説明

電子デバイス及びその製造方法

【課題】絶縁基板2に形成した貫通電極6の導電率及び熱伝導率を向上させる。
【解決手段】電子デバイス1は、表面に窪み4を有し、この窪み4の底面から裏面に貫通する貫通孔3が形成された絶縁基板2と、貫通孔3に充填され、ナノ金属粒子の熱処理により形成された貫通電極6と、窪み4に収納され、貫通電極6に電気的に接続される電子部品7と、この電子部品7を封止する封止部9とを備えており、貫通電極6の導電率及び熱伝導率を向上させた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は貫通電極を形成した絶縁基板上に電子部品が実装された電子デバイスに関する。
【背景技術】
【0002】
面発光素子、特にLED(Light Emitting Diode)は、近年、発光輝度等の改善が図られて、用途拡大への期待が高い。従来はプラスチックケースにLEDを実装し、マイクロレンズなどを光路の途中において集光させたり、LED及びLEDを実装した基板全体を、透明な樹脂でモールドし、樹脂の表面を滑らかな球面などに仕上げることで、樹脂をレンズとして使用して集光させたりした。このようなLEDを実装した発光デバイスは、例えば液晶表示装置のバックライト、信号機の光源、大型電光掲示板や映像画面、その他イルミネーション用の光源として利用されている。LEDは、低電圧、低消費電力で駆動でき、発光輝度や発光寿命が改善されたことから室内灯や自動車照明、液晶表示画面のバックライト用などの幅広い分野への適用が期待されている。
【0003】
特許文献1には、表面に導体膜を印刷したセラミックグリーンシートを成形加工してキャビティーを形成し、このキャビティーの底部にLEDを実装したLEDパッケージが記載されている。また、キャビティーの底部にはスルーホール(貫通孔)が形成され、このスルーホールを介して裏面側に配線が引き出されている。このスルーホール及びスルーホール内の電極は次のように形成される。まず、アルミナを主成分とするグリーンシートを所定のサイズに切り出し、パンチングマシーンを使用して0.25mmφのスルーホールを形成する。次に、LEDを搭載しない側から、スクリーン印刷法によりタングステン導体ペーストを印刷し、スルーホールの穴を埋め、同時に配線部分を形成する。次に、プレス機に装着してプレスし、キャビティーを形成する。その後、焼成してグリーンシート及び導体ペースト中の有機物を燃焼除去して貫通電極及び導体層を形成し、グリーンシートをセラミックス化する。
【0004】
しかし、タングステン導体ペーストを焼結して貫通電極を形成すると、導体抵抗が高く信号の伝播速度が遅くなる、また、熱伝導性が低いために放熱効果が低下する。そのため、高周波信号により駆動される電子部品や、放熱特性が求められる電子部品のパッケージには必ずしも適さない。そこで、貫通電極としてタングステン等の高融点金属に代えて、銅、銀、金等の導体抵抗が低く熱伝導性が高い材料が使用される。例えば、ガラスやセラミックスからなる無機物フィラーを含有する銅、銀又は金の混合材料を800℃から1000℃の温度で焼成して、貫通電極や配線電極を形成した。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2004−258291号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、例えばパッケージとしての絶縁基板をアルミナ(Al23)とする場合には、グリーンシートの焼成温度が1000℃以上であるために、無機物フィラーを含有した導電ペーストをグリーンシートと同時に焼成することができない。例えば、絶縁基板として温度800℃〜1000℃で焼成するガラスセラミックスを使用し、無機物フィラーを含有した導電ペーストを同時に焼成して貫通電極を形成すると、ガラスセラミックス側から貫通電極側にガラス成分が入り込んで導電性や熱伝導性が低下する、という課題があった。
【0007】
