説明

電子放出装置及びこれを用いた電磁波発生装置

【課題】励起エネルギーが小さい場合においても高い電子放出効率を実現することが可能な電子放出装置を提供する。
【解決手段】SiC基板11上に形成され、SiC基板11表面に対して垂直方向に配向化された複数のカーボンナノチューブから構成されたカーボンナノチューブ層12と、カーボンナノチューブ層12上に形成され、カーボンナノチューブ層12と接触するMgO層13と、カーボンナノチューブ層12と接続されたオーミック電極17と、MgO層13との間に空隙14を挟んでMgO層13に対向するように配置された電極15と、オーミック電極17と電極15との間に電圧を印加する電圧源16とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子放出装置及び電磁波発生装置に関し、特にカーボンナノチューブを用いた電子放出装置及び電磁波発生装置に関する。
【背景技術】
【0002】
近年、ディスプレイ、電子顕微鏡、照明装置、及び電磁波発生装置等に対する性能向上の要求の高まりから、これらの装置に用いられる電子放出装置の高効率・高出力化を目的として、カーボンナノチューブを用いた電子放出装置の開発が進められている。カーボンナノチューブは、チューブに沿った方向の電気伝導率を極めて高くすることが可能である。また、従来の電子放出源に用いられている金属材料と比較して、チューブ先端が尖鋭であるため、先端部の電界強度が平坦平面の10倍以上高い。従って、電子放出装置にカーボンナノチューブを用いることで、高い電子放出効率を得ることができると期待されている(非特許文献1)。加えて、カーボンナノチューブは機械強度が高いため、電子放出装置にカーボンナノチューブを用いることで長寿命化及び低コスト化等の利点も得ることができると期待されている。
【0003】
ところで、この期待される高い電子放出効率を得るためには、電子が放出される方向にカーボンナノチューブを配向させ、電子を確実にカーボンナノチューブの先端から放出させる必要がある。カーボンナノチューブの配向成長技術としては、触媒として作用する金属層を基板に堆積し、この金属層が堆積した基板を高温に保った状態で炭化水素系ガスを気相化学反応させてカーボンナノチューブを生成する方法(例えば、特許文献1、2、3参照)、又はSiCを真空中で高温アニールする際にSiを脱離させることにより配向したカーボンナノチューブを生成する方法(例えば、特許文献4、5参照)が報告されている。また、このような配向されたカーボンナノチューブを用いて構成された電子放出装置として、図8に示されるようなものがある。
【0004】
この電子放出装置は、n-型SiC基板11と、上記真空中での高温アニール法で形成され、配向化されたカーボンナノチューブから構成されるカーボンナノチューブ層12と、電極15と、オーミック電極17と、電極15とSiC基板11上のオーミック電極17との間に電圧を印加する電圧源16とから構成される。このような電子放出装置では、カーボンナノチューブ層12の表面から放出された電子が空隙14を走行する。
【特許文献1】特開2001−15077号公報
【特許文献2】特開2001−20071号公報
【特許文献3】特開2001−20072号公報
【特許文献4】特開平10−265208号公報
【特許文献5】特開2002−293522号公報
【非特許文献1】J-M Bonard, 他、 Solid-State Electronics Vol. 45 (2001), p.893
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、図8に示されるような配向化されたカーボンナノチューブを用いた電子放出装置においても、電子の放出効率を支配するパラメーターである仕事関数は4〜5eVと極めて高く、高い電子放出効率を実現するには依然として高い励起エネルギーが必要となる。従って、この電子放出装置では、高い電子放出効率を実現することができない。
【0006】
