−Phe−Ile−Ala−Trp−Leu−Val−Lys−Gly−Ar
g−Lys(ε−AEEA−AEEA−MPA)−NH2
からなる群より選択される、化合物。
(項目21) D−Ala2GLP−1(7−36)−Lys37(ε−MPA)−NH2
ある、項目20に記載の化合物。
(項目22) D−Ala2GLP−1(7−36)−Lys37(ε−AEEA−AEE
A−MPA)−NH2である、項目20に記載の化合物。
(項目23) 薬学的に受容可能なキャリアと組合せて、項目20に記載の化合物を含む
、組成物。
(項目24) 薬学的に受容可能なキャリアと組合せて、項目21に記載の化合物を含む
、組成物。
(項目25) 薬学的に受容可能なキャリアと組合せて、項目22に記載の化合物を含む
、組成物。
(項目26) 糖尿病を処置するため、または患者におけるインシュリンの発現を増強さ
せるための、項目20に記載の化合物の使用。
(項目27) 糖尿病を処置するため、または患者におけるインシュリンの発現を増強さ
せるための、項目21に記載の化合物の使用。
(項目28) 糖尿病を処置するため、または患者におけるインシュリンの発現を増強さ
せるための、項目22に記載の化合物の使用。
(項目29) 血液タンパク質に対して共有結合した項目20に記載の化合物を含む、結
合体。
(項目30) 前記血液タンパク質がアルブミンである、項目29に記載の結合体。
(項目31) 血液タンパク質に対して共有結合した項目21に記載の化合物を含む、結
合体。
(項目32) 前記血液タンパク質がアルブミンである、項目31に記載の結合体。
(項目33) 血液タンパク質に対して共有結合した項目22に記載の化合物を含む、結
合体。
(項目34) 前記血液タンパク質がアルブミンである、項目33に記載の結合体。
【0005】
(発明の要旨)
これらの要件を満たすために、本発明は、改変されたインシュリン向性ペプチド(IT
P)に関する。本発明は、共有結合を形成するように流動的な血液のタンパク質を含む細
胞性のキャリア上の利用可能な官能基と反応し得る、新規の化学的に反応性であるインシ
ュリン向性ペプチドの誘導体に関する。詳細には、本発明は、共有結合を形成するように
流動的な血液のタンパク質上の利用可能な官能基と反応し得る、グルカゴン様ペプチド(
GLP)およびエキセンジン3およびエキセンジン4のような、インシュリン向性ペプチ
ドの新規の化学的に反応性の誘導体に関する。本発明はまた、共有結合を形成するように
流動性の血液のタンパク質上の利用可能な官能基と反応し得る、インシュリン向性ペプチ
ドの新規の化学的に反応性の誘導体またはアナログに関する。
【0006】
本発明は、安定な共有結合を形成するように血液の化合物上の、アミノ基、ヒドロキシ
ル基、またはチオール基と反応する反応性基を含有している、改変されたインシュリン向
性ペプチドに関する。
【0007】
本発明は、GLP−1およびその誘導体の改変されたフラグメント、詳細には、GLP
−1(7−36)アミドを含有している、インシュリン向性ホルモンに関する。本発明は
さらに、このような化合物の治療的な使用に関し、そして特に、成人発症型真性糖尿病(
II型糖尿病)の処置のための、改変されたGLP−1(7−36)アミドの使用に関す
る。
【0008】
本発明はさらに、改変されたエキセンジン3フラグメントおよびエキセンジン4フラグ
メント、ならびにこのような化合物の治療的な使用に関する。
【0009】
詳細には、本発明は、GLP−1(1−36)−Lys37(ε−MPA)−NH2;G
LP−1(1−36)−Lys37(ε−AAEA−AEEA−MPA)−NH2;GLP
−1(7−36)−Lys37(ε−MPA)−NH2;GLP−1(7−36)−Lys3
7(ε−AEEA−AEEA−MPA)−NH2;D−Ala2GLP−1(7−36)−
Lys37(ε−MPA)−NH2;エキセンジン−4(1−39)−Lys40(ε−MP
A)−NH2;エキセンジン−4(1−39)−Lys40(ε−AEEA−AEEA−M
PA)−NH2;エキセンジン−3(1−39)−Lys40(ε−MPA)−NH2;エキ
センジン−3(1−39)−Lys40(ε−AEEA−AEEA−MPA)−NH2;L
ys26(ε−MPA)GLP−1(7−36)−NH2;GLP−1(7−36)−ED
A−MPA、およびエキセンジン−4(1−39)−EDA−MPAに関する。
【0010】
本発明はさらに、インシュリン向性ペプチドの誘導体を含有している組成物、およびヒ
トの糖尿病の処置のためのその組成物の使用に関する。
【0011】
本発明はさらに、インシュリンの発現を増強するための方法に関する。この方法は、上
記に開示された改変された有効量のインシュリン向性ペプチドを哺乳動物の膵臓のβ型島
細胞に提供する工程を包含する。
【0012】
本発明はさらに、成人発症型真性糖尿病を処置するための方法に関する。この方法は、
このような処置を必要としている患者に対する有効量の上記の有効量のインシュリン向性
ペプチドの投与を含む。
【0013】
本発明はさらに、本発明の改変されたインシュリン向性ペプチドを用いる、他のインシ
ュリン向性ペプチドに関連する疾患および状態の処置に関する。
【0014】
(発明の効果)
本発明によって、それらの低い毒性および治療上の利点を維持しながら、インビボでよ
り長期間持続する作用を提供するように、GLP−1、エキセンジン3、エキセンジン4
、および他のインシュリン向性ペプチドを改変することが提供された。
【発明を実施するための最良の形態】
【0015】
(発明の詳細な説明)
(定義)
本発明の完全な理解を確実にするために、以下の定義が提供される:
インシュリン向性(Insulinotropic)ペプチド:インシュリン向性ペプ
チド(ITP)は、インシュリン向性活性を有するペプチドである。インシュリン向性ペ
プチドは、ホルモンであるインシュリンの合成または発現を刺激するか、またはその合成
の刺激を引き起こす。このようなペプチドとして、グルカゴン様ペプチド、エキセンジン
3、およびエキセンジン4、ならびにインシュリン向性活性を有する他のペプチドのよう
なペプチドの、前駆体、アナログ、フラグメントが挙げられる。
【0016】
グルカゴン様ペプチド:グルカゴン様ペペプチド(GLP)およびGLP誘導体は、一
般的には、高血糖の間にインシュリンの分泌を刺激し、グルカゴンの分泌を抑制し、(プ
ロ)インシュリンの生合成をを刺激し、そして胃を空にすることおよび酸の分泌を減速さ
せる、腸のホルモンである。いくつかのGLPおよびGLP誘導体は、米国特許第5,5
74,008号(これは、本明細書中で参考として援用されている)に開示されているよ
うに、細胞によるグルコースの取り込みを促進するが、インシュリンの発現は刺激しない

【0017】
エキセンジン3ペプチドおよびエキセンジン4ペプチド:エキセンジン3およびエキセ
ンジン4のペプチドおよびペプチド誘導体は、GLP−1に対して約53%相同でありそ
してインシュリン向性活性を有する、39アミノ酸のペプチドである。
【0018】
反応性基:反応性基は、共有結合を形成し得る化学的な基である。このような反応性の
試薬は、改変されたインシュリン向性ペプチドを形成するように、目的のインシュリン向
性ペプチドに対してカップリングされるかまたは結合される。反応性基は、一般的には、
水性の環境において安定であり、そして通常は、カルボキシ、ホスホリル、または好都合
には、エステルまたは混合無水物のいずれかとしてのアシル基、またはイミデートであり
、それによって、流動性の血液成分上の標的部位で、アミノ基、ヒドロキシ、またはチオ
ールのような官能基と共有結合を形成し得る。大部分については、エステルとして、フェ
ノール化合物またはチオールエステル、アルキルエステル、リン酸エステルなどが挙げら
れる。反応性基として、スクシンイミジル基およびマレイミド基が挙げられる。
【0019】
官能基:官能基は、血液成分上の基であり、それに対して、改変されたインシュリン向
性ペプチド上の反応性基が共有結合を形成するように反応する。官能基として、エステル
反応物質に結合するためのヒドロキシル基;マレミド(Mlemide)基およびマレイ
ミド基、イミデート基、ならびにチオエステル基に結合するためのチオール基;反応物質
上のカルボキシ基、ホスホリル基、またはアシル基に結合するためのアシル基、ならびに
アミノ基に結合するためのカルボキシル基があげられる。このような血液成分として、血
液のタンパク質が挙げられる。
【0020】
結合基:結合基は化学的な部分であり、これは、ITPに反応性基を連結(link)
するかまたは結合(connect)する。結合基は、1つ以上のアルキル基(例えば、
メチル基、エチル基、プロピル基、ブチル基など)、アルコキシ基、アルケニル基、アル
キニル基、またはアルキル基で置換されたアミノ基、シクロアルキル基、多環式基、アリ
ール基、ポリアリール基、置換されたアリール基、複素環式基、および置換された複素環
式基を含み得る。結合基はまた、AEA((2−アミノ)エトキシ酢酸)のようなポリエ
トキシアミノ酸、または好ましくは、結合基AEEA([2−(2−アミノ)エトキシ)
]エトキシ酢酸)を含み得る。
【0021】
血液成分:血液成分は、固定されているかまたは流動性のいずれかであり得る。固定さ
れた血液成分は、流動性ではない血液成分であり、そして組織、膜レセプター、間質タン
パク質、フィブリンタンパク質、コラーゲン、血小板、内皮細胞、上皮細胞、ならびにそ
れらに関連する膜および膜状のレセプター、体細胞、骨格筋細胞および平滑筋細胞、神経
成分、骨細胞および破骨細胞、ならびに全ての体組織であり、特に、循環系およびリンパ
系に関連しているものである。流動性の血液成分は、いかなる延長された期間の間も、一
般的には、5分以上、より通常は1分以上は、固定された位置を有さない、血液成分であ
る。これらの血液成分は、膜には会合せず、そして長期間の間血液中に存在し、そして少
なくとも0.1μg/mlの最少濃度で存在する。流動性の血液成分として、血清アルブ
ミン、トランスフェリン、フェリチンおよび免疫グロブリン(例えば、IgMおよびIg
G)が挙げられる。流動性の血液成分の半減期は、少なくとも約12時間である。
【0022】
保護基:保護基は、ペプチド誘導体自体との反応からそのペプチド誘導体を保護するた
めに利用される化学的な部分である。種々の保護基が、本明細書中、および米国特許第5
,493,007号(これは、本明細書中で参考として援用されている)に開示されてい
る。このような保護基として、アセチル基、フルオレニルメチルオキシカルボニル(FM
OC)基、t−ブチルオキシカルボニル(BOC)基、ベンジルオキシカルボニル(CB
Z)基などがあげられる。特定の保護されたアミノ酸が、表1に示される。
【0023】
【表1】

【0024】
敏感な官能基:敏感な官能基は、ITPペプチド上の可能な反応部位を示す原子の基で
ある。存在する場合には、敏感な官能基は、リンカー反応性基の改変のための結合点とし
て選択され得る。敏感な官能基として、カルボキシル基、アミノ基、チオール基、および
ヒドロキシル基があげられるが、これらに限定されない。
【0025】
改変されたペプチド:改変されたITPは、反応性基を結合することによって改変され
ているペプチドであり、そして血液成分に対する結合を通じてペプチダーゼによって安定
化されるペプチドを形成し得る。反応性基は、結合基を通じてかまたは選択的に結合基を
伴わずにかのいずれかで、治療用のペプチドに対して結合させられ得る。1つ以上のさら
なるアミノ酸が、反応性基の結合を容易にするために治療用のペプチドに対して付加され
得ることもまた意図される。改変されたペプチドは、血液成分との結合がインビボで生じ
るようにインビボで投与され得るか、または改変されたペプチドは、まず血液成分とイン
ビトロで結合され得そして得られるペプチダーゼによって安定化されるペプチド(下記に
定義されるような)がインビボで投与され得る。用語「改変された治療用のペプチド」お
よび「改変されたペプチド」は、本出願において互換的に使用され得る。
【0026】
ペプチダーゼによって安定化されるITP:ペプチダーゼによって安定化されるITP
は、改変されたペプチドの反応性基と血液成分の官能基との間で、結合基を伴ってかまた
はそれを伴わずに形成される共有結合を介して血液成分に対して結合されている、改変さ
れたペプチドである。ペプチダーゼによって安定化されるペプチドは、安定化されていな
いペプチドよりもインビボでペプチダーゼの存在下で安定である。ペプチダーゼによって
安定化される治療用のペプチドは、一般的には、同一の配列の安定化されていないペプチ
ドと比較して、少なくとも10〜50%の増大した半減期を有する。ペプチダーゼ安定性
は、血清または血液中の改変された対応の治療用のペプチドの半減期に対して、血清また
は血液中の改変されていないITPの半減期を比較することによって決定される。半減期
は、改変されたペプチドかまたは改変されていないペプチドの投与後に血清または血液を
サンプリングすること、およびペプチドの活性を決定することによって、決定される。活
性を決定することに加えて、ITPの長さはまた、HPLCおよび質量スペクトル分析に
よって測定され得る。
【0027】
(発明の詳細な説明)
これらの定義を考慮すると、本発明の焦点は、それらの顕著な治療上の特性を改変する
ことなく、バイオアベイラビリティを改善するように、半減期を延長するように、および
タンパク質キャリア上での選択的な結合を通じての分布を広げるように、インシュリン向
性ペプチドを改変することである。本発明のための(限定的ではない)選り抜きのキャリ
アは、マレイミド部分を用いて誘導体化されたインシュリン向性のペプチドによって、そ
の遊離チオールを介して結合されたアルブミンである。
【0028】
(1.インシュリン向性ペプチド)
(A.GLP−1およびその誘導体)
ホルモンであるグルカゴンは、高分子量の前駆体分子として合成されることが公知であ
る。これは続いて以下の3つのペプチドへとタンパク質分解的に切断される:グルカゴン
、グルカゴン様ペプチド1(GLP−1)、およびグルカゴン様ペプチド2(GLP−2
)。GLP−1は、配列番号1に示されるように、そのプロセシングされていない形態に
おいては37アミノ酸を有する。プロセシングされていないGLP−1は、インシュリン
の生合成の誘導を媒介することは本質的には不可能である。しかし、プロセシングされて
いないGLP−1ペプチドは、天然においては、配列番号2のGLP−1のアミノ酸7−
37(「GLP−1(7−37)」)を有する31アミノ酸の長いペプチド(7−37ペ
プチド)に転換される。GLP−1(7−37)はまた、GLP−1(7−36)を生じ
るようにC末端のグリシンのタンパク質分解性除去によるさらなるプロセシングを受け得
る。GLP−1(7−36)はまた、C末端残基であるアルギニンがアミド化された形態
であるアルギニンアミドであるGLP−1(7−36)アミドとして、優勢に存在する。
このプロセシングは、腸において、そして膵臓においてははるかに少ない程度で生じ、そ
してGLP−1(7−37)のインシュリン向性活性を有するポリペプチドを生じる。
【0029】
化合物は、ホルモンであるインシュリンを刺激することが可能であるか、またはインシ
ュリンの合成もしくは発現を刺激することが可能である場合には、「インシュリン向性活
性」を有すると言われる。GLP−1(7−37)およびGLP−1(7−36)のホル
モンの活性は、膵臓のβ細胞について特異的であるようであり、ここではこれは、インシ
ュリンの生合成を誘導するようである。本発明のグルカゴン様ペプチドホルモンは、成人
発症型真性糖尿病(インシュリンの分泌の動態が異常である高血糖によって特徴付けられ
る状態)の病因の研究において有用である。さらに、グルカゴン様ペプチドは、この疾患
の治療および処置において、そして高血糖の治療および処置において有用である。
【0030】
ヒトのGLP−1の決定されたアミノ酸配列から選択されたペプチド部分(フラグメン
ト)は、本発明を含む開発の開始点を構成する。互換的な用語「ペプチドフラグメント」
および「ペプチド部分」は、天然に存在するアミノ酸配列から誘導することが可能な、合
成のアミノ酸配列および天然に存在するアミノ酸配列の両方を意味する。
【0031】
GLP−1のアミノ酸配列は、いく人かの研究者らによって報告されている(Lope
z,L.C.ら、Proc.Natl.Acad.Sci.USA 80:5485−5
489(1983);Bell,G.I.ら、Nature 302:716−718(
1983);Heinrich,G.ら、Endocrinol.115:2176−2
181(1984))。プレプログルカゴンmRNAおよびその対応するアミノ酸配列の
構造は周知である。グルカゴンおよび2つのインシュリン向性ペプチドへの、前駆体遺伝
子産物であるプログルカゴンのタンパク質分解性プロセシングが、特徴付けられている。
本明細書中で使用される場合は、GLP−1(1−37)の表記は、1(N末端)から3
7(C末端)までの全てのアミノ酸を有するGLP−1ポリペプチドをいう。同様に、G
LP−1(7−37)は、7(N末端)から37(C末端)までの全てのアミノ酸を有す
るGLP−1ポリペプチドをいう。同様に、GLP−1(7−36)は、7番目(N末端
)から36番目(C末端)までの全てのアミノ酸を有するGLP−1ポリペプチドをいう