また、貫通電極を高温処理なしで形成する方法として、貫通孔に金属メッキ処理を施す方法が知られている。しかし、メッキ処理による金属析出速度が遅く、生産性が悪い、という課題があった。更に、メッキ処理により金属を析出して貫通電極を形成すると、貫通電極の内部に空洞が生成されて密閉性が低下し、外部から水分や不純物が侵入して素子の信頼性を低下させる、という課題があった。
【課題を解決するための手段】
【0008】
本発明の電子デバイスは、表面に窪みを有し、前記窪みの底面から裏面に貫通する貫通孔が形成された絶縁基板と、前記貫通孔に充填され、ナノ金属粒子の熱処理により形成された貫通電極と、前記窪みに収納され、前記貫通電極に電気的に接続される電子部品と、前記電子部品を封止する封止部と、を備えることとした。
【0009】
また、前記ナノ金属粒子は、ナノ銀粒子であることとした。
【0010】
また、前記貫通孔の側壁面には導電性膜が形成され、前記貫通電極は前記導電性膜に接して充填されていることとした。
【0011】
本発明の電子デバイスの製造方法は、絶縁基板の表面側に窪みと、前記窪みの底面から前記絶縁基板の裏面に貫通する貫通孔を形成する準備工程と、前記貫通孔にナノ金属粒子を充填し、熱処理して貫通電極を形成する貫通電極形成工程と、電子部品を前記窪みの底面に実装する実装工程と、前記電子部品を封止する封止部を形成する封止工程と、を含むこととした。
【0012】
また、前記貫通電極形成工程の前に、前記貫通孔の側壁面に無機材料と金属材料とを混合した混合材料を塗布し、熱処理して前記側壁面に導電性膜を形成する導電性膜形成工程を更に有し、前記貫通電極形成工程は、前記貫通孔にナノ銀粒子を充填し、熱処理して貫通電極を形成する工程であることとした。
【発明の効果】
【0013】
本発明の電子デバイスは、表面に窪みを有し、この窪みの底面から裏面に貫通する貫通孔が形成された絶縁基板と、貫通孔に充填され、ナノ金属粒子の熱処理により形成された貫通電極と、窪みに収納され、貫通電極に電気的に接続される電子部品と、電子部品を封止する封止部とを備えている。貫通電極をナノ金属粒子の熱処理により形成したので、貫通電極の電気伝導率や熱伝導率を高くすることができる。そのために、高周波電子部品や発熱性電子部品を絶縁材料の内部に密封し、高性能で高信頼性を維持できる電子デバイスを提供することができる。
【図面の簡単な説明】
【0014】
【図1】本発明に係る電子デバイスの模式的な縦断面図である。
【図2】本発明に係る電子デバイスの模式的な縦断面図である。
【図3】本発明に係る電子デバイスの製造方法を説明するための図である。
【発明を実施するための形態】
【0015】
本発明の電子デバイスは、絶縁基板の表面に窪みが形成され、この窪みに電子部品が収納され、封止部により封止されている。絶縁基板には、窪みの底面から裏面に貫通する貫通孔が形成され、この貫通孔にはナノ金属粒子の熱処理により形成された貫通電極が充填されている。窪みに収納された電子部品は貫通電極と電気的に接続され、外部から電力が供給でき、また、電子部品が発熱する場合は貫通電極を介して外部に放熱されるように構成されている。
【0016】
ナノ金属粒子とは、粒子径が1nm〜10nmのAu(金)、Ag(銀)、或いはCu(銅)等からなる金属粒子をいう。ナノ金属粒子を分散させたナノペーストを印刷法やインクジェット法により貫通孔に充填し、例えば温度100℃〜600℃で焼成して貫通電極を形成する。ナノ金属粒子は反応性が高いので上記のような低温度焼成でも、低抵抗、高熱伝導性を有している。例えばナノ金粒子から形成した電極は4μΩcm以下のシート抵抗を得ることができる。貫通電極の熱伝導率は60W/(mK)以上が好適である。例えばナノ銀粒子から形成した貫通電極は300W/(mK)以上の熱伝導率を得ることができる。
【0017】
即ち、ナノ金属粒子を貫通孔に充填し、低温度で焼成して貫通電極を構成することにより、貫通電極の抵抗を低く、また熱伝導率を高くすることができる。そのため、高周波駆動の電子部品では信号遅延を低減できる。また、LEDのような発熱する電子部品では放熱特性が向上し、電子部品の高温化による発光効率の低下を防止することができる。