このとき、電子放出効率を高める技術として、配向は不完全ではあるがMgOで被覆されたカーボンナノチューブに電子線を当てて、2次電子を放出させる技術がW. S. Kim,他、Applied Physics Letters, Vol.81 (2002), p.1098.に報告されている。しかしながら、この技術においては、電子線の励起エネルギーが低い場合には期待される高い電子放出効率を実現することができない。従って、この技術でも、高い電子放出効率を実現することができない。
【0007】
そこで、本発明は、励起エネルギーが小さい場合においても高い電子放出効率を実現することが可能な電子放出装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成するために、本発明の電子放出装置は、基板上に形成され、前記基板表面に対して垂直方向に配向した複数のカーボンナノチューブから構成されるカーボンナノチューブ層と、前記カーボンナノチューブ層上に形成され、前記カーボンナノチューブ層と接触する金属酸化物層と、前記カーボンナノチューブ層と接続された第1電極と、前記金属酸化物層と間を置いて対向するように配置された第2電極とを備えることを特徴とする。
【0009】
このような構成にすることによって、カーボンナノチューブ層表面には金属酸化物層が形成され、カーボンナノチューブ内の電子が表面を脱出する際の障壁高さが低くなり、従来の電子放出装置のように高い励起エネルギーが必要とされなくなるので、励起エネルギーが小さい場合においても高い電子放出効率を実現することができる。
【0010】
ここで、前記金属酸化物層の最大膜厚は、前記カーボンナノチューブの最大直径よりも小さいことが好ましい。また、前記複数のカーボンナノチューブは、前記基板表面に対して垂直方向に配向され、前記基板表面に対して垂直方向における前記カーボンナノチューブの先端部上に位置する金属酸化物層の長さは、前記カーボンナノチューブの最大直径よりも小さいことがさらに好ましい。
【0011】
このような構成にすることによって、カーボンナノチューブの先端部のみに選択的に金属酸化物層が形成されるので、カーボンナノチューブの表面電界強度の最も強い尖鋭な先端部が表面で障壁高さの最も低い部分となることを保証することができる。また、各カーボンナノチューブが電子放出方向に配向されるので、確実に各カーボンナノチューブの先端部から特性のそろった電子放出を行わせることが可能となる。その結果、電子放出効率を更に高めることが可能となる。
【0012】
また、前記金属酸化物層は、前記複数のカーボンナノチューブの間に形成されていることが好ましい。
【0013】
このような構成とすることによって、カーボンナノチューブの側壁で励起された電子も金属酸化物の効果により、真空に脱出可能となる。その結果、電子はカーボンナノチューブの先端部に到達しなくとも放出されることが可能となり、励起から放出までの時間が短くなるので、電子放出効率を更に高めることが可能となる。
【0014】
また、前記金属酸化物層は、前記カーボンナノチューブの内部に形成されていることが好ましい。
【0015】
このような構成とすることによって、カーボンナノチューブの表面より離れたカーボンナノチューブの内部で励起された電子も金属酸化物の効果により、真空に脱出可能となる。その結果、電子はカーボンナノチューブの先端部に到達しなくとも放出されることが可能となり、励起から放出までの時間が短くなるので、電子放出効率を更に高めることが可能となる。
【0016】
また、前記金属酸化物層は、MgO、BaO、CaO、BeO及びSrOのうちいずれかを含んでいることが好ましい。
【0017】
このような構成にすることによって、金属酸化物として電子伝導帯のエネルギー準位が高い材料を用いることができるので、カーボンナノチューブで励起され、伝導帯準位に到達した電子が表面から真空に脱出するための障壁高さを低くすることができる。その結果、電子放出効率を更に高めることが可能となる。
【0018】