【0032】
1つの実施形態においては、GLP−1(7−36)およびそのペプチドフラグメント
は、以下に詳細に記載されるような従来の手段によって、例えば、Merrifield
,J.M.(Chem.Soc.85:2149(1962))、ならびに、Stewa
rtおよびYoung(Solid Phase Peptide Systhesis
(Freeman,San Francisco,1969)、27−66頁(これらは
、本明細書中で参考として援用されている))によって記載されている周知の固相ペプチ
ド合成によって、合成される。しかし、例えば、タンパク質分解性酵素を使用して天然に
存在するアミノ酸配列を断片化することによって、プログルカゴンポリペプチドのフラグ
メント、GLP−1のフラグメントを得ることもまた、可能である。さらに、Mania
tis,T.ら、Molecular Biology:A Laboratory M
anual,Cold Spring Harbor,New York(1982)(
これは、本明細書中で参考として援用されている)によって開示されているような、組換
えDNA技術の使用を通じて、プログルカゴンペプチドの所望のフラグメントまたはGL
P−1の所望のフラグメントを得ることが可能である。
【0033】
本発明は、GLP−1(1−37)およびGLP−1(7−36)のような、GLP−
1から誘導することが可能であるペプチドを含む。ペプチドは、それが天然に存在する配
列を断片化することによって得られ得るか、またはそれが天然に存在するアミノ酸配列の
配列の知見またはその配列をコードする遺伝物質(DNAまたはRNA)の配列の知見に
基づいて合成され得る場合には、「天然に存在するアミノ酸配列から誘導することが可能
である」と言われる。
【0034】
GLP−1(1−37)および特に、GLP−1(7−36)のような、GLP−1の
「誘導体」と言われる分子もまた、本発明の範囲に含まれる。このような「誘導体」は、
以下の特徴を有する:(1)GLP−1またはGLP−1の同様の大きさのフラグメント
と実質的な相同性を共有する;(2)インシュリン向性ホルモンとして機能し得る;およ
び(3)本明細書中に提供されるアッセイの少なくとも1つを使用して、その誘導体は以
下のいずれかを有する:(i)GLP−1のインシュリン向性活性を上回るインシュリン
向性活性、またはより好ましくは、(ii)誘導体が10-10Mの濃度で存在する場合に
もなお検出され得るインシュリン向性活性、または最も好ましくは、(iii)誘導体が
10-11Mの濃度で存在する場合にもなお検出され得るインシュリン向性活性。
【0035】
GLP−1の誘導体は、誘導体のアミノ酸配列が、GLP−1(1−37)のアミノ酸
配列と、少なくとも80%、そしてより好ましくは、少なくとも90%、そして最も好ま
しくは、少なくとも95%同一である場合には、GLP−1と「実質的な相同性」を共有
すると言われる。
【0036】
本発明の誘導体として、天然に存在するGLP−1ペプチドの配列に対して実質的に相
同である配列を含有することに加えて、それらのアミノ末端および/またはそれらのカル
ボキシ末端で1つ以上のさらなるアミノ酸を含有し得る、GLP−1フラグメントが挙げ
られる。従って、本発明は、このようなポリペプチドが、GLP−1のインシュリン向性
活性を超えるインシュリン向性活性を有する限りにおいては、天然に存在するGLP−1
配列中には存在しない1つ以上のアミノ酸を含み得るGLP−1のポリペプチドフラグメ
ントに関する。さらなるアミノ酸は、D−アミノ酸またはL−アミノ酸、あるいはそれら
の組合せであり得る。
【0037】
本発明はまた、天然に存在するGLP−1ペプチドの配列に対して実質的に相同である
配列を含有しているが、GLP−1ペプチド上で天然に見出されるそれらのアミノ末端お
よび/またはカルボキシ末端で1つ以上のさらなるアミノ酸を欠失し得る、GLP−1フ
ラグメントを含む。従って、本発明は、このようなポリペプチドがGLP−1のインシュ
リン向性活性を上回るインシュリン向性活性を有する限りは、天然に存在するGLP−1
配列中に通常は存在する1つ以上のアミノ酸を欠失し得るGLP−1のポリペプチドフラ
グメントに関する。
【0038】
本発明はまた、そのような改変体が上記のGLP−1誘導体の活性と実質的に同一のイ
ンシュリン向性活性を有する限りにおいては、重要でないアミノ酸置換を有する(そして
従って、天然の配列のものとは異なるアミノ酸配列を有する)上記のフラグメントの明ら
かなまたは平凡な改変体を含む。明らかなまたは平凡な置換の例として、別の残基に代え
ての1つの塩基性アミノ酸での置換(例えば、Lysに代わってArg)、別の残基に代
えての1つの疎水性残基での置換(例えば、Ileに代えてのLeu)、または別の残基
に代えての1つの芳香族残基での置換(例えば、Tyrに代えてのPhe)などが挙げら
れる。
【0039】
インシュリン向性活性を有するGLP−1誘導体に加えて、細胞によるグルコースの取
り込みを刺激するがインシュリンの発現または分泌は刺激しない、GLP−1誘導体が、
本発明の範囲内である。このようなGLP−1誘導体は、米国特許第5,574,008
号に記載されている。
【0040】
本発明での使用が見出される、細胞によるグルコースの取り込みを刺激するがインシュ
リンの発現または分泌は刺激しないGLP−1誘導体として、以下が挙げられる:
1−Ser−Tyr−Leu−Glu−Gly−Gln−Ala−Ala−Lys−
Glu−Phe−Ile−Ala−Trp−Leu−Val−Xaa−Gly−Arg−
2(配列番号3)(ここでは、R1は、a)H2N;b)H2N−Ser;c)H2N−V
al−Ser;d)H2N−Asp−Val−Ser;e)H2N−Ser−Asp−Va
l−Ser(配列番号4);f)H2N−Thr−Ser−Asp−Val−Ser(配
列番号5);g)H2N−Phe−Thr−Ser−Asp−Val−Ser(配列番号
6);h)H2N−Thr−Phe−Thr−Ser−Asp−Val−Ser(配列番
号7);i)H2N−Gly−Thr−Phe−Thr−Ser−Asp−Val−Se
r(配列番号8);j)H2N−Glu−Gly−Thr−Phe−Thr−Ser−A
sp−Val−Ser(配列番号9);またはk)H2N−Ala−Glu−Gly−T
hr−Phe−Thr−Ser−Asp−Val−Ser(配列番号10)から選択され
る)。このペプチド中で、Xは、LysまたはArgから選択され、そしてR2は、NH2
、OH、Gly−NH2、またはGly−OHから選択される。これらのペプチドは、C
末端のGLP−1フラグメントであり、これは、米国特許第5,574,008号に記載
されているように、インシュリン向性活性は有さないが、それにもかかわらず、糖尿病お
よび高血糖の状態を処置するために有用である。
【0041】
(B.エキセンジン3ペプチドおよびエキセンジン4ペプチド)
エキセンジン3およびエキセンジン4は、39アミノ酸のペプチドである(残基2およ
び残基3で異なる)。これらは、GLP−1に対して約53%相同であり、そしてインシ
ュリン向性試薬としての使用を見出されている。
【0042】
エキセンジン−3(配列番号11)の配列は、HSDGTFTSDLSKQMEEEA
VRLFIEWLKNGGPSSGAPPPSであり、そしてエキセンジン−4(配列番
号12)の配列は、HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGP
SSGAPPPSである。
【0043】
本発明はまた、以下のアミノ酸配列を含有しているエキセンジン−4のインシュリン向
性のフラグメントを含む:エキセンジン−4(1−31)(配列番号13)HGEGTF
TSDLSKQMEEAVRLFIEWLKNGGPY、およびエキセンジン−4(1−
31)(配列番号14)HGEGTFTSDLSKQMEEEAVRLFIEWLKNG
GY。
【0044】
本発明はまた、以下のアミノ酸配列を含有しているエキセンジン−4の阻害フラグメン
トを含む:
エキセンジン−4(9−39)(配列番号15)
DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS。
【0045】
実施例に示される他のインシュリン向性ペプチドが、配列番号16〜22として示され
る。
【0046】
本発明は、天然に存在するエキセンジン3ペプチドおよびエキセンジン4ペプチドから
誘導することが可能であるペプチドを含む。ペプチドは、それが天然に存在する配列を断
片化することによって得られ得るか、またはそれが天然に存在するアミノ酸配列の配列の
知見またはその配列をコードする遺伝物質(DNAまたはRNA)の配列の知見に基づい
て合成され得る場合には、「天然に存在するアミノ酸配列から誘導することが可能である
」と言われる。
【0047】
エキセンジン3およびエキセンジン4の「誘導体」と呼ばれる分子が、本発明の範囲に
含まれる。このような「誘導体」は、以下の特徴を有する:(1)エキセンジン3もしく
はエキセンジン4と同様のフラグメントと実質的な相同性を共有するか、またはエキセン
ジン3もしくはエキセンジン4と同様の大きさのフラグメントを共有する;(2)インシ
ュリン向性ホルモンとして機能し得る;および(3)本明細書中に提供されるアッセイの
少なくとも1つを使用して、その誘導体は、以下のいずれかを有する:(i)エキセンジ
ン3もしくはエキセンジン4のいずれかのインシュリン向性活性を上回るインシュリン向
性活性、またはより好ましくは、(ii)誘導体が10-10Mの濃度で存在する場合にも
なお検出され得るインシュリン向性活性、または最も好ましくは、(iii)誘導体が1
-11Mの濃度で存在する場合にもなお検出され得るインシュリン向性活性。
【0048】
エキセンジン3およびエキセンジン4の誘導体は、誘導体のアミノ酸配列が、少なくと
も80%、およびより好ましくは、少なくとも90%、そして最も好ましくは少なくとも
95%が、エキセンジン3もしくはエキセンジン4のいずれかのアミノ酸配列または誘導
体と同じ数のアミノ酸残基を有するエキセンジン3もしくはエキセンジン4のフラグメン
トのアミノ酸配列と同じである場合に、エキセンジン3およびエキセンジン4と「実質的
な相同性」を共有すると言われる。
【0049】
本発明の誘導体は、天然に存在するエキセンジン3ペプチドまたはエキセンジン4ペプ
チドの配列と実質的に相同な配列を含むことに加えて、そのアミノ末端および/またはカ
ルボキシ末端に1つ以上のさらなるアミノ酸を含み得る、エキセンジン3フラグメントま
たはエキセンジン4フラグメントを含む。従って、本発明は、このようなポリペプチドが
、エキセンジン3またはエキセンジン4のものを超えるインシュリン向性活性を有する限
りにおいては、天然に存在するエキセンジン3配列またはエキセンジン4配列中には存在
しないかもしれない1つ以上のアミノ酸を含み得る、エキセンジン3またはエキセンジン
4のポリペプチドフラグメントに関する。
【0050】
同様に、本発明は、天然に存在するエキセンジン3ペプチドまたはエキセンジン4ペプ
チドの配列に対して実質的に相同である配列を含有しているが、エキセンジン3ペプチド
またはエキセンジン4ペプチド上で天然に見出されるそれらのアミノ末端および/または
カルボキシ末端で1つ以上のさらなるアミノ酸を欠失し得る、エキセンジン3フラグメン
トまたはエキセンジン4フラグメントを含む。従って、本発明は、このようなポリペプチ
ドがエキセンジン3またはエキセンジン4のものを上回るインシュリン向性活性を有する
限りは、天然に存在するエキセンジン3配列またはエキセンジン4配列中に通常は存在す
る1つ以上のアミノ酸を欠失し得る、エキセンジン3またはエキセンジン4のポリペプチ
ドフラグメントに関する。
【0051】
本発明はまた、そのような改変体が上記のエキセンジン3誘導体またはエキセンジン4
誘導体の活性と実質的に同一のインシュリン向性活性を有する限りにおいては、重要でな
いアミノ酸置換を有する(そして従って、天然の配列のものとは異なるアミノ酸配列を有
する)上記のフラグメントの明らかなまたは平凡な改変体を含む。明らかなまたは平凡な
置換の例として、別の残基に代わる1つの塩基性アミノ酸での置換(例えば、Lysに代
えててのArg)、別の残基に代えての1つの疎水性残基での置換(例えば、Ileに代
えてのLeu)、または別の残基に代えての1つの芳香族残基での置換(例えば、Tyr
に代えてのPhe)などが挙げられる。
【0052】
(2.改変されたインシュリン向性ペプチド)
本発明は、改変されたインシュリン向性ペプチドおよびそれらの誘導体に関する。本発
明の改変されたインシュリン向性ペプチドとして、共有結合を形成するように血液成分上
の利用可能な反応性の官能基と反応し得る反応性基が挙げられる。本発明はまた、そのよ
うな改変、血液成分とのそのような組合せ、およびそれらの使用のための方法に関する。
これらの方法は、改変されたインシュリン向性ペプチドのインビボでの有効な治療上の半
減期を延長させることを含む。
【0053】
タンパク質上の官能基と共有結合を形成するために、当業者は、化学的に反応性基(反
応部分)として、広範な種々の活性なカルボキシル基を、ヒドロキシル部分がインシュリ
ン向性ペプチドを改変するために必要とされるレベルで生理学的に受容可能である場合に
は、特に、エステルを、使用し得る。多数の異なるヒドロキシル基が、これらの結合剤と
して使用され得、最も便利なものは、N−ヒドロキシスクシンイミド(NHS)、N−ヒ
ドロキシ−スルホスクシンイミド(スルホ−NHS)、マレイミド−ベンゾイル−スクシ
ンイミド(MBS)、γ−マレイミド−ブチルオキシスクシンイミドエステル(GMBS
)、およびマレイミドプロピオン酸(MPA)である。
【0054】
第1級アミンが、以下に模式的に示されるように、NHSエステルの主な標的である。
タンパク質のN末端上に存在する接近可能なα−アミン基が、NHSエステルと反応する
。しかし、タンパク質上のα−アミノ基は、NHSのカップリングのためには所望されな
いかもしれないし、または利用可能ではないかもしれない。5個のアミノ酸がそれらの側
鎖上に窒素を有するが、リジンのε−アミンだけがNHSエステルと有意に反応する。ア
ミド結合は、NHSエステル結合反応が、以下に模式的に示されるように第1級のアミン
と反応してN−ヒドロキシスクシンイミドを放出する場合に、形成される。反応性基を含
有しているこれらのスクシンイミドは、スクシンイミジル基と本明細書中で呼ばれる。
【0055】
【化1】

【0056】
本発明の好ましい実施形態においては、タンパク質上の官能基は、チオール基であり、
そして化学的に反応性基は、例えば、(GMBAまたはMPA)のようなマレイミドを含
有している基である。GMBAはγ−マレイミド−ブチルアミドの代表である。このよう
なマレイミドを含有している基は、マレイミド基と本明細書中で呼ばれる。
【0057】
マレイミド基は、反応混合物のpHが6.5と7.4との間で維持される場合には、ペ
プチド上のスルフヒドリル基について最も選択的である。pH7.0において、スルフヒ
ドリルとのマレイミド基の反応速度は、アミンとの反応速度よりも1000倍速い。マレ
イミド基とスルフヒドリルとの間での安定なチオエーテル結合が、形成される。これは、
生理学的な条件下では切断され得ない。
【0058】
【化2】