【0018】
また、貫通孔の側壁面には導電性膜が形成され、ナノ金属粒子の熱処理により形成する貫通電極がこの導電性膜に接して充填されるように構成することができる。例えば、貫通孔の側壁面に無機フィラーと金属材料とを混合した混合部材を塗布し、例えば温度500℃〜1000℃で焼成して導電性膜を形成することができる。導電性膜は、貫通孔の側壁のアンカー特性を向上させるとともに、ナノ金属粒子から形成する貫通電極とも密着性がよい。従って、導電性膜は貫通孔の側壁面と貫通電極の間の密着性、密封性を向上させる機能を有する。また、貫通孔の側壁面にスパッタ法、蒸着法、メッキ法、インクジェット法、印刷法或いはディスペンス法などにより金属膜を形成し、これを導電性膜とすることができる。また、貫通孔の側壁面と貫通電極との密着性を向上させるために、貫通孔の側壁面を予めプラズマ法、エッチング法、サンドブラスト法等による粗面処理を行い、側壁表面に凹凸を形成することができる。
【0019】
本発明の電子デバイスの製造方法においては、絶縁基板の表面側に窪みを形成するとともに、窪みの底面から絶縁基板の裏面に貫通する貫通孔を形成する準備工程と、貫通孔にナノ金属粒子を充填し、熱処理を行って貫通電極を形成する貫通電極形成工程と、窪みの底面に電子部品を実装し、貫通電極と電気的に接続する実装工程と、電子部品を封止する封止部を絶縁基板に設置する封止工程を備えている。
【0020】
ナノ金属粒子は反応性が高いので、例えば温度100℃〜600℃の低温で焼成してもバルク金属に近い特性の電極を形成することができる。ナノ金属粒子として、例えばナノ金粒子、ナノ銀粒子、ナノ銅粒子の材料を使用すれば、抵抗が小さく熱伝導率が高い貫通電極を形成することができる。更に、電極形成工程の前に、貫通孔の側壁面に無機材料と金属材料とを混合した混合材料を塗布し、熱処理してその側壁面に導電性膜を形成する導電性膜形成工程を備えることができる。この導電性膜を形成することにより、貫通電極と貫通孔の側壁面との密着性、気密性を向上させることができる。以下、本発明の実施形態を具体的に説明する。
【0021】
(第一実施形態)
図1は本発明の第一実施形態に係る電子デバイス1の模式的な縦断面図である。電子デバイス1は、表面に窪み4が形成された絶縁基板2と、窪み4の底面から絶縁基板2の裏面に貫通する2つの貫通孔3a、3bに充填される貫通電極6a、6bと、窪み4に収納され、ダイボンディング材10を介して実装される電子部品7と、絶縁基板2の裏面に形成される裏面電極8a、8bと、窪み4を外部から密閉する封止部9から構成されている。
【0022】
絶縁基板2と封止部9はガラス材料やセラミックス材料を使用することができる。貫通孔3a、3bの側壁面には導電性膜5a、5bが形成されている。貫通孔3bの導電性膜5bは、窪み4の底面まで延設されている。貫通孔3a、3bの導電性膜5a、5bの表面側にはナノ金属粒子の熱処理により形成された貫通電極6a、6bが充填されている。電子部品7は貫通電極6aの上部にダイボンディング材10を介して実装されている。電子部品7の表面には図示しない電極が形成され、この電極と窪み4の底面に延設された導電性膜5bとは金線からなるワイヤー15により電気的に接続されている。封止部9は絶縁基板2の窪み4の上面に接合材11を介して接着されている。窪み4の内部は、例えば、真空に引かれている又は不活性ガスが充填されている。
【0023】
電子部品7には裏面電極8a、貫通電極6a、ダイボンディング材10を介して、また、裏面電極8b、貫通電極6b、導電性膜5b、ワイヤー15を介して電力が供給される。電子部品7が駆動状態で発熱する場合には、貫通電極6a、裏面電極8aを介して熱が外部に放熱される。例えば、ナノ金属粒子としてナノ銀粒子を使用した場合には熱伝導率が300W/(mK)以上であり、優れた放熱特性を得ることができる。
【0024】