また、本発明は、基板上に形成され、複数のカーボンナノチューブから構成されるカーボンナノチューブ層と、前記カーボンナノチューブ層上に形成され、前記カーボンナノチューブ層と接触する金属酸化物層と、前記カーボンナノチューブ層にパルス光を照射する光源と、前記カーボンナノチューブ層と接続された第1電極と、前記金属酸化物層と間を置いて対向するように配置された第2電極とを備えることを特徴とする電磁波発生装置とすることもできる。
【0019】
このような構成とすることによって、カーボンナノチューブ内部のパルス光で励起された電子は、カーボンナノチューブ自身の高い仕事関数を直接超えるに十分なエネルギーで励起されない場合でも、金属酸化物の効果により、電子放出面より真空への脱出が可能となる。さらに、カーボンナノチューブ層に照射されるパルス光に10ps以下の時間幅の超短パルスレーザー光を用いることで、テラヘルツ帯の電磁波を発生させることが可能となる。その結果、高出力のテラヘルツ波発生装置を実現することができる。
【0020】
また、本発明は、基板上に、複数のカーボンナノチューブから構成されるカーボンナノチューブ層を形成するカーボンナノチューブ形成工程と、前記カーボンナノチューブ層上に、前記カーボンナノチューブ層と接触するように金属酸化物層を形成する金属酸化物形成工程とを含み、前記金属酸化物形成工程において、前記金属酸化物層の最大膜厚が前記カーボンナノチューブの最大直径よりも小さくなるように前記金属酸化物層を形成することを特徴とする電子放出装置の製造方法とすることもできる。ここで、前記金属酸化物形成工程において、前記基板の温度を300℃以下に保った状態で金属酸化物層を形成することが好ましい。
【0021】
このような工程を経ることにより、カーボンナノチューブの先端部のみに選択的に金属酸化物層を形成することができる。
【0022】
ここで、前記金属酸化物形成工程において、前記基板の温度を100℃以上に保った状態で金属酸化物層を形成することが好ましい。
【0023】
このような工程を経ることにより、金属酸化物の形成時に、各カーボンナノチューブの間隙及び欠陥に金属酸化物が十分に拡散するので、各カーボンナノチューブ間の間隙に確実に金属酸化物を形成し、かつカーボンナノチューブ内部に確実に金属酸化物を形成することができる。
【0024】
ここで、前記カーボンナノチューブ形成工程において、前記基板表面に対して垂直方向に配向する複数のカーボンナノチューブから構成されるカーボンナノチューブ層を形成し、前記電子放出装置の製造方法は、さらに、前記カーボンナノチューブの先端部の一部を除去する除去工程を含み、前記金属酸化物形成工程において、前記先端部の一部が除去されたカーボンナノチューブから構成されるカーボンナノチューブ層上に金属酸化物層を形成することが好ましい。
【0025】
このような工程を有することにより、金属酸化物の形成時に、カーボンナノチューブの先端部の除去された部分から、カーボンナノチューブの内部に金属酸化物を導入することが可能となり、カーボンナノチューブの内部に形成される金属酸化物の量を増加させることができる。
【発明の効果】
【0026】
本発明の電子放出装置によれば、励起エネルギーが低い場合においても高い電子放出効率を実現することができる。
【発明を実施するための最良の形態】
【0027】
(第1の実施の形態)
本発明の第1の実施の形態に係る電子放出装置について図面を参照しながら説明する。
【0028】
図1(a)は、本実施の形態に係る電子放出装置の構造を模式的に示す断面図である。
図1(a)に示されるように、n-型SiC基板11上には、SiC基板11表面に対して垂直方向に配向した、つまり先端がSiC基板11表面に対して垂直方向を向いた高さ200nmの複数のカーボンナノチューブから構成されるカーボンナノチューブ層12が形成されている。このカーボンナノチューブ層12は、1×10-5Torrの真空中でSiC基板11に対して温度が1000℃で時間が60分のアニール処理を施し、Siを脱離させて炭素を残存させることにより形成される。
【0029】