【0059】
本発明のインシュリン向性ペプチドおよびペプチド誘導体は、血液成分の特異的な標識
および非特異的な標識について改変され得る。
【0060】
(A.特異的な標識)
好ましくは、本発明の改変されたインシュリン向性ペプチド(ITP)は、流動性の血
液のタンパク質上のチオール基と特異的に反応するように設計される。このような反応は
、好ましくは、血清アルブミンまたはIgGのような流動性の血液のタンパク質上のチオ
ール基へのマレイミド結合(例えば、GMBS,MPA、または他のマレイミドから調製
される)を用いて改変された治療用のペプチドの共有結合によって確立される。
【0061】
特定の環境下では、マレイミドでの特異的な標識は、NHSおよびスルホ−NHSのよ
うな基での流動性のタンパク質の非特異的な標識を上回るいくつかの利点を与える。チオ
ール基は、アミノ基よりもインビボでは豊富ではない。従って、本発明のマレイミド誘導
体は、より少ないタンパク質に共有結合する。例えば、アルブミン(最も豊富な血液のタ
ンパク質)中には、単一のチオール基のみが存在する。従って、ITP−マレイミド−ア
ルブミン結合体は、アルブミンに対して約1:1のモル比のIPを含む傾向にある。アル
ブミンに加えて、IgG分子(クラスII)もまた、遊離チオールを有する。IgG分子
および血清アルブミンが血液中の可溶性のタンパク質の大部分を構成するので、これらは
また、マレイミドによって改変されたITPに共有結合するために利用可能な血液中の遊
離チオール基の大部分を構成する。
【0062】
さらに、遊離チオールを含有している血液のタンパク質の中でも、マレイミドでの特異
的な標識は、アルブミン自体の特有の特徴に起因して、ITP−マレイミド−アルブミン
結合体の優先的な形成を導く。種間で高度に保存されたアルブミンの単一の遊離チオール
基は、アミノ酸残基34(Cys34)に位置する。アルブミンのCys34が、他の遊離チ
オールを含有しているタンパク質上の遊離チオールと比較して増大した反応性を有するこ
とが、最近実証されている。このことは、アルブミンのCys34についての5.5という
非常に低いpK値に一部起因する。これは、一般的なシステイン残基についての典型的な
pK値(代表的には、約8)よりもはるかに低い。この低いpKに起因して、通常の生理
学的条件下ではアルブミンのCys34は、主にイオン化された形態であり、これは、報告
されているように、その反応性を劇的に増大させる。Cys34の低いpK値に加えて、C
ys34の反応性を増強する別の因子がその位置にあり、これは、アルブミンの領域Vの1
つのループの表面付近の裂け目にある。この位置は、Cys34を全ての種のリガンドに対
して非常に有用にし、そしてフリーラジカルのトラップおよび遊離チオールの捕捉剤とし
てのCys34の生物学的な役割において重要な因子である。これらの特性は、Cys34
ITP−マレイミドと高く反応性にし、そして反応速度の加速は、他の遊離チオールを含
有しているタンパク質とのTP−マレイミドの反応の速度と比較して、1000倍程度高
くし得る。
【0063】
ITP−マレイミド−アルブミン結合体の別の利点は、特にCys34でのアルブミンへ
のペプチドの1:1のローディングに関連する再現性である。他の技術(例えば、グルタ
ルアルデヒド、DCC、EDC)、および他の(例えば、遊離アミン)の化学的活性化は
、この選択性を欠いている。例えば、アルブミンは、52個のリジン残基を含有し、その
うちの25〜30個が、アルブミンの表面上に位置し、そして結合のために接近可能であ
る。これらのリジン残基を活性化すること、あるいはこれらのリジン残基を通じてカップ
リングするようにペプチドを改変することによって、結合体の不均質の集団を生じる。ア
ルブミンに対して1:1のモル比のペプチドが使用される場合にもなお、収量は、複数の
結合産物からなり、いくつかは、1つのアルブミンあたり0、1、2、またはそれ以上の
ペプチドを含有し、それらのそれぞれが、25〜30個の利用可能なリジン部位のいずれ
か1つでランダムにカップリングされたペプチドを有する。多数の組合せが可能である場
合は、各群の正確な組成物および性質の特徴付けは困難になり、そして群間での再現性が
ほとんど不可能である。このことは、このような結合体を治療薬としてより所望されなく
する。さらに、アルブミンのリジン残基を介しての結合は1つのアルブミン分子当たりに
より多い治療薬を送達する利点を少なくとも有するようであるが、複数の研究が、アルブ
ミンに対して1:1の比の治療薬が好ましいことを示した。Stehleら、「The
Loading Rate Determines Tumor Targeting
Properties of Methotrexate−Albumin Conju
gates in Rats」、Anti−Cancer Drugs、第8巻、677
−685頁(1977)(その全体において本明細書中で参考として援用されている)に
よる記事においては、編者らは、グルタルアルデヒドを介して結合したアルブミンに対し
て1:1の比の抗ガンメトトレキセートが最も見込みのある結果を生じたことを報告する
。これらの結合体は、腫瘍細胞によって取り込まれるが、結合体(5:1から20:1の
メトトレキセート分子を保有している)は、変化したHPLCプロフィールを有し、そし
てインビボで肝臓によって迅速に取りこまれた。これらのより高い比では、アルブミンに
対する立体構造的な変化は、治療用のキャリアとしてのその有効性を減少させると想定さ
れる。
【0064】
インビボでのマレイミド−ITPの制御された投与を通じて、当業者は、インビボでの
アルブミンおよびIgGの特異的な標識を制御し得る。代表的な投与においては、投与さ
れたマレイミド−ITPの80〜90%が、アルブミンを標識し、そして5%未満がIg
Gを標識する。遊離チオール(例えば、グルタチオン)の微量の標識もまた生じる。この
ような特異的な標識は、投与された試薬の推測半減期の正確な計算を可能にするので、イ
ンビボでの使用に好ましい。
【0065】
制御された特異的なインビボでの標識を提供することに加えて、マレイミド−TPは、
エキソビボでの血清アルブミンおよびIgGの特異的な標識を提供し得る。このようなエ
キソビボでの標識は、血清アルブミンおよび/またはIgGを含有している血液、血清、
または生理食塩溶液に対するマレイミド−ITPの添加を含む。一旦、マレイミド−TP
を用いてエキソビボで改変すると、血液、血清、または生理食塩溶液は、インビボでの処
置のために血液に再投与され得る。
【0066】
NHS−ペプチドとは対照的に、マレイミド−ITPは、一般的には、水性溶液の存在
下、および遊離アミンの存在下では極めて安定である。マレイミド−ITPが遊離チオー
ルとのみ反応するので、保護基は、一般的には、マレイミド−ITPをそれ自体との反応
から防ぐためには必須ではない。さらに、ペプチドの増大した安定性は、インビボでの使
用に適切な高度に精製された生成物を調製するための、HPLCのようなさらなる精製工
程の使用を可能にする。最後に、増大した化学的な安定性は、より長い有効期間を有する
生成物を提供する。
【0067】
(B.非特異的な標識)
本発明のITPはまた、血液成分の非特異的な標識のために改変され得る。アミノ基へ
の結合が、一般的には使用され、特に、非特異的な標識のためのアミド結合の形成が使用
される。このような結合を形成するために、ITPに対してカップリングされる化学的に
反応性の基として、広範な種々の活性なカルボキシル基(ヒドロキシル部分が、必要とさ
れるレベルで生理学的に受容可能である場合には、特に、エステル)を使用し得る。多数
の異なるヒドロキシル基が、これらの結合剤中で使用され得るが、最も都合の良いものは
、N−ヒドロキシスクシンイミド(NHS)およびN−ヒドロキシ−スルホスクシンイミ
ド(スルホ−NHS)である。
【0068】
利用され得る他の結合剤が、米国特許第5,612,034号に記載されており、これ
は、本明細書中で本明細書により援用されている。
【0069】
非特異的なITPの化学的に反応性の基がインビボで反応し得る種々の部位として、細
胞(特に、赤血球細胞(赤血球)および血小板)、ならびにタンパク質(例えば、免疫グ
ロブリン(IgGおよびIgM、血清アルブミン、フェリチン、ステロイド結合タンパク
質、トランスフェリン、チロキシン結合タンパク質、α−2−マクログロブリンなどを含
む)が挙げられる。寿命が長くない誘導されたITPと反応するこれらのレセプターは、
一般的には、およそ3日以内にヒト宿主から排除される。上記に示されるタンパク質(細
胞のタンパク質を含む)は、少なくとも3日、血流中に留まり、そして特に、血液中での
濃度に基づく半減期に関しては、5日以上留まり得る(通常は、60日を越えない、より
通常は、30日を越えない)。
【0070】
大部分については、反応は、血液中の流動性の成分とであり、特に、血液タンパク質お
よび細胞、より詳細には、血液タンパク質および赤血球である。「流動性」によって、任
意の延長された期間の間(一般的には、5分を超えない、より通常は1分以上を超えない
)固定された位置を有さない成分が意図されるが、いくつかの血液成分は、延長された期
間の間相対的に不動である場合があり得る。最初に、標識されたタンパク質および細胞の
比較的均質な集団が存在する。しかし、大部分については、投与後数日以内の集団は、血
流中の標識されたタンパク質の半減期に依存して最初の集団から実質的に変化する。従っ
て、通常はおよそ3日よりも長い間に、IgGは、血流中の優先的に標識されたタンパク
質となる。
【0071】
通常は、投与後5日までに、IgG、血清アルブミン、および赤血球が、IgG、Ig
Mを有する(実質的にはより少ない程度で)血液中の結合した成分の、少なくとも約60
モル%、通常は少なくとも約75モル%であり、そして、血清アルブミンは非細胞性の結
合した成分の、少なくとも約50モル%であり、通常は少なくとも約75モル%であり、
より通常は少なくとも約80モル%である。
【0072】
血液成分に対して非特異的なITPの所望の結合体は、患者(ヒトまたは他の哺乳動物
であり得る)に対する直接的なITPの投与によってインビボで調製され得る。投与は、
大量瞬時投与の形態で行われ得るか、またはメーターで測定される流れなどを使用する注
入によってゆっくりと経時的に導入され得る。
【0073】
所望される場合は、被検結合体はまた、本発明の誘導体化されたITPと血液を混合す
ることによってエキソビボで調製され得る。このことによって、血液成分上の反応性の官
能基への改変されたITPの共有結合が可能となり、次いで、宿主へ結合した血液を戻す
ことまたは投与することが可能となる。さらに、上記はまた、個々の血液成分、または限
定された数の成分(例えば、赤血球細胞、イムノグロブリン、血清アルブミンなど)を最
初に精製し、そして成分を化学的に反応性のITPとエキソビボで混合することによって
もまた、達成され得る。次いで、標識された血液または血液成分は、被検物の治療的に有
効な結合体をインビボで提供するように、宿主に戻され得る。血液はまた、エキソビボで
の取扱いの間の凝固を防ぐために処理され得る。
【0074】
(3.改変ITPの合成)
(A.ITP合成)
ITPフラグメントは、当業者に公知の固相ペプチド化学の標準的な方法によって合成
され得る。例えば、ITPフラグメントは、StewartおよびYoung(Stew
art,J.M.およびYoung,J.D.、Solid Phase Peptid
e Systhesis、第2版、Pierce Chemical Company,
Rockford,III、(1984))によって記載されている手順に従って、Ap
plied Biosystems synthesizerを使用して、固相化学技術
によって合成され得る。同様に、複数のフラグメントが合成され得、次いでより大きなフ
ラグメントを形成するように互いに連結され得る。これらの合成のペプチドフラグメント
はまた、特異的な位置でのアミノ酸置換を伴って作成され得る。
【0075】
固相ペプチド合成については、多くの技術の要旨が、J.M.Stewart,および
J.D.Young、Solid Phase Peptide Systhesis、
W.H.Freeman Co.(San Francisco)、1963、ならびに
J.Meienhofer,Hormonal Proteins and Pepti
des、第2巻、46頁、Academic
Press(New York)、1973に見出され得る。伝統的な溶液合成につい
ては、G.SchroderおよびK.Lupke、The Peptides、第1巻
、Academic Press(New York)を参照のこと。一般的には、これ
らの方法は、1つ以上のアミノ酸または適切に保護されたアミノ酸の、成長しつつあるペ
プチド鎖への連続的な付加を含む。通常は、最初のアミノ酸のアミノ基またはカルボキシ
ル基のいずれかが、適切な保護基によって保護される。次いで、保護されたかまたは誘導
体化されたアミノ酸は、不活性な固体支持体に対して付着させられるか、または適切に保
護された相補(アミノまたはカルボキシル)基を有する配列中に次のアミノ酸を付加し、
そしてアミド結合を形成するために適切な条件下で付加することによって、溶液中で利用
されるかのいずれかである。次いで、保護基が、この新しく付加されたアミノ酸残基から
除去され、そして次のアミノ酸(適切に保護された)が付加され、そしてこれが続く。
【0076】
所望されるアミノ酸の全てが適切な配列に連結された後、任意の残存している保護基(
および任意の固体支持体)が連続的に除去されるか、または同時に最後のポリペプチドを
与える。この一般的な手順の単純な改変によって、例えば、脱保護の後にペンタペプチド
を形成するように適切に保護されたジペプチドを有する保護されたトリペプチドをカップ
リングさせる(キメラ中心をラセミ化しない条件下で)ことによって、成長しつつある鎖
に同時に1つ以上のアミノ酸を付加することが可能である。
【0077】
本発明の化合物を調製する特に好ましい方法は、固相ペプチド合成を含む。ここでは、
アミノ酸のα−N末端が、酸性または塩基性の敏感な基によって保護される。このような
保護基は、ペプチド結合の形成の条件に対して安定である特性を有するはずであるが、成
長しつつあるペプチド鎖の崩壊または本明細書中に含まれる任意のキメラ中心のラセミ化
を伴わずに、容易に除去可能である。安定な保護基は、以下である:9−フルオレニルメ
チルオキシカルボニル(Fmoc)、t−ブチルオキシカルボニル(Boc)、ベンジル
オキシカルボニル(Cbz)、ビフェニルイソプロピルオキシカルボニル、t−アミルオ
キシカルボニル、イソボルニルオキシカルボニル、α,α−ジメチル−3,5−ジメトキ
シベンジルオキシカルボニル、o−ニトロフェニルスルフェニル、2−シアノ−t−ブチ
ルオキシカルボニルなど。9−フルオレニルメチルオキシカルボニル(Fmoc)保護基
が、ITPフラグメントの合成のためには特に好ましい。他の好ましい側鎖保護基は、側
鎖のアミノ基(リジンおよびアルギニンのような)については、2,2,5,7,8−ペ
ンタメチルクロマン−6−スルホニル(pmc)、ニトロ、p−トルエンスルホニル、4
−メトキシベンゼンスルホニル、Cbz、Boc、およびアダマンチルオキシカルボニル
;チロシンについては、ベンジル、o−ブロモベンジルオキシカルボニル、2,6−ジク
ロロベンジル、イソプロピル、t−ブチル(t−Bu)、シクロヘキシル、シクロペニル
、およびアセチル(Ac);セリンについては、t−ブチル、ベンジル、およびテトラヒ
ドロピラニル;ヒスチジンについては、トリチル、ベンジル、Cbz、p−トルエンスル
ホニル、および2,4−ジニトロフェニル;トリプトファンについては、ホルミル;アス
パラギン酸およびグルタミン酸については、ベンジルおよびt−ブチル、そしてシステイ
ンについては、トリフェニルメチル(トリチル)である。
【0078】
固相ペプチド合成方法においては、α−C末端のアミノ酸が、適切な固体支持体または
樹脂に対して結合させられる。上記の合成に有用な適切な固体支持体は、段階的な濃縮−
脱保護反応の試薬および反応条件に対して不活性であり、そして使用される媒体中に不溶
性であるような材料である。α−C末端のカルボキシペプチドの合成のための好ましい固
相支持体は、4−ヒドロキシメチルフェノキシメチル−コポリ(スチレン−1%ジビニル
ベンゼン)である。α−C末端のアミドペプチドについての好ましい固相支持体は、Ap
plied Biosystems(Foster City,Calif.)から入手
可能な4−(2’,4’−ジメトキシフェニル−Fmoc−アミノメチル)フェノキシア
セトアミドエチル樹脂である。α−C末端のアミノ酸は、ジクロロメタンまたはDMFの
ような溶媒中で10°と50℃との間の温度で約1時間から約24時間までの、4−ジメ
チルアミノピリジン(DMAP)、1−ヒドロキシベンゾトリアゾール(HOBT)、ベ
ンゾトリアゾール−1−イルオキシ−トリス(ジメチルアミノ)ホスホニウム−ヘキサフ
ルオロホスフェート(BOP)、またはビス(2−オキソ−3−オキサゾリジニル)ホス
フィンクロライド(BOPCI)によって媒介されるカップリングを伴うかまたはそれを
伴わない、N,N’−ジシクロヘキシルカルボジイミド(DCC)、N,N’−ジイソプ
ロピルカルボジイミド(DIC)、またはO−ベンゾトリアゾール−1−イル−N,N,
N’、N’−テトラメチルウロニウム−ヘキサフルオロホスフェート(HBTU)の手段
によって、樹脂にへカップリングされる。
【0079】
固体支持体が4−(2’,4’−ジメトキシフェニル−Fmoc−アミノメチル)フェ
ノキシ−アセトアミドエチル樹脂である場合には、Fmoc基は、上記のようなα−C末
端アミノ酸とのカップリングの前に、二級アミン(好ましくは、ピペリジン)で切断され
る。脱保護された4−(2’、4’−ジメトキシフェニル−Fmoc−アミノメチル)フ
ェノキシ−アセトアミドエチル樹脂に対するカップリングのための好ましい方法は、DM
F中のO−ベンゾトリアゾール−1−イル−N,N,N’,N’−テトラメチルウロニウ
ムヘキサフルオロ−ホスフェート(HBTU、1等量)および1−ヒドロキシベンゾトリ
アゾール(HOBT、1等量)である。良好に保護されたアミノ酸のカップリングは、当
該分野で周知であるように、自動ポリペプチド合成装置中で行われ得る。好ましい実施形
態においては、成長しつつあるポリペプチド鎖のα−N末端のアミノ酸は、Fmocで保
護される。成長しつつあるペプチドのα−N末端の側鎖からのFmoc保護基の除去は、
二級アミン(好ましくは、ピペリジン)での処理によって達成される。次いで、それぞれ
の保護されたアミノ酸は、約3モル過剰で導入され、そしてカップリングは、好ましくは
DMF中で行われる。カップリング剤は、通常は、O−ベンゾトリアゾール−1−イル−
N,N,N’,N’−テトラメチルウロニウムヘキサフルオロホスフェート(HBTU,
1等量)および1−ヒドロキシベンゾトリアゾール(HOBT、1等量)である。
【0080】
固相合成の最後に、ポリペプチドは、連続してまたは一回の操作のいずれかで、樹脂か
ら除去され、そして脱保護される。ポリペプチドの除去および脱保護は、チアニソール(
thianisole)、水、エタンジチオール、およびトリフルオロ酢酸を含有してい
る切断試薬で樹脂に結合したポリペプチドを処理することによって、1回の操作で達成さ
れ得る。ポリペプチドのα−C末端がアルキルアミドである場合は、樹脂は、アルキルア
ミンでのアミノ分解によって切断される。あるいは、ペプチドは、例えば、メタノールで
のトランスエステル化、それに続くアミノ分解または直接的なトランスアミド化によって
取り出され得る。保護されたペプチドは、この時点で精製され得るか、または次の工程に
直接引き継がれる。側鎖保護基の除去は、上記の切断反応混液を使用して達成される。完
全に脱保護されたペプチドは、以下の型の任意のものまたは全てを使用してクロマトグラ
フィーによる工程の並びによって精製される:弱い塩基性の樹脂(酢酸塩の形態)イオン
交換クロマトグラフィー;誘導体化されていないポリスチレン−ジビニルベンゼン(例え
ば、Amberlite XAD)上での疎水性吸着クロマトグラフィー;シリカゲル吸
着クロマトグラフィー;カルボキシメチルセルロース上でのイオン交換クロマトグラフィ
ー;分配クロマトグラフィー(例えば、Sephadex G−25、LH−20、また
は向流分配上での);高速液体クロマトグラフィー(HPLC)(特に、オクチル−また
はオクタデシルシリル−シリカ結合相カラムパッキング上での逆相HPLC)。
【0081】
これらのITPの分子量は、Fast Atom Bombardment(FAB)
質量スペクトル分析を使用して決定される。
【0082】
本発明のITPは、プロドラッグとしての使用のために、N末端およびC末端保護基を
用いて合成され得る。
【0083】
(1.N末端保護基)
上記で議論されるように、用語「N保護基」は、アミノ酸もしくはペプチドのα−N末
端を保護するか、またはそうでなければ、合成手順の間の所望されない反応に対してアミ
ノ酸もしくはペプチドのアミノ基を保護するために意図されるこれらの基をいう。一般的
に使用されるN保護基は、Greene、「Protective Groups In
Organic Systhesis」、(John Wiley & Sons,N
ew York(1981))(これは、本明細書により参考として援用される)におい
て開示されている。さらに、保護基は、インビボで容易に切断されて(例えば、酵素によ
る加水分解によって)生物学的に活性な親物質を放出する、プロドラッグとして使用され
得る。α−N保護基は、以下を含む:ホルミル、アセチル(「Ac」)、プロピオニル、
ピバロイル、t−ブチルアセチルなどのような低級アルカノイル基;2−クロロアセチル
、2−ブロモアセチル、トリフルオロアセチル、トリクロロアセチル、フタリル、o−ニ
トロフェノキシアセチル、−クロロブチリル、ベンゾイル、4−クロロベンゾイル、4−
ブロモベンゾイル、4−ニトロベンゾイルなどが挙げられる、他のアシル基;ベンゼンス
ルホニル、p−トルエンスルホニルなどのようなスルホニル基;ベンジルオキシカルボニ
ル、p−クロロベンジルオキシカルボニル、p−メトキシベンジルオキシカルボニル、p
−ニトロベンジルオキシカルボニル、2−ニトロベンジルオキシカルボニル、p−ブロモ
ベンジルオキシカルボニル、3,4−ジメトキシベンジルオキシカルボニル、3,5−ジ
メトキシベンジルオキシカルボニル、2,4−ジメトキシベンジルオキシカルボニル、4
−エトキシベンジルオキシカルボニル、2−ニトロ−4,5−ジメトキシベンジルオキシ
カルボニル、3,4,5−トリメトキシベンジルオキシカルボニル、1−(p−ジフェニ
ルイル)−1−メチルエトキシカルボニル、α,α−ジメチル−3,5−ジメトキシベン
ジルオキシカルボニル、ベンズヒドリルオキシカルボニル、t−ブチルオキシカルボニル
、ジイソプロピルメトキシカルボニル、イソプロピルオキシカルボニル、エトキシカルボ
ニル、メトキシカルボニル、アリルオキシカルボニル、2,2,2,−トリクロロエトキ
シカルボニル、フェノキシカルボニル、4−ニトロフェノキシカルボニル、フルオレニル
−9−メトキシカルボニル、シクロペンチルオキシカルボニル、アダマンチルオキシカル
ボニル、シクロヘキシルオキシカルボニル、フェニルチオカルボニルなどのような、カル
バメートを形成する基;ベンジル、トリフェニルメチル、ベンジルオキシメチル、9−フ
ルオレニルメチルオキシカルボニル(Fmoc)などのようなアリールアルキル基、なら
びにトリメチルシリルなどのようなシリル基。
【0084】
(2.カルボキシ保護基)
上記に議論されるように、用語「カルボキシ保護基」は、カルボン酸の官能基をブロッ
クするかまたは保護するために使用される、カルボン酸保護エステル基またはアミド基を
いうが、化合物の他の機能的な部位を含む反応基が好ましい。カルボキシ保護基は、Gr
eene、「Protective Groups in Organic Synth
esis」、152〜186頁(1981)に開示される。これは、本明細書により参考
として援用される。さらに、カルボキシ保護基は、プロドラッグとして使用され得、それ
によって、カルボキシ保護基は、例えば、酵素による加水分解によって、生物学的に活性
な親物質を放出するようにインビボで容易に切断され得る。このようなカルボキシ保護基
は、当業者に周知であり、米国特許第3,840,556号および同第3,719,66
7号(それらの開示は本明細書中で参考として援用されている)に記載されているように
、ペニシリンおよびセファロスポリン領域中のカルボキシル基の保護において広範に使用
されている。代表的なカルボキシ保護基は、以下である:C1〜C8低級アルキル(例えば
、メチル、エチル、またはt−ブチルなど);フェネチルまたはベンジル、およびそれら
の置換された誘導体(例えば、アルコキシベンジルまたはニトロベンジル基)などのよう
なアリールアルキル;フェニルエテニルなどのようなアリールアルケニル;アリルおよび
それらの置換された誘導体(例えば、5−インダニル(5−indanyl)など);ジ
メチルアミノエチルなどのようなジアルキルアミノアルキル;アセトオキシメチル、ブチ
ルオキシメチル、バレリルオキシメチル、イソブチルオキシメチル、イソバレリルオキシ
メチル、1−(プロピニルオキシ)−1−エチル、1−(ピバロイルオキシル)−1−エ
チル、1−メチル−1−(プロピオニルオキシ)−1−エチル、ピバロイルオキシメチル
、プロピオニルオキシメチルなどのようなアルカノイルオキシアルキル基;シクロプロピ
ルカルボニルオキシメチル、シクロブチルカルボニルオキシメチル、シクロペンチルカル
ボニルオキシメチル、シクロヘキシルカルボニルオキシメチルなどのようなシクロアルカ
ノイルオキシアルキル基;ベンゾイルオキシメチル、ベンゾイルオキシエチルなどような
アロイルオキシアルキル;ベンジルカルボニルオキシメチル、2−ベンジルカルボニルオ
キシエチルなどのような、アリールアルキルカルボニルオキシアルキル;メトキシカルボ
ニルメチル、シクロヘキシルオキシカルボニルメチル、1−メトキシカルボニル−1−エ
チルなどのような、アルコキシカルボニルアルキルまたはシクロアルキルオキシカルボニ
ルアルキル;メトキシカルボニルオキシメチル、t−ブチルオキシカルボニルオキシメチ
ル、1−エトキシカルボニルオキシ−1−エチル、1−シクロヘキシルオキシカルボニル
オキシ−1−エチルなどのようなアルコキシカルボニルオキシアルキルまたはシクロアル
キルオキシカルボニルオキシアルキル;2−(フェノキシカルボニルオキシ)エチル、2
−(5−インダニルオキシカルボニルオキシ)エチルなどのようなアリールオキシカルボ
ニルオキシアルキル;2−(1−メトキシ−2−メチルプロパン−2−オイルオキシ)エ
チルなどのようなアルコキシアルキルカルボニルオキシアルキル;2−(ベンジルオキシ
カルボニルオキシ)エチルなどのようなアリールアルキルオキシカルボニルオキシアルキ
ル;2−(3−フェニルプロペン−2−イルオキシカルボニルオキシ)エチルなどのよう
なアリールアルケニルオキシカルボニルオキシアルキル;t−ブチルオキシカルボニルア
ミノメチルなどのようなアルコキシカルボニルアミノアルキル;メチルアミノカルボニル
アミノメチルなどのようなアルキルアミノカルボニルアミノアルキル;アセチルアミノメ
チルなどのようなアルカノイルアミノアルキル;4−メチルピペラジニルカルボニルオキ
シメチルなどのような複素環式カルボニルオキシアルキル;ジメチルアミノカルボニルメ
チル、ジエチルアミノカルボニルメチルなどのようなジアルキルアミノカルボニルアルキ
ル;(5−t−ブチル−2−オキソ−1,3−ジオキソレン−4−イル)メチルなどのよ
うな(5−(低級アルキル)−2−オキソ−1,3−ジオキソレン−4−イル)アルキル
;ならびに(5−フェニル−2−オキソ−1,3−ジオキソレン−4−イル)メチルなど
のような(5−フェニル−2−オキソ−1,3−ジオキソレン−4−イル)アルキル。
【0085】
代表的なアミドカルボキシ保護基は、アミノカルボニルおよび低級アルキルアミノカル
ボニル基である。
【0086】
本発明の好ましいカルボキシ保護化合物は、保護されたカルボキシ基が、低級アルキル
、シクロアルキル、またはアリールアルキルエステル(例えば、メチルエステル、エチル
エステル、プロピルエステル、イソプロピルエステル、ブチルエステル、sec−ブチル
エステル、イソブチルエステル、アミルエステル、イソアミルエステル、オクチルエステ
ル、シクロヘキシルエステル、フェニルエチルエステルなど)、あるいはアルカノイルオ
キシアルキル、シクロアルカノイルオキシアルキル、アロイルオキシアルキル、またはア
リールアルキルカルボニルオキシアルキルエステルである化合物である。好ましいアミド
カルボキシ保護基は、低級アルキルアミノカルボニル基である。例えば、アスパラギン酸
は、酸不安定性の基(例えば、t−ブチル)によってα−C末端で保護され得、そして水
素化不安定性の基(例えば、ベンジル)によってβ−C末端で保護され得、次いで合成の
間に選択的に脱保護され得る。
【0087】
(B.ITPの改変)
本発明の改変されたITPを産生する様式は、ITPを含有している種々のエレメント
の性質に依存して、広範に変化する。合成手順は、単純に、高い収量を提供し、そして高
度に精製された生成物を可能にするように、選択される。通常は、化学的に反応性の基は
、合成の最後の段階で、例えば、活性なエステルを形成するためのカルボキシル基のエス
テル化を用いて作成される。本発明の改変されたITPの産生のための特異的な方法は、
以下に記載されている。
【0088】
リンカーおよび反応性の試薬での改変を受けるために選択されるそれぞれのITPは、
以下の基準に従って改変される:カルボキシル基(薬理学的な活性の保持には重要でない
)が最初のITPについて利用可能であるが、他の反応性の官能基がITP上には存在し
ない場合は、カルボン酸が、リンカー−反応性の物質の改変のための結合点として選択さ
れる。カルボン酸が利用可能ではない場合は、薬理学的な活性の保持には必須ではない他
の官能基が、リンカー−反応性の物質の改変のための結合点として選択される。いくつか
の官能基がITP上で利用可能である場合は、保護基の組合せが、リンカー/反応性物質
の付加および全ての保護された官能基の脱保護後に、薬理学的な活性の保持がなお得られ
るような方式で使用される。利用可能な反応性の官能基がITP上に存在しない場合は、
合成の試みによって、生物学的な活性の保持およびレセプターまたは標的の特異性の保持
が得られるような様式で、最初のITPの改変が可能である。
【0089】
化学的に反応性の物質は、ITPが血液成分に対して結合される場合には、ITPが改
変されていないITPの活性の実質的な割合を保持するように、1つの部位に配置される