ここで、導電性膜5は、1μm〜3μmのガラスフリットを混入した銀ペーストを貫通孔3a、3bの側壁面に塗布し、温度500℃〜1000℃で焼成し、ガラス材料を0.1wt%〜3wt%含有する銀電極とした。また、ナノ銀粒子が高分子材料に分散したナノ銀ペーストを貫通孔3a、3bに充填し、温度100℃〜600℃で焼成して貫通電極6a、6bとした。これにより、貫通電極6と貫通孔3a、3bの側壁面との密着性、気密性を向上させることができる。絶縁基板2と封止部9とはAuSnの合金材料からなる接合材11を使用して接合することができる。裏面電極8a、8bは、例えば銀パラジウムまたは銀含有ペーストを印刷し、焼成して形成することができる。
【0025】
なお、上記第一実施形態において、2つの貫通孔3a、3b、2つの貫通電極6a、6bを形成したがこれに限定されず、貫通孔3及び貫通電極6は必要に応じて2個以上であってもよい。また、電子部品7をワイヤー15を介して接続したが、これに変えて、電子部品7を複数の貫通電極6a、6bの上に導電材料を介して面実装により設置してもよい。
【0026】
(第二実施形態)
図2は本発明の第二実施形態に係る電子デバイス1の模式的な縦断面図である。本第二実施形態では電子部品7としてLEDを用い、LEDから発光した光を基板上方向に指向性の光を射出することができる。図1と同一の部分又は同一の機能を有する部分には同一の符号を付している。
【0027】
電子デバイス1は、表面に窪み4を有し、窪み4の底面から裏面に貫通する貫通孔3a、3bを有する絶縁基板2と、貫通孔3a、3bに充填された貫通電極6a、6bと、貫通電極6aの上にダイボンディング材10を介して実装されている電子部品7と、絶縁基板2の裏面に形成され、貫通電極6a、6bに電気的に接続する裏面電極8a、8bと、窪み4に充填される封止部9などから構成されている。
【0028】
絶縁基板2は、ガラス材料又はセラミック材料を使用することができる。貫通孔3a、3bの側壁面には導電性膜5a、5bが形成され、導電性膜5a、5bの表面側に貫通電極6a、6bが充填されている。導電性膜5bは窪み4の底面に延設されている。電子部品7は貫通電極6aの上にダイボンディング材10を介して実装されている。電子部品7の表面に形成される図示しない電極と、導電性膜5bとはワイヤー15により電気的に接続されている。従って、電子部品7には、裏面電極8a、貫通電極6a、ダイボンディング材10を介して、また、裏面電極8b、導電性膜5b、ワイヤー15を介して電力が供給される。
【0029】
貫通電極6a、6bは、ナノ金属粒子の熱処理により形成されている。貫通孔3a、3bの側壁面と貫通電極6a、6bとは、その間に導電性膜5a、5bを介在させることにより、側壁面と貫通電極6a、6bとの間が強固に接着される。貫通電極6a、6b、導電性膜5a、5b、裏面電極8a、8bの材料は第一実施形態において説明したと同様なので説明を省略する。なお、裏面電極8a、8bと貫通電極6a、6bはナノ金属粒子の熱処理により同時に形成することができる。即ち、ナノペーストを印刷法或いはインクジェット法により貫通孔3a、3bと裏面電極8a、8bに塗布し、温度100℃〜600℃で焼成して形成することができる。
【0030】
封止部9は、透明合成樹脂や無機材料を使用することができる。封止部9として、金属アルコキシド又は金属アルコキシドから形成されるポリメタロキサンを硬化させたシリコン酸化物とすることができる。絶縁基板2としてガラス材料を使用し、封止部9としてシリコン酸化物を使用すれば、互いに熱膨張係数が近似するので気密性の信頼性を向上させることができる。
【0031】
なお、窪み4の傾斜面や底面に金属薄膜或いは誘電体多層膜からなる反射面を形成することができる。また、ワイヤー15による接続に代えて、電子部品7の裏面側に電極を集約的に形成し、面実装を行って貫通電極6a、6bと電気的に接続してもよい。
【0032】