また、カーボンナノチューブ層12上には、カーボンナノチューブ層12と接触する100nm以下の厚さ、例えば10nmの厚さの酸化マグネシウム(MgO)層13が形成されている。このMgO層13は、電子ビーム蒸着法によってカーボンナノチューブ層12上にMgOを堆積して形成される。電子放出面は、MgO層13及びカーボンナノチューブ層12により構成される。
【0030】
また、MgO層13上方には、MgO層13との間に間隔10μmの空隙14を隔てて、MgO層13に対向するように電極15が配置されている。この電極15は、SiC基板11に対して相対的に正のバイアス電圧を印加可能な電極であり、放出電子を集束させるアノード電極として機能する。また、SiC基板11の裏面には、カーボンナノチューブ層12と電気的に接続されたオーミック電極17が形成されている。電圧源16は、電極15及びオーミック電極17に接続され、電極15とオーミック電極17との間に電圧を印加する。なお、オーミック電極17はSiC基板11の裏面に形成されるとしたが、MgO層13及びカーボンナノチューブ層12の一部が除去され、SiC基板11の表面に形成されても良い。
【0031】
図1(b)及び図1(c)は、それぞれ電子放出面の最表面の詳細な構造を示す断面図及び上面図である。
【0032】
SiC基板11表面に形成されたカーボンナノチューブ層12は、図1(b)に示されるように、平均して5層のカーボン面よりなる平均直径(図1(b)のX方向におけるカーボンナノチューブ12aの長さの平均)110nmのマルチウォール型の複数のカーボンナノチューブ12aから構成される。各カーボンナノチューブ12aでは、各カーボン面が所定の面間距離を保ったまま最表面で閉じた構造をとり、各カーボンナノチューブ12aの先端部(図1(b)におけるA)は尖鋭な形状となっている。このような構造のカーボンナノチューブ12a上には、電子ビーム蒸着によって堆積されたMgO層13が形成されている。MgO層13は、カーボンナノチューブ12aの先端部に選択的にマイグレートして垂直方向における長さがカーボンナノチューブ12aの最大直径よりも小さくなった、先端部上に位置するMgO13aと、先端部以外の部分に形成されたMgO13bとから構成される。このようにカーボンナノチューブ12aの先端部にマイグレートしたMgO13aが形成されるのは、カーボンナノチューブ12aの先端部では理想的なカーボン面におけるグラファイト型のカーボンの原子配列が崩れ、原子が再配列をなした欠陥構造が形成され、異種原子、分子に対して極めて高い反応性が示されるためである。このとき、その最大膜厚B(図1(b)のY方向におけるMgO層13の長さの最大値)がカーボンナノチューブ12aの最大直径C(図1(b)のX方向におけるカーボンナノチューブ12aの長さの最大値)よりも薄くなる、好ましくはカーボンナノチューブ12aの最大直径の10分の1以下になるように、SiC基板11の温度が300℃以下に保たれるように制御してMgO層13を形成する。これにより、カーボンナノチューブ12aの先端部で選択的に被覆量を増加させたMgO層13を形成することが可能となる。その結果、MgO層13のカーボンナノチューブ12aの先端部上に位置する部分の膜厚は、MgO層13のカーボンナノチューブ12aの先端部上に位置する部分以外の部分の膜厚より厚くなる。
【0033】
上記のような構造を有する電子放出装置においては、電圧源16によりSiC基板11に対して相対的に正のバイアス電圧を印加することにより、カーボンナノチューブ層12内の電子が表面から放出され、放出された電子は空隙14を走行する。
【0034】
図2は、電子放出面のエネルギーダイアグラムである。なお、図2(a)は、MgO層13で表面が被覆されていないカーボンナノチューブ層12に表面真空側31から正の電圧を印加した場合のエネルギーダイアグラムであり、図2(b)は、MgO層13で表面が被覆されているカーボンナノチューブ層12に表面真空側31から正の電圧を印加した場合のエネルギーダイアグラムである。
【0035】