【0090】
さらにより詳細には、リンカーおよび反応性の物質での誘導を受けるように選択される
それぞれのITPは、以下の基準に従って改変される:末端のカルボキシル基が治療用の
ペプチド上で利用可能であり、そして薬理学的な活性の保持のためには重要ではなく、そ
して他の敏感な官能基がITP上に存在しない場合は、カルボン酸が、リンカー−反応性
物質の改変のための結合点として選択される。末端のカルボキシル基が薬理学的な活性に
関与する場合、または利用可能なカルボン酸が存在しない場合は、薬理学的な活性の保持
には重要ではない任意の他の敏感な官能基が、リンカー−反応性物質の改変のための結合
点として選択される。いくつかの敏感な官能基がITP上で利用可能である場合には、保
護基の組合せが、リンカー/反応性物質の付加、および全ての保護された敏感な官能基の
脱保護後に、薬理学的な活性の保持がなお得られるような方式で使用される。敏感な官能
基が治療用のペプチド上で利用可能でない場合は、合成の試みによって、生物学的な活性
の保持およびレセプターまたは標的の特異性の保持が得られるような様式で、最初のペプ
チドの改変が可能である。この場合においては、改変は、ペプチドの反対側の末端で生じ
る。
【0091】
NHS誘導体が、治療用のペプチドの他の敏感な官能基の非存在下でカルボン酸から合
成され得る。詳細には、このような治療用のペプチドは、無水のCH2Cl2およびEDC
中のN−ヒドロキシスクシンイミドと反応させられ、そして生成物は、クロマトグラフィ
ーによって精製されるか、またはNHS誘導体を生じるように、適切な溶媒系から再結晶
化される。
【0092】
あるいは、NHS誘導体は、アミノ基および/またはチオール基、ならびにカルボン酸
を含有しているITPから合成され得る。遊離アミノ基または遊離チオール基が分子中に
存在する場合は、NHS誘導体の付加を行う前に、これらの敏感な官能基を保護すること
が好ましい。例えば、分子が遊離アミノ基を含む場合は、Fmocまたは好ましくはtB
ocで保護されたアミンへのアミンの形質転換が、上記の化学反応を行う前に必要である
。アミンの官能基は、NHS誘導体の調製の後では脱保護されない。従って、この方法は
、それらのアミノ基が薬理学的に所望される影響を誘導することを除かれる必要がない化
合物に対してのみ適用する。さらに、NHS誘導体は、アミノ基またはチオール基を含有
しているが、カルボン酸を含有していない治療用のペプチドから合成され得る。選択され
た分子がカルボン酸を含有してない場合は、二官能性のリンカーの並びが、分子を反応性
のNHS誘導体に転換するために使用され得る。例えば、DMF中に溶解させられ、そし
て遊離アミンを含有している分子に対して添加されたエチレングリコール−ビス(スクシ
ンイミジルスクシネート)(EGS)およびトリエチルアミン(EGSの10:1の比が
好ましい)が、モノNHS誘導体を提供する。チオールで誘導された分子からNHS誘導
体を産生するために、当業者は、DMF中のN−[−マレイミドブチリルオキシ]スクシ
ンイミドエステル(GMBS)およびトリエチルアミンを使用し得る。マレイミド基は、
遊離チオールと反応し、そしてNHS誘導体は、シリカ上でのクロマトグラフィーまたは
HPLCによって反応混合物から精製される。
【0093】
NHS誘導体はまた、複数の敏感な官能基を含有しているITPから合成され得る。そ
れぞれの場合が、異なる様式で分析され、そして説明されなければならない。しかし、市
販の保護基および二官能性のリンカーの大きなアレイのおかげで、本発明は、好ましくは
、ITPを誘導するためにわずかに1つの化学的な工程を用いて、または敏感な基を最初
に保護することによる2工程を用いて、または3工程(保護、活性化、および脱保護)を
用いて、任意の治療用のペプチドに対して適用することが可能である。実験の環境下だけ
では、当業者は、治療用のペプチドを活性なNHSまたはマレイミド誘導体に形質転換す
るために、複数の合成工程(3工程を超える)を使用することを必要とする。
【0094】
マレイミド誘導体はまた、遊離アミノ基および遊離カルボン酸を含有しているITPか
ら合成され得る。アミノ誘導された分子からマレイミド誘導体を産生するために、当業者
は、DMF中のN−[−マレイミドブチリルオキシ]スクシンイミドエステル(GMBS
)およびトリエチルアミンを使用し得る。スクシンイミドエステル基は、遊離アミノと反
応し、そしてマレイミド誘導体が、結晶化によって、またはシリカ上でのクロマトグラフ
ィーによって、またはHPLCによって反応混合物から精製される。
【0095】
最後に、マレイミド誘導体は、複数の他の敏感な官能基を含有しており、そして遊離カ
ルボン酸を含有していない治療用のペプチドから合成され得る。選択された分子がカルボ
ン酸を含まない場合は、二官能性の架橋剤のアレイが、分子を反応性のNHS誘導体に転
換するために使用され得る。例えば、マレイミドプロピオン酸(MPA)が、遊離アミン
に対してカップリングされ得て、DMF中のHBTU/HOBt/DIEA活性を使用し
てMPAのカルボキシル基を有する遊離アミンとの反応を通じてマレイミド誘導体を産生
する。
【0096】
あるいは、多くの他の市販のヘテロ二官能性の架橋剤が、必要とされる場合には、使用
され得る。多数の二官能性の化合物が、物質を架橋するために利用可能である。例示的な
試薬として、以下が挙げられる:アジドベンゾイルヒドラジド、N−[4−(p−アジド
サリチルアミノ)ブチル]−3’−[2’−ピリジルジチオ)プロピオンアミド]、ビス
−スルホスクシンイミジルスベリン酸、ジメチルアジピン酸、ジスクシンイミジル酒石酸
、N−y−マレイミドブチリルオキシスクシンイミドエステル、N−ヒドロキシスルホス
クシンイミジル−4−アジドベンゾエート、N−スクシンイミジル[4−アジドフェニル
]−1,3’−ジチオプロピオネート、N−スクシンイミジル[4−ヨードアセチル]ア
ミノベンゾエート、グルタルアルデヒド、およびスクシンイミジル4−[N−マレイミド
メチル]シクロヘキサン−1−カルボキシレート。
【0097】
(4.改変されたITPの使用)
本発明の改変されたITPは、糖尿病の処置、鎮静剤、神経系の障害の処置、CNSに
対する抗不安効果を誘導するための使用、CNSを活性化するための使用、外科手術後お
よびインシュリン耐性の処置としての使用を含む、複数の用途が見出されている。
【0098】
(A.糖尿病の処置)
本発明の改変されたITPは、一般的には、グルコース依存性、インシュリン依存性、
およびインシュリン非依存性の機構による高血糖を正常にする。このように、改変された
ITPは、II型の真性糖尿病の処置のための最初の試薬として、そしてI型の真性糖尿
病の処置のための付加的な試薬として、有用である。
【0099】
真性糖尿病の処置としての有効量の改変されたITPの使用は、改変されていないIT
Pよりも強力な利点を有する。改変されたITPは、インビボでより安定であるので、よ
り少量の分子が、有効な処置のために投与され得る。本発明は、ペプチドの作用が、血液
のグルコース濃度に依存し、従って、高血糖の副作用の危険性が、現行の処置方法を使用
するリスクよりも大きく低減されるという点で、糖尿病(I型およびII型の両方)を有
する患者の処置に特に適している。
【0100】
本発明はまた、個体の真性糖尿病を処置するための方法を提供する。ここでは、上記の
方法は、糖尿病を処置するために十分な量の改変されたITPを提供する工程を包含する
。ここでは、組成物は、改変されたITPを含有する。
【0101】
(B.神経系の障害の処置)
本発明の改変されたITPは、鎮静剤としての使用をもまた見出されている。本発明の
1つの局面においては、異常を有する哺乳動物の被験体を鎮静する方法が提供される。こ
れによって、本発明の改変されたITPを使用して中枢または抹消神経系の増大した活性
を生じる。この方法は、被験体に対して鎮静効果または抗不安効果を生じるために十分な
量で、被験体に改変されたITPを投与する工程を包含する。改変されたITPは、脳室
内で、経口的に、皮下で、筋肉内で、または静脈内で投与され得る。このような方法は、
不安症、運動障害、攻撃性、精神病、発作、パニック発作、病的興奮、および睡眠障害の
ような神経系の状態を処置または緩和するために有用である。
【0102】
関連する局面においては、本発明は、哺乳動物の被験体の活性を増大させる方法を含む
。この方法は、被験体に対して活性化の影響を生じるために十分な量で被験体に対して改
変されたITPを投与する工程を包含する。好ましくは、被験体は、中枢神経系または末
梢神経系の低下した活性化を生じる状態を有する。改変されたITPは、欝状態、sch
izoaffective障害、睡眠無呼吸、低い集中力を伴う注意欠乏症候群、記憶力
の欠失、健忘症、および中枢神経系の覚醒が有利であり得るいくつかの状態に対してまさ
しく命名される、ナルコレプシー症の処置または緩和における特定の用途を見出されてい
る。
【0103】
本発明の改変されたITPは、欝状態、schizoaffective障害、睡眠無
呼吸、低い集中力を伴う注意欠乏症候群、記憶力の欠失、健忘症、およびナルコレプシー
症の処置または緩和のための覚醒を誘導するために使用され得る。改変されたITPでの
処置の治療効率は、生理学的/神経学的試験によって、またはこれらの状態に関連する症
状の緩和によって、それらの条件を評価するための患者のインタビューによってモニター
され得る。例えば、ナルコレプシー症の処置は、ナルコレプシー症の攻撃の出現をモニタ
ーすることによって評価され得る。別の例として、集中または記憶能力についての被験体
の能力に対する改変されたITPの影響は、当業者に周知の任意の多数の診断試験を使用
して試験され得る。
【0104】
(C.外科手術後の処置)
本発明の改変されたITPは、外科手術後の処置のために利用され得る。本発明の改変
されたITPを必要としている患者は、外科手術の約1〜16時間前に患者に対して、患
者に対して外科手術の間に、そして患者の外科手術の後で、約5日間を超えない期間に行
われ得る。
【0105】
本発明の改変されたITPは、外科手術の開始の約16時間から約1時間までに投与さ
れる。本発明において使用される化合物が、異化の影響およびインシュリン耐性を低下さ
せるために投与されるはずである場合には、外科手術の前の時間の長さは、因子の数に依
存する。これらの因子は、当該分野の医師に一般的には公知であり、そして最も重要には
、患者がグルコースインシュリンもしくは飲料、または外科手術の前の準備期間の間の食
事のいくつかの他の形態の物質で食事を与えられるかまたは供給されるかどうかを含む。
他の重要な因子として、患者の性別、体重、および年齢、血液のグルコースを調節するこ
との任意の不能性の重篤度、血液のグルコースを調節することの任意の不能性の根底にあ
る原因、外科手術によって引き起こされる外傷の予想される重篤度、投与および生体利用
能力の経路、体内での残存率、処方、ならびに投与される化合物の効力が挙げられる。本
発明において使用される改変されたITPの投与を開始するための好ましい時間の間隔は
、外科手術の前の約1時間から約10時間である。投与を開始するための最も好ましい間
隔は、外科手術の前の2時間から8時間の間である。
【0106】
特定の型の外科手術、選択的な腹式の外科手術の後のインシュリン耐性は、手術後の最
初の日、遅くとも少なくとも5日後に最も重大であり、そして正常になるまでに3週間を
要し得る。従って、手術後の患者は、当業者の医師が理解しそして決定する因子に依存す
る、外科手術の外傷後の期間の間に、本発明で使用される改変されたITPの投与を必要
とし得る。これらの因子の中でも、患者がグルコースの注入もしくは飲料、または外科手
術後の食物のいくつかの他の形態で食事を与えられるかまたは供給されるかどうか、およ
び限定的ではないが、患者の性別、体重、および年齢、、血液のグルコースを調節するこ
との任意の不能性の重篤度、血液のグルコースを調節することの任意の不能性の根底にあ
る原因、外科手術によって引き起こされる外傷の実際の重篤度、投与および生体利用能力
の経路、体内での残存率、処方、および投与される化合物の効力である。本発明において
使用される化合物の投与の好ましい投与時間は、外科手術後5日を超えない。
【0107】
(D.インシュリン耐性の処置)
本発明の改変されたITPは、外科手術後の処置におけるそれらの使用とは独立して、
インシュリン耐性を処置するために利用され得る。インシュリン耐性は、細胞表面レセプ
ターに対するインシュリンの結合における減少、または細胞内での代謝における変更に起
因し得る。最初のタイプは、インシュリン感受性における低下として特徴付けられ、これ
は、代表的には、増大したインシュリン濃度によって克服され得る。第2のタイプは、イ
ンシュリン反応における減少として特徴付けられ、これは、大量のインシュリンによって
は克服され得ない。外傷後のインシュリン耐性は、インシュリン耐性の程度に比例しする
インシュリンの用量によって克服され得、従って、明らかにインシュリン感受性における
低下によって引き起こされる。
【0108】
患者の血液グルコースレベルを正常化するために有効な改変されたITPの用量は、多
数の因子に依存する。中でも、これは、以下を含むが、これらに限定されない:患者の性
別、体重、および年齢、、血液のグルコースを調節することの任意の不能性の重篤度、血
液のグルコースを調節することの任意の不能性の根底にある原因、グルコースまたは別の
炭水化物の供給源が同時に投与されるかどうか、投与および生体利用能力の経路、体内で
の残存率、処方、および効力。
【0109】
(5.改変されたITPの投与)
改変されたITPは、生理学的に受容可能な媒体(例えば、脱イオン水、リン酸緩衝化
生理食塩水(PBS)、生理食塩水、水性のエタノールもしくは他のアルコール)、血漿
、タンパク質性の溶液、マンニトール、水性のグルコース
アルコール、植物油など中で投与される。含まれ得る他の添加剤として、緩衝液(媒体が
一般的には、約5から10の範囲のpHで緩衝化されており、緩衝液は一般的には、約5
0から250mMの範囲の濃度である)、塩(塩濃度は一般的には、約5から500mM
の範囲である)、生理学的に受容可能な安定剤などが挙げられる。組成物は、便利な保存
および輸送のために凍結乾燥させられ得る。
【0110】
改変されたITPは、大部分については、経口、非経口的に(例えば、静脈内(IV)
、動脈内(IA)、筋肉内(IM)、皮下(SC)など)で投与される。投与は、適切な
状況下では、注入により得る。官能基の反応は比較的ゆっくりであるいくつかの例におい
ては、投与は、経口、鼻腔内、直腸、経皮、またはエアゾールであり得る。ここでは、結
合体の性質が、血管系への導入を可能にする。通常は、1回の注入が使用されるが、所望
される場合には1回以上の注入が使用され得る。改変されたITPは、任意の便利な手段
(注射器、トロカール、カテーテルなどを含む)によって投与され得る。特定の投与の様
式は、単回の追加投与または持続的な投与などにはかかわらず、投与される量に依存して
変化する。好ましくは、投与は、静脈内であり、ここでは、導入部位は、本発明にとって
は重要ではない。好ましくは、迅速な血流が存在する部位である(例えば、静脈内、抹消
静脈または中枢動脈)。他の投与が徐放技術または保護マトリックスと組み合わされる使
用を見出し得る。血液成分と反応することが可能であるように、ITPが血液中に効率良
く分布されることが、意図される。結合体の濃度は、一般的には、約1pg/mlから5
0mg/mlまでの範囲で広範に変化する。静脈内に投与される全量は、一般的には、約
0.1mg/mlから約10mg/mlまでの範囲、より通常は、約1mg/mlから約
5mg/mlまでの範囲である。
【0111】
長期間生存する血液成分(例えば、イムノグロブリン、血清アルブミン、赤血球、およ
び血小板)に対して結合させることによって、多数の利点が結果として生じる。改変され
たITPの活性は、数日から数週間の間延長される。1回の投与のみが、この期間の間に
与えられることが必要である。より大きな特異性が達成され得る。なぜなら、活性な化合
物は、大きな分子に対して主に結合するからである。ここでは、他の生理学的なプロセス
を妨害するように細胞内に取り込まれる可能性は恐らく低い。
【0112】
血液成分との間での共有結合の形成が、インビボまたはエキソビボで生じ得る。エキソ
ビボでの共有結合の形成については、改変されたITPが、ヒトの血清アルブミンまたは
IgGを含有している血液、血清、生理食塩溶液に対して添加されて、改変されたITP
と血液成分との間での共有結合の形成が可能となる。好ましい形式においては、ITPは
、マレイミドを用いて改変され、そしてこれは、生理食塩溶液中のヒトの血清アルブミン
と反応させられる。一旦改変されたITPが血液成分と反応すると、ITPタンパク質結
合体が形成され、この結合体は、患者に投与され得る。
【0113】
あるいは、改変されたITPは、インビボで改変されたITPと血液成分との間で共有
結合が形成されるように、患者に対して直接投与され得る。
【0114】
(6.改変されたITPの存在のモニタリング)
哺乳動物宿主の血液が、ITPの活性および/または改変されたITPの存在について
モニターされ得る。種々の時間で宿主の血液の一部またはサンプルを採取することによっ
て、当業者は、ITPが、長期間生存する血液成分に対して治療的に活性であるに十分な
量で結合するかどうかを決定し得、その後、血液中のITP化合物のレベルを決定し得る
。所望される場合、当業者はまた、どの血液成分に対してITP分子が結合するかを決定
し得る。このことは、非特異的なITPを使用する場合には特に重要である。特異的なマ
レイミド−ITPについては、血清アルブミンおよびIgGの半減期を計算することは、
はるかに簡単である。
【0115】
改変されたGLPは、インシュリン向性活性、HPLC−MS、またはITPに対して
指向された抗体のアッセイを使用してモニタリングされ得る。
【0116】
(A.インシュリン向性活性のアッセイ)
本発明は、改変されていないITPのインシュリン向性活性を上回るかまたはそれと同
等であるインシュリン向性活性を有する、改変されたITP誘導体に関する。化合物のイ
ンシュリン向性特性は、その化合物を動物細胞に対して提供するか、またはその化合物を
動物中に注射し、そして免疫反応性のインシュリン(IRI)の、媒体または動物の循環
系への放出をそれぞれモニターすることによって、決定され得る。IRIの存在は、イン
シュリンを特異的に検出し得るラジオイムノアッセイの使用を通じて検出される。
【0117】
IRIの存在を検出することが可能である任意のラジオイムノアッセイが使用され得る
が、Albano,J.D.M.ら(Acta Endocrinol.70:487−
509(1972))のアッセイ方法の改変を使用することが好ましい。この改変におい
ては、pH7.4を有するリン酸塩/アルブミン緩衝液が使用される。インキュベーショ
ンは、500μlのリン酸緩衝液、50μlの潅流液サンプル、または灌流液中のラット
のインシュリン標準、100μlの抗インシュリン抗血清(Wellcome Labo
ratories;1:40,000稀釈)、および100μlの[125I]インシュリ
ンの連続的な条件を用いて準備され、10×75mmの使い捨てのガラスチューブ中に7
50μlの総容量を生じる。4℃で2〜3日間のインキュベーション後、遊離インシュリ
ンが、チャコール分離によって抗体に結合したインシュリンから分離される。アッセイの
感受性は、一般的には、1〜2μlU/mlである。IRIの、組織培養物中で増殖した
細胞の細胞培養培地中への放出を測定するために、当業者は、好ましくは、プロインシュ
リン中に放射活性標識を取りこむ。ポリペプチドを標識することが可能な任意の放射活性
標識が使用され得るが、プロインシュリンの標識を得るために3Hロイシンを使用するこ
とが好ましい。標識は、検出可能に標識されたプロインシュリン分子のプールの形成を可
能にするために十分な任意の時間行われ得る;しかし、60分の時間、放射活性標識の存
在下で細胞をインキュベートすることが好ましい。インシュリンを発現し得る任意の細胞
株が、化合物がインシュリン向性の影響を有するかどうかを決定するために使用され得る
が、ラットのインシュリノーマ細胞、そして特に、RIN−38ラットインシュリノーマ
細胞を使用することが好ましい。このような細胞は、任意の適切な培地中で増殖され得る
;しかし、0.1%のBSAおよび25mMのグルコースを含有しているDME培地を使
用することが、好ましい。
【0118】
改変されたITPのインシュリン向性特性もまた、膵臓の注入によって決定され得る。
インサイチュで単離された潅流されたラットの膵臓の調製物は、Penhos,J.C.
,ら(Diabetes 18:733−738(1969))の方法の改変である。こ
のような方法に従って、断食させたラット(好ましくは、雄性のCharles Riv
er株白皮症ラット)(体重350から600g)が、Amytal Sodium(E
li Lilly and Co.,160ng/kg)の腹腔内注射を用いて麻酔され
る。腎臓、副腎、胃、および低部結腸の血管が連結される。十二指腸の約4cmおよびそ
の下の結腸および直腸を除いて、腸全体が切除される。従って、この腸のごく小さな部分
が潅流され、従って、インシュリン向性の免疫反応性を有する腸物質によって可能な妨害
を最小にする。潅流液は、好ましくは、4%のデキストランT70および0.2%のウシ
血清アルブミン(第V画分)を有する改変されたKrebs−Ringerの重炭酸緩衝
液である。そして好ましくは、95%のO2および5%のCO2で泡立てられている。非拍
動性流の4流路ローラーを保有するポンプ(Buchler polystatic、B
uchler Instruments Division,Nuclear−Chic
ago Corp.)が好ましくは使用され、そして1つの潅流液供給源から別の潅流液
供給源へのスイッチが、好ましくは、3方向ストップコックをスイッチすることによって
達成される。潅流が行われる様式は、好ましくは、Weir,G.C.ら、(J.Cli
n.Investigat.54:1403−1412(1974))(これは、本明細
書中で参考として援用されている)の方法に従って、改変され、そして分析される。
【0119】
(B.HPLC−MS)
質量スペクトル分析(MS)と組合せられたHPLCが、当業者に周知であるように、
ペプチドおよび改変されたペプチドの存在をアッセイするために利用され得る。代表的に
は、2つの移動相が利用される:0.1%のTFA/水、および0.1%のTFA/アセ
トニトリル。カラムの温度は、勾配条件と同様に変更され得る。特定の詳細は、以下の実
施例の節に概説される。
【0120】
(C.抗体)
本発明の別の局面は、ITPに対して特異的な抗体を使用して生物学的なサンプル(例
えば、血液)中のITPまたはそれらの結合体の濃度を決定するための方法に関し、そし
てこのようなITPまたは結合体と会合する可能性のある毒性の処置としての、このよう
な抗体の使用に関する。患者中でのインビボでのITPの増大した安定性および寿命が処
置の間の新規の問題(増大した毒性の可能性を含む)を導き得るので、これは有利である
。特定のITPについて特異性を有する抗ITP抗体の使用(モノクローナルまたはポリ
クローナルのいずれか)は、任意のこのような問題を調停することを補助し得る。抗体は
、特定の改変されたITP、または試薬の免疫原性のフラグメント、または試薬の抗原決
定基に対応する合成された免疫原で免疫された宿主から、生成され得るかまたは誘導され
得る。好ましい抗体は、改変されたITPの天然の形態、誘導された形態、および結合さ
れた形態に対して高い特異性および親和性を有する。このような抗体はまた、酵素、蛍光
色素、または放射性標識を用いて標識され得る。
【0121】
改変されたITPについて特異的な抗体は、誘導されたITP特異的抗体の誘導のため
に精製されたITPを使用することによって産生され得る。抗体の誘導によって、動物中
への注射による免疫応答の刺激だけではなく、組換えのイムノグロブリンライブラリーの
スクリーニングのような、合成の抗体または他の特定の結合分子の産生における同様の工
程もまた、意図される。モノクローナル抗体およびポリクローナル抗体の両方が、当該分
野で周知の手順によって産生され得る。
【0122】
抗体は、血流中のITPペプチドの存在をモニターするために使用され得る。血液およ
び/または血清サンプルは、SDS−PAGEおよびウェスタンブロッティングによって
分析され得る。このような技術は、血液成分に対する改変されたITPの結合を決定する
ための、血液または血清の分析を可能にする。
【0123】
抗治療薬抗体もまた、改変されたITPの投与によって誘導される毒性を処置するため
に使用され得、そしてエキソビボまたはインビボで使用され得る。エキソビボの方法とし
ては、固体支持体に対して固定された抗治療薬抗体を使用する毒性の免疫透析処置が挙げ
られる。インビボの方法としては、抗体−試薬複合体のクリアランスを誘導するために有
効な量での抗治療薬抗体の投与が挙げられる。
【0124】
抗体は、改変されたITPおよびその結合体の、患者の血液からの除去のために、滅菌
条件下で抗体と血液とを接触させることによってエキソビボで使用され得る。例えば、抗
体は、カラムマトリックス上で固定され(fixed)得るかまたはそうでなければ動け
なくされ(immobilized)得、そして患者の血液は、患者から取り出されそし
てマトリックス上を通過させられ得る。改変されたITPは、抗体に対して結合し、次い
で低濃度のITPを含有している血液が、患者の循環系に戻され得る。除去される改変さ
れたITPの量は、圧力および流速を調節することによって制御され得る。患者の血液の
血漿成分からの改変されたITPの優先的な除去は、例えば、半透膜の使用によって、そ
うでなければ、抗治療性抗体を含有するマトリックスの上に血漿成分を通過させる前に、
まず当該分野で公知の方法によって細胞性の成分から血漿成分を分離することによって、
達成され得る。あるいは、赤血球を含むITPと結合体化した血液細胞の優先的な除去は
、患者の血液中の血液細胞を回収しそして濃縮し、そしてこれらの細胞を、患者の血液の
血清成分の排除のために固定された抗−ITP抗体と接触させることによって、達成され
得る。
【0125】
抗−ITP抗体は、処置のために、改変されたITPまたは結合体を受容した患者に対
して、インビボで非経口的に投与され得る。抗体は、ITP化合物および結合体に結合す
る。一旦結合すると、ITP活性は、完全にはブロックされなくても妨げられ、それによ
って患者の血流中のITP化合物の生物学的に有効な濃度を低下させ、そして有害な副作
用を最小にする。さらに、結合した抗体−ITP複合体は、患者の血流からのITP化合
物および結合体のクリアランスを容易にする。
【0126】
完全に記載されてきた本発明は、ここで以下の限定的ではない実施例によって例示され
る。
【0127】
(実施例)
(概略)
100μモルのスケールでのインシュリン向性ペプチドの固相ペプチド合成を、以下を
使用して行った:手作業による固相合成、ならびにFmocで保護されたRink Am
ide MBHA樹脂を使用するSymphony Peptide Synthesi
zer、Fmocで保護されたアミノ酸、N,N−ジメチルホルムアミド(DMF)溶液
中のO−ベンゾトリアゾール−1−イル−N,N,N’,N’−テトラメチル−ウロニウ
ムヘキサフルオロホスフェート(HBTU)、およびN−メチルモルホリン(NMM)で
の活性化、およびFmoc基のピペリジン脱保護(工程1)。必要とされる場合には、L
ys(Aloc)基の選択的な脱保護を、手作業によって行い、そして5mLのCHCl
3;NMM:HOAc(18:1:0.5)中に溶解させた3等量のPd(PPh34
溶液で2時間樹脂を処理することによって達成した(工程2)。次いで、樹脂を、CHC
3(6×5mL)、DCM中の20%のHOAc(6×5mL)、DCM(6×5mL
)、およびDMF(6×5mL)で洗浄した。いくつかの例においては、次いで、この合
成を、1つのAEEA(アミノエトキシエトキシ酢酸)基の付加、酢酸の付加、または3
−マレイミドプロピオン酸(MPA)の付加のために再度自動化した(工程3)。樹脂の
切断および生成物の単離を、85%のTFA/5%のTIS/5%のチオアニソール、お
よび5%のフェノールを使用して行い、続いて乾燥−氷冷Et2Oによって沈殿させた(
工程4)。生成物を、Varian(Rainin)の分配ニ成分HPLCシステム:P
henomenex Luna 10μフェニルへキシル、21mm×25cmカラム、
ならびに、214および254nmでのUV検出器(Varian Dynamax U
VD II)を使用する、9.5mL/分での180分にわたる30〜55%のB(H2
O中の0.045%のTFA(A)およびCH3CN中の0.045%のTFA(B))
の勾配溶出を使用して、分配逆相HPLCによって精製した。純度を、ダイオードアレイ
検出器を備えたHewlett Packard LCMS−1100シリーズ分光光度
計を使用するRP−HPLC質量スペクトル分析によって、そして電子放射イオン化を使
用して、95%と決定した。
【0128】
(実施例1)
Tyr32−エキセンジン4(1−32)−NH2
His−Gly−Glu−Gly−Thr−Phe−Thr−Ser−Asp−Leu−
Ser−Lys−Glu−Met−Glu−Glu−Glu−Ala−Val−Arg−
Leu−Phe−Ile−Glu−Trp−Leu−Lys−Asn−Gly−Gly−
Pro−Tyr−アミドの調製
【0129】
【化3】