ナノ金属粒子の熱処理により形成した貫通電極6a、6bを使用したことにより、貫通電極6a、6bの熱伝導率を例えば60W/(mK)以上とすることができる。例えば、ナノ銀粒子を100℃〜600℃で熱処理した貫通電極6a、6bを使用すれば、熱伝導率を300W/(mK)以上とすることができる。これにより、LEDからなる電子部品7の発熱を貫通電極6a及び裏面電極8aを介して放熱させることができ、LEDが温度上昇して発光効率が低下することを防止することができる。また、窪み4の傾斜面及び底面に金属膜又は誘電体多層膜を形成して反射面を構成すれば、電子部品7から放射される光の指向性をより強くすることができる。
【0033】
(第三実施形態)
図3は、本発明の電子デバイス1の製造方法を説明するための図である。
図3(a)は、絶縁基板2の表面に窪み4を形成し、窪み4の底面から裏面にかけて貫通孔3を形成した準備工程終了後の絶縁基板2の断面図である。絶縁基板2としてセラミックス材料やガラス材料を使用することができる。セラミックス材料を使用する場合は、板状のグリーンシートをプレス機により押圧して窪み4と貫通孔3を形成し、次に温度1000℃以上で焼成してセラミックス材料からなる絶縁基板2を形成することができる。絶縁基板2としてガラス材料を使用する場合は、板状のガラス材料を軟化点又は軟化点以上の温度に加熱して成型法により窪み4と貫通孔3を形成することができる。また、板状のガラスと中央部が開口する枠形状のガラスとを張り合わせて窪み4を形成し、窪み4の底面から裏面にかけて貫通孔3を形成してもよい。
【0034】
図3(b)は、貫通孔3に導電性膜5a、5bを形成した導電性膜形成工程終了後の絶縁基板2の断面図である。導電性膜5a、5bは、長さが1μm〜3μmのガラスフリットを0.1wt%〜3wt%含有する銀ペーストをディスペンサ法あるいは印刷法により貫通孔3a、3bの側壁面及び窪み4の底面の一部に塗布し、温度500℃〜1000℃で加熱焼成して形成する。銀ペーストに含まれるガラスフリットは、好ましくは0.5wt%〜1wt%とする。ガラスフリットの量を多くすると、例えばセラミックス材料の絶縁基板2に対する密着強度は向上するが、後に充填するナノ金属粒子の凝集拡散が進まず、導電性膜5a、5bと貫通電極6a、6bとの接合が不十分となり、空隙層が形成されて気密性を保つことができなくなる。ガラスフリットの量を少なくすると、後に充填する貫通電極6a、6bとの間の接合は十分であっても、貫通孔3a、3bの側壁面との間の密着強度が低下し、貫通孔3a、3bと導電性膜5a、5bの界面において気密性を保つことができなくなる。
【0035】
導電性膜5a、5bとして、銀ペーストの焼成による形成に代えて、金属膜をスパッタリング法、蒸着法、メッキ法、インクジェット法、印刷法、又はディスペンス法などを用いて形成することができる。この場合に、金属膜を形成する前にプラズマ洗浄やサンドブラスト法、エッチング法等を用いて貫通孔3a、3bの側壁面に0.1μm〜5μmの凹凸を形成し、アンカー効果が発生するようにしておく。側壁面の凹凸を、好ましくは0.5μm〜2μmの範囲とする。スパッタリング法等を用いた導電性膜5a、5bの形成は絶縁基板2の高温処理が不要であることから、絶縁基板2として絶縁性樹脂材料又はガラス材料を用いる場合に好適である。
【0036】
図3(c)は、貫通孔3a、3bに貫通電極6a、6bを形成した貫通電極形成工程終了後の絶縁基板2の断面図である。貫通電極6a、6bは、ナノ銀粒子を貫通孔3a、3bに印刷法、インクジェット法又はディスペンス法により充填し、温度100℃〜600℃で焼成して形成した。また、ナノ銀粒子に代えてナノ金粒子やナノ銅粒子を使用することができる。
【0037】
図3(d)は、絶縁基板2の裏面に裏面電極8a、8bを形成した裏面電極形成工程終了後の絶縁基板2の断面図である。裏面電極8a、8bは、銀パラジウム又は銀を含有するペーストをスクリーン印刷法により印刷し、焼成して形成した。裏面電極8a、8bは、印刷法に代えて、又は印刷法に加えてメッキ法により金属膜を堆積させてもよい。また、蒸着法やスパッタリング法により金属膜を堆積し、フォトリソグラフィ工程及びエッチング工程を通して金属膜をパターニングし、裏面電極8a、8bとしてもよい。
【0038】
図3(e)は、貫通電極6aの上に電子部品7を実装した実装工程終了後の断面図である。電子部品7の裏面及び表面には図示しない電極が形成されている。電子部品7をダイボンディング材10を介して貫通電極6aの上に実装し、電子部品7の裏面に形成した電極と貫通電極6aとを電気的に接続する。更に電子部品7の表面に形成した図示しない電極と導電性膜5bとを金線であるワイヤー15により電気的に接続する。ダイボンディング材10として、AuSn、銀ペースト、或いはナノペーストを使用することができる。なお、実装方法は図3(e)に示す方法に限定されない。例えば、電子部品7の下面に電極を集約的に形成し、この電極と貫通電極6a、6bとを面実装により電気的に接続してもよい。
【0039】
図3(f)は、絶縁基板2の上に封止部9からなる蓋を接合した封止工程終了後の断面図である。封止部9は絶縁基板2と同じ材料を使用している。封止部9と絶縁基板2とは接合材11を介して接着し、電子部品7を外部環境から遮断するように封止する。封止の際には窪み4に不活性ガスを導入する、或いは内部を真空にする。接合材11としてアルミニウムを使用し、封止部9と絶縁基板2とを陽極接合により接着することができる。また、接合材11として、AuSn合金、低融点ガラス、エポキシ樹脂を用いて接合又は接着することができる。
【0040】
なお、上記第三実施形態では、準備工程→導電性膜形成工程→貫通電極形成工程→裏面電極形成工程→実装工程→封止工程の順で電子デバイス1を製造したが、本発明ではこの順番に限定されず、貫通電極形成工程の後に、実装工程→裏面電極形成工程→封止工程としてもよいし、実装工程→封止工程→裏面電極形成工程としてもよい。
【0041】
以上のとおり、ナノ金属粒子はバルク金属に近い電気特性を有する。そのため、抵抗が小さく熱伝導率が高い貫通電極を形成することができる。更に、電極形成工程の前に、貫通孔の側壁面に無機材料と金属材料とを混合した混合材料を塗布し、熱処理してその側壁面に導電性膜を形成することにより、貫通電極と貫通孔の側壁面との密着性、気密性を向上させることができる。
【符号の説明】
【0042】
1 電子デバイス
2 絶縁基板
3 貫通孔
4 窪み
5 導電性膜
6 貫通電極
7 電子部品
8 裏面電極
9 封止部

【特許請求の範囲】
【請求項1】
表面に窪みを有し、前記窪みの底面から裏面に貫通する貫通孔が形成された絶縁基板と、
前記貫通孔に充填され、ナノ金属粒子の熱処理により形成された貫通電極と、
前記窪みに収納され、前記貫通電極に電気的に接続される電子部品と、
前記電子部品を封止する封止部と、を備える電子デバイス。
【請求項2】
前記ナノ金属粒子は、ナノ銀粒子であることを特徴とする請求項1に記載の電子デバイス。
【請求項3】
前記貫通孔の側壁面には導電性膜が形成され、前記貫通電極は前記導電性膜に接して充填されていることを特徴とする請求項1又は2に記載の電子デバイス。
【請求項4】
絶縁基板の表面側に窪みと、前記窪みの底面から前記絶縁基板の裏面に貫通する貫通孔を形成する準備工程と、
前記貫通孔にナノ金属粒子を充填し、熱処理して貫通電極を形成する貫通電極形成工程と、
電子部品を前記窪みの底面に実装する実装工程と、
前記電子部品を封止する封止部を形成する封止工程と、を含む電子デバイスの製造方法。
【請求項5】
前記貫通電極形成工程の前に、前記貫通孔の側壁面に無機材料と金属材料とを混合した混合材料を塗布し、熱処理して前記側壁面に導電性膜を形成する導電性膜形成工程を更に有し、
前記貫通電極形成工程は、前記貫通孔にナノ銀粒子を充填し、熱処理して貫通電極を形成する工程であることを特徴とする請求項4に記載の電子デバイスの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−44533(P2011−44533A)
【公開日】平成23年3月3日(2011.3.3)
【国際特許分類】
【出願番号】特願2009−190796(P2009−190796)
【出願日】平成21年8月20日(2009.8.20)
【出願人】(000002325)セイコーインスツル株式会社 (3,629)
【Fターム(参考)】