【0130】
100μモルのスケールでのアナログの固相ペプチド合成を、以下を使用して行う:手
作業による固相合成、ならびにFmocで保護されたRink Amide MBHA樹
脂を使用するSymphony Peptide Synthesizer、Fmocで
保護されたアミノ酸、N,N−ジメチルホルムアミド(DMF)溶液中のO−ベンゾトリ
アゾール−1−イル−N,N,N’,N’−テトラメチル−ウロニウムヘキサフルオロホ
スフェート(HBTU)、およびN−メチルモルホリン(NMM)での活性化、およびF
moc基のピペリジン脱保護(工程1)。樹脂の切断および生成物の単離を、85%のT
FA/5%のTIS/5%のチオアニソール、および5%のフェノールを使用して行い、
続いて乾燥−氷冷Et2Oによって沈殿させる(工程2)。生成物を、Varian(R
ainin)の分配ニ成分HPLCシステム:Phenomenex Luna
10μフェニルへキシル、21mm×25cmカラム、ならびにλ214nmおよび2
54nmでのUV検出器(Varian Dynamax UVD II)を使用する、
9.5mL/分での180分にわたる30〜55%のB(H2O中の0.045%のTF
A(A)およびCH3CN中の0.045%のTFA(B))の勾配溶出を使用して、分
配逆相HPLCによって精製して、RP−HPLCによって決定した場合に、所望される
ペプチドを>95%の純度で得る。
【0131】
(実施例2)
Tyr31−エキセンジン4(1−31)
His−Gly−Glu−Gly−Thr−Phe−Thr−Ser−Asp−Leu−
Ser−Lys−Glu−Met−Glu−Glu−Glu−Ala−Val−Arg−
Leu−Phe−Ile−Glu−Trp−Leu−Lys−Asn−Gly−Gly−
Tyr−アミドの調製
【0132】
【化4】

【0133】
100μモルのスケールでのアナログの固相ペプチド合成を、以下を使用して行う:手
作業による固相合成、ならびにFmocで保護されたRink Amide MBHA樹
脂を使用するSymphony Peptide Synthesizer、Fmocで
保護されたアミノ酸、N,N−ジメチルホルムアミド(DMF)溶液中のO−ベンゾトリ
アゾール−1−イル−N,N,N’,N’−テトラメチル−ウロニウムヘキサフルオロホ
スフェート(HBTU)、およびN−メチルモルホリン(NMM)での活性化、およびF
moc基のピペリジン脱保護(工程1)。樹脂の切断および生成物の単離を、85%のT
FA/5%のTIS/5%のチオアニソール、および5%のフェノールを使用して行い、
続いて乾燥−氷冷Et2Oによって沈殿させる(工程2)。生成物を、Varian(R
ainin)の分配ニ成分HPLCシステム:Phenomenex Luna
10μフェニルへキシル、21mm×25cmカラム、ならびにλ214nmおよび2
54nmでのUV検出器(Varian Dynamax UVD II)を使用する、
9.5mL/分での180分にわたる30〜55%のB(H2O中の0.045%のTF
A(A)およびCH3CN中の0.045%のTF(B))の勾配溶出を使用して、分配
逆相HPLCによって精製して、所望のペプチドを、RP−HPLCによって決定した場
合に>95%の純度で得る。
【0134】
(実施例3)
エキセンジン4−(9−39)−NH2
Asp−Leu−Ser−Lys−Glu−Met−Glu−Glu−Glu−Ala−
Val−Arg−Leu−Phe−Ile−Glu−Trp−Leu−Lys−Asu−
Gly−Gly−Pro−Ser−Ser−Gly−Aly−Pro−Pro−Pro−
Ser−アミドの調製
【0135】
【化5】

【0136】
100μモルのスケールでのアナログの固相ペプチド合成を、以下を使用して行う:手
作業による固相合成、ならびにFmocで保護されたRink Amide MBHA樹
脂を使用するSymphony Peptide Synthesizer、Fmocで
保護されたアミノ酸、N,N−ジメチルホルムアミド(DMF)溶液中のO−ベンゾトリ
アゾール−1−イル−N,N,N’,N’−テトラメチル−ウロニウムヘキサフルオロホ
スフェート(HBTU)、およびN−メチルモルホリン(NMM)での活性化、およびF
moc基のピペリジン脱保護(工程1)。樹脂の切断および生成物の単離を、85%のT
FA/5%のTIS/5%のチオアニソール、および5%のフェノールを使用して行い、
続いて乾燥−氷冷Et2Oによって沈殿させる(工程2)。生成物を、Varian(R
ainin)の分配ニ成分HPLCシステム:Phenomenex Luna
10μフェニルへキシル、21mm×25cmカラム、ならびにλ214nmおよび2
54nmでのUV検出器(Varian Dynamax UVD II)を使用する、
9.5mL/分での180分にわたる30〜55%のB(H2O中の0.045%のTF
A(A)およびCH3CN中の0.045%のTFA(B))の勾配溶出を使用して、分
配逆相HPLCによって精製して、所望ペプチドを、RP−HPLCによって決定した場
合に>95%の純度で得る。
【0137】
(実施例4)
GLP−1(1−36)−Lys37(ε−MPA)−NH2−5TFA;
His−Asp−Glu−Phe−Glu−Arg−His−Ala−Glu−Gly−
Thr−Phe−Thr−Ser−Asp−Val−Ser−Ser−Tyr−Leu−
Glu−Gly−Gln−Ala−Ala−Lys−Glu−Phe−Ile−Ala−
Trp−Leu−Val−Lys−Gly−Arg−Lys(ε−MPA)−NH2−5
TFAの調製
改変されたGLP−1ペプチドを、以下の模式図に示すように、付加したリジン(Ly
s)残基のアミノ基の連結をはずすことによって合成する。
【0138】
【化6】

【0139】
自動化されたペプチド合成を使用して、以下の保護されたアミノ酸を連続的にRink
Amide MBHA樹脂に付加した;Fmoc−Lys(Aloc)−OH、Fmo
c−Arg(Pbf)−OH、Fmoc−Gly−OH、Fmoc−Lys(tBoc)
−OH、Fmoc−Val−OH、Fmoc−Leu−OH、Fmoc−Trp−OH、
Fmoc−Ala−OH、Fmoc−Ile−OH、Fmoc−Phe−OH、Fmoc
−Glu(OtBu)−OH、Fmoc−Lys(tBoc)−OH、Fmoc−Ala
−OH、Fmoc−Ala−OH、Fmoc−Gln(Trt)−OH、Fmoc−Gl
y−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Leu−OH、Fmoc−
Tyr(Pbf)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Ser(tB
u)−OH、Fmoc−Val−OH、Fmoc−Asp(OtBu)−OH、Fmoc
−Ser(tBu)−OH、Fmoc−Thr(tBu)−OH、Fmoc−Phe−O
H、Fmoc−Thr(tBu)−OH、Fmoc−Gly−OH、Fmoc−Glu(
OtBu)−OH、Fmoc−Ala−OH、Boc−His(N−Trt)−OH、F
moc−Arg(Pbf)−OH、Fmoc−Glu(OtBu)−OH、Fmoc−P
he−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Asp(OtBu)−O
H、Boc−His(N−Trt)−OH(工程1)。
【0140】
Lys(Aloc)基の選択的な脱保護を手作業で行い、そして5mLのCHCl3
NMM:HOAc(18:1:0.5)中に溶解させた3等量のPd(PPh34の溶液
で2時間樹脂を処理することによって達成した(工程2)。次いで、この樹脂を、CHC
3(6×5mL)、DCM中の20%のHOAc(6×5mL)、DCM(6×5mL
)、およびDMF(6×5mL)で洗浄した。次いで、合成を、3−マレイミドプロピオ
ン酸の付加のために再度自動化した(工程3)。樹脂の切断および生成物の単離を、85
%のTFA/5%のTIS/5%のチオアニソール、および5%のフェノールを使用して
行い、続いて乾燥−氷冷Et2Oによって沈殿させた(工程4)。生成物を、Varia
n(Rainin)の分配ニ成分HPLCシステム:Phenomenex Luna
10μフェニルへキシル、21mm×25cmカラム、ならびにλ214nmおよび25
4nmでのUV検出器(Varian Dynamax UVD II)を使用する、9
.5mL/分での180分にわたる30〜55%のB(H2O中の0.045%のTFA
(A)およびCH3CN中の0.045%のTFA(B))の勾配溶出を使用して、分配
逆相HPLCによって精製した。生成物は、ダイオードアレイ検出器を備えたHewle
tt Packard LCMS−1100シリーズ分光光度計を使用するRP−HPL
C質量スペクトル分析によって、そして電子放射イオン化を使用して決定した場合には、
>95%の純度を有した。
【0141】
(実施例5)
GLP−1(1−36)−Lys37(ε−AEEA−AEEA−MPA)−NH2−5
TFA;
His−Asp−Glu−Phe−Glu−Arg−His−Ala−Glu−Gly−
Thr−Phe−Thr−Ser−Asp−Val−Ser−Ser−Tyr−Leu−
Glu−Gly−Gln−Ala−Ala−Lys−Glu−Phe−Ile−Ala−
Trp−Leu−Val−Lys−Gly−Arg−Lys(ε−AEEA−AEEA−
MPA)−NH2−5TFAの調製
改変されたGLP−1ペプチドを、以下の模式図に示すように、付加したリジン(Ly
s)残基のアミノ基の連結をはずすことによって合成する。
【0142】
【化7】

【0143】
自動化されたペプチド合成を使用して、以下の保護されたアミノ酸を連続的にRink
Amide MBHA樹脂に対して付加した;Fmoc−Lys(Aloc)−OH、
Fmoc−Arg(Pbf)−OH、Fmoc−Gly−OH、Fmoc−Lys(tB
oc)−OH、Fmoc−Val−OH、Fmoc−Leu−OH、Fmoc−Trp−
OH、Fmoc−Ala−OH、Fmoc−Ile−OH、Fmoc−Phe−OH、F
moc−Glu(OtBu)−OH、Fmoc−Lys(tBoc)−OH、Fmoc−
Ala−OH、Fmoc−Ala−OH、Fmoc−Gln(Trt)−OH、Fmoc
−Gly−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Leu−OH、Fm
oc−Tyr(Pbf)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Ser
(tBu)−OH、Fmoc−Val−OH、Fmoc−Asp(OtBu)−OH、F
moc−Ser(tBu)−OH、Fmoc−Thr(tBu)−OH、Fmoc−Ph
e−OH、Fmoc−Thr(tBu)−OH、Fmoc−Gly−OH、Fmoc−G
lu(OtBu)−OH、Fmoc−Ala−OH、Boc−His(N−Trt)−O
H、Fmoc−Arg(Pbf)−OH、Fmoc−Glu(OtBu)−OH、Fmo
c−Phe−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Asp(OtBu
)−OH、Boc−His(N−Trt)−OH(工程1)。
【0144】
Lys(Aloc)基の選択的な脱保護を手作業で行い、そして5mLのCHCl3
NMM:HOAc(18:1:0.5)中に溶解させた3等量のPd(PPh34溶液で
2時間樹脂を処理することによって達成した(工程2)。次いで、樹脂を、CHCl3
6×5mL)、DCM中の20%のHOAc(6×5mL)、DCM(6×5mL)、お
よびDMF(6×5mL)で洗浄した。次いで、合成を、2つのAEEA(アミノエトキ
シエトキシ酢酸)基および3−マレイミドプロピオン酸の付加のために再度自動化した(
工程3)。樹脂の切断および生成物の単離を、85%のTFA/5%のTIS/5%のチ
オアニソール、および5%のフェノールを使用して行い、続いてドライアイスで冷却した
Et2Oによって沈殿させた(工程4)。生成物を、Varian(Rainin)の分
取二成分HPLCシステム:Phenomenex Luna 10μフェニルへキシル
、21mm×25cmカラム、ならびにλ214nmおよび254nmでUV検出器(V
arian Dynamax UVD II)を使用する、9.5mL/分で180分に
わたる30〜55%のB(H2O中の0.045%のTFA(A)およびCH3CN中の0
.045%のTFA(B))での勾配溶出を使用して、分取逆相HPLCによって精製し
た。生成物は、ダイオードアレイ検出器を備えたHewlett Packard LC
MS−1100シリーズ分光計および電子放射イオン化を使用するRP−HPLC質量ス
ペクトル分析によって決定した場合、>95%の純度を有した。C1742654456(M
+)についてのESI−MS m/zを、3868と計算し、[M+H22+1934、
[M+H33+1290、[M+H44+967を見出した。
【0145】
(実施例6)
GLP−1(7−36)−Lys37(ε−MPA)−NH2.4TFA;
His−Ala−Glu−Gly−Thr−Phe−Thr−Ser−Asp−Val−
Ser−Ser−Tyr−Leu−Glu−Gly−Gln−Ala−Ala−Lys−
Glu−Phe−Ile−Ala−Trp−Leu−Val−Lys−Gly−Arg−
Lys(ε−MPA)−NH2−4TFAの調製
改変されたGLP−1ペプチドを、以下に記載するように、付加したリジン(Lys)
残基のε−N末端の連結をはずすことによって合成する。
【0146】
自動化されたペプチド合成を使用して、以下の保護されたアミノ酸を連続的にRink
Amide MBHA樹脂に対して付加した:Fmoc−Lys(Aloc)−OH、
Fmoc−Arg(Pbf)−OH、Fmoc−Gly−OH、Fmoc−Lys(tB
oc)−OH、Fmoc−Val−OH、Fmoc−Leu−OH、Fmoc−Trp−
OH、Fmoc−Ala−OH、Fmoc−Ile−OH、Fmoc−Phe−OH、F
moc−Glu(OtBu)−OH、Fmoc−Lys(tBoc)−OH、Fmoc−
Ala−OH、Fmoc−Ala−OH、Fmoc−Gln(Trt)−OH、Fmoc
−Gly−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Leu−OH、Fm
oc−Tyr(Pbf)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Ser
(tBu)−OH、Fmoc−Val−OH、Fmoc−Asp(OtBu)−OH、F
moc−Ser(tBu)−OH、Fmoc−Thr(tBu)−OH、Fmoc−Ph
e−OH、Fmoc−Thr(tBu)−OH、Fmoc−Gly−OH、Fmoc−G
lu(OtBu)−OH、Fmoc−Ala−OH、Boc−His(N−Trt)−O
H(工程1)。
【0147】
Lys(Aloc)基の選択的な脱保護を手作業で行い、そして5mLのCHCl3
NMM:HOAc(18:1:0.5)中に溶解させた3等量のPd(PPh34溶液で
2時間樹脂を処理することによって達成した(工程2)。次いで、樹脂を、CHCl3
6×5mL)、DCM中の20%のHOAc(6×5mL)、DCM(6×5mL)、お
よびDMF(6×5mL)で洗浄した。次いで、合成を、3−マレイミドプロピオン酸の
付加のために再度自動化した(工程3)。樹脂の切断および生成物の単離を、85%のT
FA/5%のTIS/5%のチオアニソール、および5%のフェノールを使用して行い、
続いてドライアイスで冷却したEt2Oによって沈殿させた(工程4)。生成物を、Va
rian(Rainin)の分取二成分HPLCシステム:Phenomenex Lu
na 10μフェニルへキシル、21mm×25cmカラム、ならびにλ214nmおよ
び254nmでUV検出器(Varian Dynamax UVD II)を使用する
、9.5mL/分で180分にわたる30〜55%のB(H2O中の0.045%のTF
A(A)およびCH3CN中の0.045%のTFA(B))での勾配溶出を使用して、
分取逆相HPLCによって精製した。生成物は、ダイオードアレイ検出器を備えたHew
lett Packard LCMS−1100シリーズ分光計および電子放射イオン化
を使用するRP−HPLC質量スペクトル分析によって決定した場合、>95%の純度を
有した。
【0148】
(実施例7)
GLP−1(7−36)−Lys37(ε−AEEA−AEEA−MPA)−NH2.4
TFA;
His−Ala−Glu−Gly−Thr−Phe−Thr−Ser−Asp−Val−
Ser−Ser−Tyr−Leu−Glu−Gly−Gln−Ala−Ala−Lys−
Glu−Phe−Ile−Ala−Trp−Leu−Val−Lys−Gly−Arg−
Lys(ε−AEEA−AEEA−MPA)−NH2−4TFAの調製
改変されたGLP−1ペプチドを、以下に記載するように、付加したリジン(Lys)
残基のε−N末端の連結をはずすことによって合成する。
【0149】
自動化されたペプチド合成を使用して、以下の保護されたアミノ酸を連続的にRink
Amide MBHA樹脂に対して付加した:Fmoc−Lys(Aloc)−OH、
Fmoc−Arg(Pbf)−OH、Fmoc−Gly−OH、Fmoc−Lys(tB
oc)−OH、Fmoc−Val−OH、Fmoc−Leu−OH、Fmoc−Trp−
OH、Fmoc−Ala−OH、Fmoc−Ile−OH、Fmoc−Phe−OH、F
moc−Glu(OtBu)−OH、Fmoc−Lys(tBoc)−OH、Fmoc−
Ala−OH、Fmoc−Ala−OH、Fmoc−Gln(Trt)−OH、Fmoc
−Gly−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Leu−OH、Fm
oc−Tyr(Pbf)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Ser
(tBu)−OH、Fmoc−Val−OH、Fmoc−Asp(OtBu)−OH、F
moc−Ser(tBu)−OH、Fmoc−Thr(tBu)−OH、Fmoc−Ph
e−OH、Fmoc−Thr(tBu)−OH、Fmoc−Gly−OH、Fmoc−G
lu(OtBu)−OH、Fmoc−Ala−OH、Boc−His(N−Trt)−O
H(工程1)。
【0150】
Lys(Aloc)基の選択的な脱保護を手作業で行い、そして5mLのCHCl3
NMM:HOAc(18:1:0.5)中に溶解させた3等量のPd(PPh34溶液で
2時間樹脂を処理することによって達成した(工程2)。次いで、樹脂を、CHCl3
6×5mL)、DCM中の20%のHOAc(6×5mL)、DCM(6×5mL)、お
よびDMF(6×5mL)で洗浄した。次いで、合成を、2つのAEEA(アミノエトキ
シエトキシ酢酸)基および3−マレイミドプロピオン酸の付加のために再度自動化した(
工程3)。樹脂の切断および生成物の単離を、85%のTFA/5%のTIS/5%のチ
オアニソール、および5%のフェノールを使用して行い、続いてドライアイスで冷却した
Et2Oによって沈殿させた(工程4)。生成物を、Varian(Rainin)の分
取二成分HPLCシステム:Phenomenex Luna 10μフェニルへキシル
、21mm×25cmカラム、ならびにλ214nmおよび254nmでUV検出器(V
arian Dynamax UVD II)を使用する、9.5mL/分で180分に
わたる30〜55%のB(H2O中の0.045%のTFA(A)およびCH3CN中の0
.045%のTFA(B))での勾配溶出を使用して、分取逆相HPLCによって精製し
た。生成物は、ダイオードアレイ検出器を備えたHewlett Packard LC
MS−1100シリーズ分光計および電子放射イオン化を使用するRP−HPLC質量ス
ペクトル分析によって決定した場合、>95%の純度を有した。
【0151】
(実施例8)
D−Ala2 GLP−1(7−36)−Lys37(ε−MPA)−NH2.4TFA;
His−D−Ala−Glu−Gly−Thr−Phe−Thr−Ser−Asp−Va
l−Ser−Ser−Tyr−Leu−Glu−Gly−Gln−Ala−Ala−Ly
s−Glu−Phe−Ile−Ala−Trp−Leu−Val−Lys−Gly−Ar
g−Lys(ε−MPA)−NHH2−4TFAの調製
D−Ala2GLP−1(7−36)アミドを、以下の模式図に示すように、合成した

【0152】
A.D−Ala2−GLP−1(7−36)アミドの調製
【0153】
【化8】

【0154】
100μモルのスケールでのGLP−1アナログの固相ペプチド合成を、以下を使用し
て行う:手作業による固相合成、ならびにFmocで保護されたRink Amide
MBHA樹脂を使用するSymphony Peptide Synthesizer、
Fmocで保護されたアミノ酸、N,N−ジメチルホルムアミド(DMF)溶液中のO−
ベンゾトリアゾール−1−イル−N,N,N’,N’−テトラメチル−ウロニウムヘキサ
フルオロホスフェート(HBTU)およびN−メチルモルホリン(NMM)での活性化、
ならびにFmoc基のピペラジン脱保護(工程1)。樹脂の切断および生成物の単離を、
85%のTFA/5%のTIS/5%のチオアニソール、および5%のフェノールを使用
して行い、続いてドライアイスで冷却したEt2Oによって沈殿させる(工程2)。生成
物を、Varian(Rainin)の分取二成分HPLCシステム:Phenomen
ex Luna 10μフェニルへキシル、21mm×25cmカラム、ならびにλ21
4nmおよび254nmでUV検出器(Varian Dynamax UVD II)
を使用する、9.5mL/分で180分にわたる30〜55%のB(H2O中の0.04
5%のTFA(A)およびCH3CN中の0.045%のTFA(B))での勾配溶出を
使用して、分取逆相HPLCによって精製して、RP−HPLCによって決定した場合、
所望されるペプチドを>95%の純度で得る。
【0155】
改変されたGLP−1ペプチドを、以下の模式図に示すように、付加したリジン(Ly
s)残基のε−N末端の連結をはずすことによって合成する。
【0156】
B.D−Ala2−GLP−1(7−36)−Lys37(E−MPA)アミドの調製
【0157】
【化9】

【0158】
自動化されたペプチド合成を使用して、以下の保護されたアミノ酸を連続的にRing
Amide MBHA樹脂に対して付加した:Fmoc−Lys(Aloc)−OH、
Fmoc−Arg(Pbf)−OH、Fmoc−Gly−OH、Fmoc−Lys(tB
oc)−OH、Fmoc−Val−OH、Fmoc−Leu−OH、Fmoc−Trp−
OH、Fmoc−Ala−OH、Fmoc−Ile−OH、Fmoc−Phe−OH、F
moc−Glu(OtBu)−OH、Fmoc−Lys(tBoc)−OH、Fmoc−
Ala−OH、Fmoc−Ala−OH、Fmoc−Gln(Trt)−OH、Fmoc
−Gly−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Leu−OH、Fm
oc−Tyr(Pbf)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Ser
(tBu)−OH、Fmoc−Val−OH、Fmoc−Asp(OtBu)−OH、F
moc−Ser(tBu)−OH、Fmoc−Thr(tBu)−OH、Fmoc−Ph
e−OH、Fmoc−Thr(tBu)−OH、Fmoc−Gly−OH、Fmoc−G
lu(OtBu)−OH、Fmoc−d−Ala−OH、Boc−His(N−Trt)
−OH(工程1)。
【0159】
Lys(Aloc)基の選択的な脱保護を手作業で行い、そして5mLのCHCl3
NMM:HOAc(18:1:0.5)中に溶解させた3等量のPd(PPh34溶液で
2時間樹脂を処理することによって達成した(工程2)。次いで、樹脂を、CHCl3
6×5mL)、DCM中の20%のHOAc(6×5mL)、DCM(6×5mL)、お
よびDMF(6×5mL)で洗浄した。次いで、合成を、3−マレイミドプロピオン酸の
付加のために再度自動化した(工程3)。樹脂の切断および生成物の単離を、85%のT
FA/5%のTIS/5%のチオアニソール、および5%のフェノールを使用して行い、
続いてドライアイスで冷却したEt2Oによって沈殿させた(工程4)。生成物を、Va
rian(Rainin)の分取二成分HPLCシステム:Phenomenex Lu
na 10μフェニルへキシル、21mm×25cmカラム、ならびにλ214nmおよ
び254nmでUV検出器(Varian Dynamax UVD II)を使用する
、9.5mL/分で180分にわたる30〜55%のB(H2O中の0.045%のTF
A(A)およびCH3CN中の0.045%のTFA(B))での勾配溶出を使用して、
分取逆相HPLCによって精製した。生成物は、ダイオードアレイ検出器を備えたHew
lett Packard LCMS−1100シリーズ分光計および電子放射イオン化
を使用するRP−HPLC質量スペクトル分析によって決定した場合、>95%の純度を
有した。
【0160】
(実施例9)
D−Ala2 GLP−1(7−36)−Lys37(ε−AEEA−AEEA−MPA
)−NH2.4TFA;
His−D−Ala−Glu−Gly−Thr−Phe−Thr−Ser−Asp−Va
l−Ser−Ser−Tyr−Leu−Glu−Gly−Gln−Ala−Ala−Ly
s−Glu−Phe−Ile−Ala−Trp−Leu−Val−Lys−Gly−Ar
g−Lys(ε−AEEA−AEEA−MPA)−NH2−4TFAの調製
改変されたGLP−1ペプチドを、以下の模式図に示すように、付加したリジン(Ly
s)残基の −N末端の連結をはずすことによって合成する。
【0161】
【化10】

【0162】
自動化されたペプチド合成を使用して、以下の保護されたアミノ酸を連続的にRink
Amide MBHA樹脂に対して付加した:Fmoc−Lys(Aloc)−OH、
Fmoc−Arg(Pbf)−OH、Fmoc−Gly−OH、Fmoc−Lys(tB
oc)−OH、Fmoc−Val−OH、Fmoc−Leu−OH、Fmoc−Trp−
OH、Fmoc−Ala−OH、Fmoc−Ile−OH、Fmoc−Phe−OH、F
moc−Glu(OtBu)−OH、Fmoc−Lys(tBoc)−OH、Fmoc−
Ala−OH、Fmoc−Ala−OH、Fmoc−Gln(Trt)−OH、Fmoc
−Gly−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Leu−OH、Fm
oc−Tyr(Pbf)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Ser
(tBu)−OH、Fmoc−Val−OH、Fmoc−Asp(OtBu)−OH、F
moc−Ser(tBu)−OH、Fmoc−Thr(tBu)−OH、Fmoc−Ph
e−OH、Fmoc−Thr(tBu)−OH、Fmoc−Gly−OH、Fmoc−G
lu(OtBu)−OH、Fmoc−d−Ala−OH、Boc−His(N−Trt)
−OH(工程1)。
【0163】
Lys(Aloc)基の選択的な脱保護を手作業で行い、そして5mLのCHCl3
NMM:HOAc(18:1:0.5)中に溶解させた3等量のPd(PPh34溶液で
2時間樹脂を処理することによって達成した(工程2)。次いで、樹脂を、CHCl3
6×5mL)、DCM中の20%のHOAc(6×5mL)、DCM(6×5mL)、お
よびDMF(6×5mL)で洗浄した。次いで、合成を、2つのAEEA(アミノエトキ
シエトキシ酢酸)基および3−マレイミドプロピオン酸の付加のために再度自動化した(
工程3)。樹脂の切断および生成物の単離を、85%のTFA/5%のTIS/5%のチ
オアニソール、および5%のフェノールを使用して行い、続いてドライアイスで冷却した
Et2Oによって沈殿させた(工程4)。生成物を、Varian(Rainin)の分
取二成分HPLCシステム:Phenomenex Luna 10μフェニルへキシル
、21mm×25cmカラム、ならびにλ214nmおよび254nmでUV検出器(V
arian Dynamax UVD II)を使用する、9.5mL/分で180分に
わたる30〜55%のB(H2O中の0.045%のTFA(A)およびCH3CN中の0
.045%のTFA(B))での勾配溶出を使用して、分取逆相HPLCによって精製し
た。生成物は、ダイオードアレイ検出器を備えたHewlett Packard LC
MS−1100シリーズ分光計および電子放射イオン化を使用するRP−HPLC質量ス
ペクトル分析によって決定した場合、>95%の純度を有した。
【0164】
(実施例10)
エキセンジン−4(1−39)−Lys40(ε−MPA)−NH2
His−Gly−Glu−Gly−Thr−Phe−Thr−Ser−Asp−Leu−
Ser−Lys−Gln−Met−Glu−Glu−Glu−Ala−Val−Arg−
Leu−Phe−Ile−Glu−Trp−Leu−Lys−Asn−Gly−Gly−
Pro−Ser−Ser−Gly−Ala−Pro−Pro−Pro−Ser−Lys(
ε−MPA)−NH2−5TFAの調製
エキセンジン−4(Exendin−4)を、以下の模式図に示すように、合成した。
【0165】
A.エキセンジン−4の調製
【0166】
【化11】

【0167】
100μモルのスケールでのエキセンジン−4の固相ペプチド合成を、以下を使用して
行う:手作業による固相合成、ならびにFmocで保護されたRink
Amide MBHA樹脂を使用するSymphony Peptide Synth
esizer。以下の保護されたアミノ酸を連続的にRink Amide MBHA樹
脂に対して付加する;Fmoc−Ser(tBu)−OH、Fmoc−Pro−OH、F
moc−Pro−OH、Fmoc−Pro−OH、Fmoc−Ala−OH、Fmoc−
Gly−OH、Fmoc−Ser(tBu)−OH、Fmoc−Ser(tBu)−OH
、Fmoc−Pro−OH、Fmoc−Gly−OH、Fmoc−Gly−OH、Fmo
c−Asn(Trt)−OH、Fmoc−Lys(Boc)−OH、Fmoc−Leu−
OH、Fmoc−Trp(Boc)−OH、Fmoc−Glu(OtBu)−OH、Fm
oc−Ile−OH、Fmoc−Phe−OH、Fmoc−Leu−OH、Fmoc−A
rg(Pbf)−OH、Fmoc−Val−OH、Fmoc−Ala−OH、Fmoc−
Glu(OtBu)−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Glu(
OtBu)−OH、Fmoc−Met−OH、Fmoc−Gln(Trt)−OH、Fm
oc−Lys(Boc)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Leu
−OH、Fmoc−Asp(OtBu)−OH、Fmoc−Ser(tBu)−OH、F
moc−Thr(tBu)−OH、Fmoc−Phe−OH、Fmoc−Thr(tBu
)−OH、Fmoc−Gly−OH、Fmoc−Glu(OtBu)−OH、Fmoc−
Gly−OH、Boc−His(Trt)−OH。これらを、N,N−ジメチルホルムア
ミド(DMF)中に溶解させ、そして配列に従って、O−ベンゾトリアゾール−1−イル
−N,N,N’,N’−テトラメチル−ウロニウムヘキサフルオロホスフェート(HBT
U)およびジイソプロピルエチルアミン(DIEA)を使用して活性化する。Fmoc保
護基の除去を、N,N−ジメチルホルムアミド(DMF)中の20%(v/v)のピペリ
ジンの溶液を使用して、20分間で達成する(工程1)。樹脂の切断および生成物の単離
を、85%のTFA/5%のTIS/5%のチオアニソール、および5%のフェノールを
使用して行い、続いてドライアイスで冷却したEt2Oによって沈殿させる(工程2)。
生成物を、Varian(Rainin)の分配二成分HPLCシステム:30〜55%
のB(H2O中の0.045%のTFA(A)およびCH3CN中の0.045%のTFA
(B))でのPhenomenex Luna 10μフェニルへキシル、21mm×2
5cmカラムならびに214nmおよび254nmのUV検出器(Varian Dyn
amax UVD II)を使用して、9.5mL/分で180分にわたる勾配溶出を使
用して、分配逆相HPLCによって精製して、RP−HPLCによって決定した場合には
、所望されるペプチドを>95%の純度で得る。
【0168】
B.改変されたエキセンジン4の調製(配列番号18)
改変されたエキセンジン−4ペプチドを、以下の模式図に示すように、付加したリジン
(Lys)残基のε−N末端の連結をはずすことによって合成する。
【0169】
【化12】

【0170】
自動化されたペプチド合成を使用して、以下の保護されたアミノ酸を連続的にRink
Amide MBHA樹脂に対して連続的に付加した;Fmoc−Lys(Aloc)
−OH、Fmoc−Ser(tBu)−OH、Fmoc−Pro−OH、Fmoc−Pr
o−OH、Fmoc−Pro−OH、Fmoc−Ala−OH、Fmoc−Gly−OH
、Fmoc−Ser−OH、Fmoc−Ser(tBu)−OH、Fmoc−Pro−O
H、Fmoc−Gly−OH、Fmoc−Gly−OH、Fmoc−Asn(Trt)−
OH、Fmoc−Lys(Boc)−OH、Fmoc−Leu−OH、Fmoc−Trp
−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Ile−OH、Fmoc−P
he−OH、Fmoc−Leu−OH、Fmoc−Arg(Bpf)−OH、Fmoc−
Val−OH、Fmoc−Ala−OH、Fmoc−Glu(OtBu)−OH、Fmo
c−Glu(OtBu)−OH、Fmoc−Glu(OtBu)、Fmoc−Met−O
H、Fmoc−Gln(Trt)−OH、Fmoc−Lys(Boc)−OH、Fmoc
−Ser(tBu)−OH、Fmoc−Leu−OH、Fmoc−Asp(OtBu)−
OH、Fmoc−Ser(tBu)−OH、Fmoc−Thr(tBu)−OH、Fmo
c−Phe−OH、Fmoc−Thr(tBu)−OH、Fmoc−Gly−OH、Fm
oc−Glu(OtBu)−OH、Fmoc−Gly−OH、Boc−His(Trt)
−OH(工程1)。
【0171】
Lys(Aloc)基の選択的な脱保護を手作業で行い、そして5mLのCHCl3
NMM:HOAc(18:1:0.5)中に溶解させた3当量のPd(PPh34で2時
間樹脂を処理することによって達成した(工程2)。次いで、樹脂を、CHCl3(6×
5mL)、DCM中の20%のHOAc(6×5mL)、DCM(6×5mL)、および
DMF(6×5mL)で洗浄した。次いで、合成を、3−マレイミドプロピオン酸の付加
のために再度自動化した(工程3)。樹脂の切断および生成物の単離を、85%のTFA
/5%のTIS/5%のチオアニソール、および5%のフェノールを使用して行い、続い
てドライアイスで冷却したEt2Oによって沈殿させた(工程4)。生成物を、Vari
an(Rainin)の分配二成分HPLCシステム:Phenomenex Luna
10μフェニルへキシル、21mm×25cmカラム、ならびにλ214nmおよび2
54nmでUV検出器(Varian Dynamax UVD II)を使用する、9
.5mL/分で180分にわたる30〜55%のB(H2O中の0.045%のTFA(
A)およびCH3CN中の0.045%のTFA(B))での勾配溶出を使用して、分配
逆相HPLCによって精製した。生成物は、ダイオードアレイ検出器を備えたHewle
tt Packard LCMS−1100シリーズ分光光度計および電子放射イオン化
を使用するRP−HPLC質量スペクトル分析によって、決定した場合には、>95%の
純度を有した。
【0172】
(実施例11)
改変エキセンジン−4(1−39)−Lys40(ε−AEEA−AEEA−MPA)−
NH2・5TFA;
His−Gly−Glu−Gly−Thr−Phe−Thr−Ser−Asp−Leu−
Ser−Lys−Gln−Met−Glu−Glu−Glu−Ala−Val−Arg−
Leu−Phe−Ile−Glu−Trp−Leu−Lys−Asn−Gly−Gly−
Pro−Ser−Ser−Gly−Ala−Pro−Pro−Pro−Ser−Lys(
ε−AEEA−AEEA−MPA)−NH2−5TFAの調製
改変されたエキセンジン−4ペプチドを、以下の模式図に示すように、付加したリジン
(Lys)残基のε−N末端の連結をはずすことによって合成する。
【0173】
【化13】

【0174】
自動化されたペプチド合成を使用して、以下の保護されたアミノ酸を連続的にRink
Amide MBHA樹脂に対して連続的に付加した;Fmoc−Lys(Aloc)
−OH、Fmoc−Ser(tBu)−OH、Fmoc−Pro−OH、Fmoc−Pr
o−OH、Fmoc−Pro−OH、Fmoc−Ala−OH、Fmoc−Gly−OH
、Fmoc−Ser−OH、Fmoc−Ser(tBu)−OH、Fmoc−Pro−O
H、Fmoc−Gly−OH、Fmoc−Gly−OH、Fmoc−Asn(Trt)−
OH、Fmoc−Lys(Boc)−OH、Fmoc−Leu−OH、Fmoc−Trp
−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Ile−OH、Fmoc−P
he−OH、Fmoc−Leu−OH、Fmoc−Arg(Bpf)−OH、Fmoc−
Val−OH、Fmoc−Ala−OH、Fmoc−Glu(OtBu)−OH、Fmo
c−Glu(OtBu)−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Me
t−OH、Fmoc−Gln(Trt)−OH、Fmoc−Lys(Boc)−OH、F
moc−Ser(tBu)−OH、Fmoc−Leu−OH、Fmoc−Asp(OtB
u)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Thr(tBu)−OH、
Fmoc−Phe−OH、Fmoc−Thr(tBu)−OH、Fmoc−Gly−OH
、Fmoc−Glu(OtBu)−OH、Fmoc−Gly−OH、Boc−His(T
rt)−OH(工程1)。
【0175】
Lys(Aloc)基の選択的な脱保護を手作業で行い、そして5mLのCHCl3
NMM:HOAc(18:1:0.5)中に溶解させた3当量のPd(PPh34で2時
間樹脂を処理することによって達成した(工程2)。次いで、樹脂を、CHCl3(6×
5mL)、DCM中の20%のHOAc(6×5mL)、DCM(6×5mL)、および
DMF(6×5mL)で洗浄した。次いで、合成を、2つのAEEA(アミノエトキシエ
トキシ酢酸)基および3−マレイミドプロピオン酸の付加のために再度自動化した(工程
3)。樹脂の切断および生成物の単離を、85%のTFA/5%のTIS/5%のチオア
ニソール、および5%のフェノールを使用して行い、続いてドライアイスで冷却したEt
2Oによって沈殿させた(工程4)。生成物を、Varian(Rainin)の分配二
成分HPLCシステム:Phenomenex Luna 10μフェニルへキシル、2
1mm×25cmカラム、ならびにλ214nmおよび254nmでUV検出器(Var
ian Dynamax UVD II)を使用する、9.5mL/分で180分にわた
る30〜55%のB(H2O中の0.045%のTFA(A)およびCH3CN中の0.0
45%のTFA(B))での勾配溶出を使用して、分配逆相HPLCによって精製した。
生成物は、ダイオードアレイ検出器を備えたHewlett Packard LCMS
−1100シリーズ分光光度計および電子放射イオン化を使用するRP−HPLC質量ス
ペクトル分析によって決定した場合には、>95%の純度を有した。
【0176】
(実施例12)
エキセンジン−3(1−39)−Lys40(ε−MPA)−NH2・5TFA;
His−Ser−Asp−Gly−Thr−Phe−Thr−Ser−Asp−Leu−
Ser−Lys−Gln−Met−Glu−Glu−Glu−Ala−Val−Arg−
Leu−Phe−Ile−Glu−Trp−Leu−Lys−Asn−Gly−Gly−
Pro−Ser−Ser−Gly−Ala−Pro−Pro−Pro−Ser−Lys(
ε−MPA)−NH2−5TFAの調製
A.エキセンジン3の調製
エキセンジン−3ペプチドを、最初に、以下の模式図に示すように、合成する。
【0177】
【化14】

【0178】
100μモルのスケールでのエキセンジン3の固相ペプチド合成を、以下を使用して行
う:手作業による固相合成、ならびにFmocで保護されたRink Amide MB
HA樹脂を使用するSymphony Peptide Synthesizer。以下
の保護されたアミノ酸を連続的にRink Amide MBHA樹脂に対して付加する
;Fmoc−Ser(tBu)−OH、Fmoc−Pro−OH、Fmoc−Pro−O
H、Fmoc−Pro−OH、Fmoc−Ala−OH、Fmoc−Gly−OH、Fm
oc−Ser(tBu)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Pro
−OH、Fmoc−Gly−OH、Fmoc−Gly−OH、Fmoc−Asn(Trt
)−OH、Fmoc−Lys(Boc)−OH、Fmoc−Leu−OH、Fmoc−T
rp(Boc)−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Ile−OH
、Fmoc−Phe−OH、Fmoc−Leu−OH、Fmoc−Arg(Pbf)−O
H、Fmoc−Val−OH、Fmoc−Ala−OH、Fmoc−Glu(OtBu)
−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Glu(OtBu)−OH、
Fmoc−Met−OH、Fmoc−Gln(Trt)−OH、Fmoc−Lys(Bo
c)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Leu−OH、Fmoc−
Asp(OtBu)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Thr(t
Bu)−OH、Fmoc−Phe−OH、Fmoc−Thr(tBu)−OH、Fmoc
−Gly−OH、Fmoc−Asp(OtBu)−OH、Fmoc−Ser(tBu)−
Oh、Boc−His(Trt)−OH。これらを、N,N−ジメチルホルムアミド(D
MF)中に溶解させ、そして配列に従って、O−ベンゾトリアゾール−1−イル−N,N
,N’,N’−テトラメチル−ウロニウムヘキサフルオロホスフェート(HBTU)およ
びジイソプロピルエチルアミン(DIEA)を使用して活性化する。Fmoc保護基の除
去を、N,N−ジメチルホルムアミド(DMF)中の20%(v/v)のピペリジンの溶
液を使用して、20分間で達成する(工程1)。樹脂の切断および生成物の単離を、85
%のTFA/5%のTIS/5%のチオアニソール、および5%のフェノールを使用して
行い、続いてドライアイスで冷却したEt2Oによって沈殿させる(工程2)。生成物を
、Varian(Rainin)の分配二成分HPLCシステム:30〜55%のB(H
2O中の0.045%のTFA(A)およびCH3CN中の0.045%のTFA(B))
でのPhenomenex Luna 10μフェニルへキシル、21mm×25cmカ
ラムならびに214nmおよび254nmのUV検出器(Varian Dynamax
UVD II)を使用して、9.5mL/分で180分にわたる勾配溶出を使用して、
分配逆相HPLCによって精製して、RP−HPLCによって決定した場合には、所望さ
れるペプチドを>95%の純度で得る。
【0179】
B.改変されたエキセンジン3の調製
自動化されたペプチド合成を使用して、以下の保護されたアミノ酸を連続的にRink
Amide MBHA樹脂に対して連続的に付加した;Fmoc−Lys(Aloc)
−OH、Fmoc−Ser(tBu)−OH、Fmoc−Pro−OH、Fmoc−Pr
o−OH、Fmoc−Pro−OH、Fmoc−Ala−OH、Fmoc−Gly−OH
、Fmoc−Ser−OH、Fmoc−Ser(tBu)−OH、Fmoc−Pro−O
H、Fmoc−Gly−OH、Fmoc−Gly−OH、Fmoc−Asn(Trt)−
OH、Fmoc−Lys(Boc)−OH、Fmoc−Leu−OH、Fmoc−Trp
−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Ile−OH、Fmoc−P
he−OH、Fmoc−Leu−OH、Fmoc−Arg(Bpf)−OH、Fmoc−
Val−OH、Fmoc−Ala−OH、Fmoc−Glu(OtBu)−OH、Fmo
c−Glu(OtBu)−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Me
t−OH、Fmoc−Gln(Trt)−OH、Fmoc−Lys(Boc)−OH、F
moc−Ser(tBu)−OH、Fmoc−Leu−OH、Fmoc−Asp(OtB
u)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Thr(tBu)−OH、
Fmoc−Phe−OH、Fmoc−Thr(tBu)−OH、Fmoc−Gly−OH
、Fmoc−Asp(OtBu)−OH、Fmoc−Ser(OtBu)−OH、Boc
−His(Trt)−OH(工程1)。改変されたエキセンジン−3を、付加されたリジ
ン残基のε−N末端の連結をはずすことによって合成する。
【0180】
Lys(Aloc)基の選択的な脱保護を手作業で行い、そして5mLのCHCl3
NMM:HOAc(18:1:0.5)中に溶解させた3当量のPd(PPh34で2時
間樹脂を処理することによって達成した(工程2)。次いで、樹脂を、CHCl3(6×
5mL)、DCM中の20%のHOAc(6×5mL)、DCM(6×5mL)、および
DMF(6×5mL)で洗浄した。次いで、合成を、3−マレイミドプロピオン酸の付加
のために再度自動化した(工程3)。樹脂の切断および生成物の単離を、85%のTFA
/5%のTIS/5%のチオアニソール、および5%のフェノールを使用して行い、続い
てドライアイスで冷却したEt2Oによって沈殿させた(工程4)。生成物を、Vari
an(Rainin)の分配二成分HPLCシステム:Phenomenex Luna
10μフェニルへキシル、21mm×25cmカラム、ならびにλ214nmおよび2
54nmでUV検出器(Varian Dynamax UVD II)を使用する、9
.5mL/分で180分にわたる30〜55%のB(H2O中の0.045%のTFA(
A)およびCH3CN中の0.045%のTFA(B))での勾配溶出を使用して、分配
逆相HPLCによって精製した。生成物は、ダイオードアレイ検出器を備えたHewle
tt Packard LCMS−1100シリーズ分光光度計および電子放射イオン化
を使用するRP−HPLC質量スペクトル分析によって決定した場合には、>95%の純
度を有した。
【0181】
(実施例13)
エキセンジン−3(1−39)−Lys40(ε−AEEA−AEEA−MPA)−NH
2・5TFA;
His−Ser−Asp−Gly−Thr−Phe−Thr−Ser−Asp−Leu−
Ser−Lys−Gln−Met−Glu−Glu−Glu−Ala−Val−Arg−
Leu−Phe−Ile−Glu−Trp−Leu−Lys−Asn−Gly−Gly−
Pro−Ser−Ser−Gly−Ala−Pro−Pro−Pro−Ser−Lys(
ε−AEEA−AEEA−MPA)−NH2−5TFAの調製
改変されたエキセンジン−3ペプチドを、以下に記載するように、付加されたリジン(
Lys)残基のε−N末端の連結をはずすことによって合成する。
【0182】
自動化されたペプチド合成を使用して、以下の保護されたアミノ酸を連続的にRink
Amide MBHA樹脂に対して連続的に付加した;Fmoc−Lys(Aloc)
−OH、Fmoc−Ser(tBu)−OH、Fmoc−Pro−OH、Fmoc−Pr
o−OH、Fmoc−Pro−OH、Fmoc−Ala−OH、Fmoc−Gly−OH
、Fmoc−Ser−OH、Fmoc−Ser(tBu)−OH、Fmoc−Pro−O
H、Fmoc−Gly−OH、Fmoc−Gly−OH、Fmoc−Asn(Trt)−
OH、Fmoc−Lys(Boc)−OH、Fmoc−Leu−OH、Fmoc−Trp
(Boc)−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Ile−OH、F
moc−Phe−OH、Fmoc−Leu−OH、Fmoc−Arg(Bpf)−OH、
Fmoc−Val−OH、Fmoc−Ala−OH、Fmoc−Glu(OtBu)−O
H、Fmoc−Glu(OtBu)−OH、Fmoc−Glu(OtBu)−OH、Fm
oc−Met−OH、Fmoc−Gln(Trt)−OH、Fmoc−Lys(Boc)
−OH、Fmoc−Ser(tBu)−OH、Fmoc−Leu−OH、Fmoc−As
p(OtBu)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Thr(tBu
)−OH、Fmoc−Phe−OH、Fmoc−Thr(tBu)−OH、Fmoc−G
ly−OH、Fmoc−Asp(OtBu)−OH、Fmoc−Ser(OtBu)−O
H、Boc−His(Trt)−OH(工程1)。
【0183】
Lys(Aloc)基の選択的な脱保護を手作業で行い、そして5mLのCHCl3
NMM:HOAc(18:1:0.5)中に溶解させた3当量のPd(PPh34で2時
間樹脂を処理することによって達成した(工程2)。次いで、樹脂を、CHCl3(6×
5mL)、DCM中の20%のHOAc(6×5mL)、DCM(6×5mL)、および
DMF(6×5mL)で洗浄した。次いで、合成を、2つのAEEA(アミノエトキシエ
トキシ酢酸)基および3−マレイミドプロピオン酸の付加のために再度自動化した(工程
3)。樹脂の切断および生成物の単離を、85%のTFA/5%のTIS/5%のチオア
ニソール、および5%のフェノールを使用して行い、続いてドライアイスで冷却したEt
2Oによって沈殿させた(工程4)。生成物を、Varian(Rainin)の分配二
成分HPLCシステム:Phenomenex Luna 10μフェニルへキシル、2
1mm×25cmカラム、ならびにλ214nmおよび254nmでUV検出器(Var
ian Dynamax UVD II)を使用する、9.5mL/分で180分にわた
る30〜55%のB(H2O中の0.045%のTFA(A)およびCH3CN中の0.0
45%のTFA(B))での勾配溶出を使用して、分配逆相HPLCによって精製した。
生成物は、ダイオードアレイ検出器を備えたHewlett Packard LCMS
−1100シリーズ分光光度計および電子放射イオン化を使用するRP−HPLC質量ス
ペクトル分析によって決定した場合には、>95%の純度を有した。
【0184】
(実施例14)
Lys26(ε−MPA)GLP−1(7−36)−NH2の調製
【0185】
【化15】

【0186】
100μモルのスケールでのDAC:GLP−1アナログの固相ペプチド合成を、以下
を使用して行う:手作業による固相合成、ならびにFmocで保護されたRink am
ide MBHA樹脂を使用するSymphony Peptide Synthesi
zer。以下の保護されたアミノ酸を連続的にRink Amide MBHA樹脂に対
して付加する;Fmoc−Arg(Pbf)−OH、Fmoc−Gly−OH、Fmoc
−Lys(Boc)−OH、Fmoc−Val−OH、Fmoc−Leu−OH、Fmo
c−Trp(Boc)−OH、Fmoc−Ala−OH、Fmoc−Ile−OH、Fm
oc−Phe−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Lys(Alo
c)−OH、Fmoc−Ala−OH、Fmoc−Ala−OH、Fmoc−Gln(T
rt)−OH、Fmoc−Gly−OH、Fmoc−Glu(OtBu)−OH、Fmo
c−Leu−OH、Fmoc−Tyr(tBu)−OH、Fmoc−Ser(tBu)−
OH、Fmoc−Ser(tBu)−OH、Fmoc−Val−OH、Fmoc−Asp
(tBu)−OH、Fmoc−Ser(tBu)−OH、Fmoc−Thr(tBu)−
OH、Fmoc−Phe−OH、Fmoc−Thr(tBu)−OH、Fmoc−Gly
−OH、Fmoc−Glu(OtBu)−OH、Fmoc−Ala−OH、Boc−Hi
s(Trt)−OH。これらを、N,N−ジメチルホルムアミド(DMF)中に溶解させ
、そして配列に従って、O−ベンゾトリアゾール−1−イル−N,N,N’,N’−テト
ラメチル−ウロニウムヘキサフルオロホスフェート(HBTU)およびジイソプロピルエ
チルアミン(DIEA)を使用して活性化する。Fmoc保護基の除去を、N,N−ジメ
チルホルムアミド(DMF)中の20%(v/v)のピペリジンの溶液を使用して、20
分間で達成する(工程1)。Lys(Aloc)基の選択的脱保護を手作業により行い、
そして5mLのCHCl3:NMM:HOAc(18:1:0.5)に溶解した3当量の
Pd(PPh34の溶液で樹脂を2時間処理することによって達成した(工程2)。次い
で、この樹脂をCHCl3(6×5mL)、DCM(6×5mL)中の20%HOAc、
DCM(6×5mL)、およびDMF(6×5mL)で洗浄した。次いで、この合成を、
3−マレイミドプロピオン酸の付加のために再度自動化した(工程3)。樹脂の切断およ
び生成物の単離を、86%のTFA/5%のTIS/5%の水/2%のチオアニソール、
および2%のフェノールを使用して行い、続いてドライアイスで冷却したEt2Oによっ
て沈殿させる(工程4)。生成物を、Varian(Rainin)の分配二成分HPL
Cシステム(DynamaxC18、60Å、8μm、21mm×25cmカラムを使用、
DynamaxC18、60Å、8μmガードモジュール、21mm×25cmカラムなら
びにλ214nmおよび254nmのUV検出器(Varian Dynamax UV
D II)を装着)を使用して、所望のDACを、RP−HPLCによって決定した場合
には、>95%の純度で得る。
【0187】
【化16】

【0188】
(実施例15)
(GLP−1(7−36)EDA−MPAの調製)
100μモルのスケールでの改変されたGLP−1アナログの固相ペプチド合成を、手
作業によって、およびSymphony Peptide Synthesizer S
ASRIN(超酸感受性樹脂(super acid seneitive resin
))上で行う。以下の保護されたアミノ酸を連続的に樹脂に対して付加する:
【0189】
【化17】

【0190】
これらを、N,N−ジメチルホルムアミド(DMF)中に溶解させ、そして配列に従って
、O−ベンゾトリアゾール−1−イル−N,N,N’,N’−テトラメチル−ウロニウム
ヘキサフルオロホスフェート(HBTU)およびジイソプロピルエチルアミン(DIEA
)を使用して活性化する。Fmoc保護基の除去を、N,N−ジメチルホルムアミド(D
MF)中の20%(v/v)のピペリジンの溶液を使用して、20分間で達成する(工程
1)。1%のTFA/DCMでの処理によって、完全に保護されたペプチドを樹脂から切
断する(工程2)。次いで、エチレンジアミンおよび3−マレイミドプロピオン酸を、フ
リーのC末端に連続して付加する(工程3)。次いで、保護基を切断し、そして生成物を
、86%のTFA/5%のTIS/5%のH2O/2%のチオアニソール、および2%の
フェノールを使用して単離し、続いて乾燥−氷冷Et2Oによって沈殿させる(工程4)
。生成物を、Dynamax C18、60Å、8μm、21mm×25cmカラム(Dy
namax C18、60Å、8μmのガードモジュール、21mm×25cmのカラム
を備えている)ならびにλ214および254nmでのUV検出器(Varian Dy
namax UVD II)を用いるVarian(Rainin)分取用バイナリHP
LCシステムを用いて、分取用逆相HPLCによって精製して、所望されるDACをRP
−HPLCによって決定されるように、>95%の純度で得る。
【0191】
(実施例16)
(エキセンジン−4(1−39)−EDA−MPの調製)
以下の模式図は、エキセンジン−4(1−39)−EDA−MPAの合成を示す。
【0192】
【化18】

【0193】
100μモルのスケールでの改変されたエキセンジン−4アナログの固相ペプチド合成
を、手作業によって、およびSymphony Peptide Synthesize
r SASRIN(超酸感受性樹脂)上で行う。以下の保護されたアミノ酸を連続的に樹
脂に対して付加する:
【0194】
【化19】

【0195】
そして配列に従って、O−ベンゾトリアゾール−1−イル−N,N,N’,N’−テトラ
メチル−ウロニウムヘキサフルオロホスフェート(HBTU)およびジイソプロピルエチ
ルアミン(DIEA)を使用して活性化する。Fmoc保護基の除去を、N,N−ジメチ
ルホルムアミド(DMF)中の20%(v/v)のピペリジンの溶液を使用して、20分
間で達成する(工程1)。完全に保護されたペプチドを、1%のTFA/DCMでの処理
によって樹脂から切断する(工程2)。次いで、エチレンジアミンおよび3−マレイミド
プロピオン酸を、遊離C末端に連続して付加する(工程3)。次いで、保護基を切断し、
そして生成物を、86%のTFA/5%のTIS/5%のH2O/2%のチオアニソール
、および2%のフェノールを使用して単離し、続いて乾燥−氷冷Et2Oによって沈殿さ
せる(工程4)。生成物を、Dynamax C18、60Å、8μm、21mm×256
cmのカラム(Dynamax C18、60Å、8μmのガードモジュール、21mm
×25cmカラムを備えている)ならびにλ214および254nmでのUV検出器(V
arian Dynamax UVD II)を用いるVarian(Rainin)分
取用バイナリHPLCシステムを用いて、分取用逆相HPLCによって精製して、RP−
HPLCによって決定されるように、所望されるDACを>95%の純度で得る。

【特許請求の範囲】
【請求項1】
改変されたペプチドであって、該改変されたペプチドが、エキセンジン−4(1−39)および、直接または結合基を通じて該ペプチドに結合したマレイミド基を含む、改変されたペプチド。
【請求項2】
前記マレイミド基が、マレイミドプロピオン酸(MPA)である、請求項1に記載の改変されたペプチド。
【請求項3】
前記マレイミド基が、結合基を通じて前記ペプチドに結合し、ここで、該結合基は、EDAおよびAEEA(n)からなる群より選択され、そしてnは0、1、または2である、請求項1に記載の改変されたペプチド。
【請求項4】
医薬品としての使用のための、請求項1〜3のいずれか一項に記載の改変されたペプチド。
【請求項5】
ヒトの糖尿病を処置する方法における使用のための、請求項4に記載の改変されたペプチド。
【請求項6】
ヒトのインシュリンの発現を増強させる方法における使用のための、請求項4に記載の改変されたペプチド。
【請求項7】
ヒトの肥満の処置の方法における使用のための、請求項4に記載の改変されたペプチド。
【請求項8】
ヒトの低下したインシュリンの感受性を処置する方法における使用のための、請求項4に記載の改変されたペプチド。
【請求項9】
請求項1〜3のいずれか一項に記載の改変されたペプチドを、生理学的に受容可能な媒体と組合わせて含む、薬学的組成物。
【請求項10】
医薬品としての使用のための、請求項9に記載の薬学的組成物。
【請求項11】
ヒトの糖尿病を処置する方法における使用のための、請求項10に記載の薬学的組成物。
【請求項12】
ヒトのインシュリンの発現を増強させる方法における使用のための、請求項10に記載の薬学的組成物。
【請求項13】
ヒトの肥満の処置の方法における使用のための、請求項10に記載の薬学的組成物。
【請求項14】
ヒトの低下したインシュリンの感受性を処置する方法における使用のための、請求項10に記載の薬学的組成物。
【請求項15】
請求項1〜3のいずれか一項に記載の改変されたペプチドを、アルブミンと反応させ、それにより該改変されたポリペプチドと該アルブミンとの間に共有結合が形成されることにより作製される、結合体。
【請求項16】
前記共有結合が、前記改変されたペプチドと、アルブミンのシステイン34との間に形成される、請求項15に記載の結合体。
【請求項17】
前記アルブミンが、ヒト血清アルブミンである、請求項15または16に記載の結合体。
【請求項18】
医薬品としての使用のための、請求項15〜17のいずれか一項に記載の結合体。
【請求項19】
ヒトの糖尿病を処置する方法における使用のための、請求項18に記載の結合体。
【請求項20】
ヒトのインシュリンの発現を増強させる方法における使用のための、請求項18に記載の結合体。
【請求項21】
ヒトの肥満の処置の方法における使用のための、請求項18に記載の結合体。
【請求項22】
ヒトの低下したインシュリンの感受性を処置する方法における使用のための、請求項18に記載の結合体。
【請求項23】
請求項15〜17のいずれか一項に記載の結合体を、生理学的に受容可能な媒体と組合わせて含む、薬学的組成物。
【請求項24】
医薬品としての使用のための、請求項23に記載の薬学的組成物。
【請求項25】
ヒトの糖尿病を処置する方法における使用のための、請求項24に記載の薬学的組成物。
【請求項26】
ヒトのインシュリンの発現を増強させる方法における使用のための、請求項24に記載の薬学的組成物。
【請求項27】
ヒトの肥満の処置の方法における使用のための、請求項24に記載の薬学的組成物。
【請求項28】
ヒトの低下したインシュリンの感受性を処置する方法における使用のための、請求項24に記載の薬学的組成物。
【請求項29】
患者の糖尿病を処置するための医薬品の製造における、請求項1〜3のいずれか一項に記載の改変されたペプチドの使用。
【請求項30】
患者の糖尿病を処置するための医薬品の製造における、請求項15〜17のいずれか一項に記載の結合体の使用。
【請求項31】
患者のインシュリンの発現を増強させるための医薬品の製造における、請求項1〜3のいずれか一項に記載の改変されたペプチドの使用。
【請求項32】
患者のインシュリンの発現を増強させるための医薬品の製造における、請求項15〜17のいずれか一項に記載の結合体の使用。
【請求項33】
患者の肥満を処置するための医薬品の製造における、請求項1〜3のいずれか一項に記載の改変されたペプチドの使用。
【請求項34】
患者の肥満を処置するための医薬品の製造における、請求項15〜17のいずれか一項に記載の結合体の使用。
【請求項35】
患者の低下したインシュリンの感受性を処置するための医薬品の製造における、請求項1〜3のいずれか一項に記載の改変されたペプチドの使用。
【請求項36】
患者の低下したインシュリンの感受性を処置するための医薬品の製造における、請求項15〜17のいずれか一項に記載の結合体の使用。
【請求項37】
前記患者が、ヒトである、請求項29〜36のいずれか一項に記載の使用。

【公開番号】特開2009−7371(P2009−7371A)
【公開日】平成21年1月15日(2009.1.15)
【国際特許分類】
【出願番号】特願2008−187966(P2008−187966)
【出願日】平成20年7月18日(2008.7.18)
【分割の表示】特願2005−361126(P2005−361126)の分割
【原出願日】平成12年5月17日(2000.5.17)
【出願人】(507340636)コンジュケム バイオテクノロジーズ インコーポレイテッド (18)
【Fターム(参考)】