図2(a)から、MgO層13で表面が被覆されていないカーボンナノチューブ層12においては、カーボンナノチューブ層12内で励起された電子はカーボンナノチューブ自身の仕事関数φMに相当する障壁を直接乗り越える経路32によるか、もしくは障壁をトンネルによって通過する経路33によって表面真空側31に放出されることがわかる。一方、図2(b)から、MgO層13で表面が被覆されているカーボンナノチューブ層12においては、カーボンナノチューブ層12内で励起された電子は、MgOの伝導帯付近のエネルギーレベルEcを介して伝導する経路32’もしくは経路33’によって表面真空側31に放出されることがわかる。従って、MgO層13で表面が被覆されているカーボンナノチューブ層12においては、電子が表面を脱出する際の障壁高さは高々MgOの電子親和力χ程度(通常2eV以下)に低減され、表面からの電子の放出に必要とされる励起エネルギーが小さくなる。
【0036】
次に、図3を用いて上記構造を有する電子放出装置の電気特性について説明する。図3は、電子放出装置の電流−電圧特性曲線を示す図である。なお、図3において、実線(カーブI)は上記構造の電子放出装置の電流−電圧特性曲線を示し、点線(カーブII)はMgOを用いていない上記構造の電子放出装置の電流−電圧特性曲線を示し、一点鎖線(カーブIII)はMgOを用いず、かつカーボンナノチューブ層において各カーボンナノチューブが配向していない上記構造の電子放出装置の電流−電圧特性曲線を示している。
【0037】
図3におけるカーブIIとカーブIIIとの違いから、各カーボンナノチューブを配向させることで、電界放出電流が0.01μAを超える時の印加電圧を閾値電圧と定義した場合に、閾値電圧が約350V(カーブIII)から約300V(カーブII)と約50V減少し、電流値も印加電圧325Vで比較して約10倍増大することがわかる。これは、各カーボンナノチューブを配向させたことで各カーボンナノチューブの先端部の電界強度が増強されたことによる。一方、カーブIとカーブIIとの違いから、各カーボンナノチューブをMgOで被覆することで、閾値電圧がさらに約50V低減し、電流もさらに約10倍増大することがわかる。これは、カーボンナノチューブ上にMgOを堆積させることで電子が表面を脱出する際の障壁高さが低くなり、電子放出効率が増大されたことによる。
【0038】
以上のように本実施の形態の電子放出装置によれば、カーボンナノチューブはMgOで被覆される。よって、電子が表面を脱出する際の障壁高さが低くなり、電圧源の印加電圧が小さい場合でも電子が外部に放出される。すなわち、従来の電子放出装置のように高い励起エネルギーが必要とされなくなるので、励起エネルギーが小さい場合においても高い電子放出効率を実現することができる。
【0039】
また、本実施の形態の電子放出装置によれば、カーボンナノチューブは電子放出方向に配向し、配向するカーボンナノチューブの先端部がMgOで被覆される。よって、カーボンナノチューブから放出された電子はその先端部から容易に真空中へ放出されるようになるので、電子の放出効率を高めることができる。このとき、各カーボンナノチューブ間の空隙にも、MgO層の形成に際して蒸着したMgO膜厚分のMgOが形成される。よって、カーボンナノチューブ側壁からも側壁に堆積したMgOを介して電子放出がなされる。
【0040】
また、本実施の形態の電子放出装置によれば、カーボンナノチューブは配向するので、電子の放出方向がそろう。よって、確実にカーボンナノチューブの先端部から特性のそろった電子放出を行わせることができるので、電子放出効率を高めることができる。
【0041】
なお、本実施の形態の電子放出装置において、図4に示されるように、MgO層13は、各カーボンナノチューブ12a間の空隙に形成されたMgO13c、及びカーボンナノチューブ12a内部に形成されたMgO13dを有してもよい。このような構成とすることによって、カーボンナノチューブの先端から離れた部分の側壁及び内壁からもMgOを介しての真空への電子放出を行わせることができ、電子放出確率を高めることが可能となる。本構成は、図5のフローチャートに示される製造方法により実現される。つまり最初に、温度:1700℃、時間:20分、圧力:10-2Pa、酸素分圧1%の条件下で基板をアニールしてカーボンナノチューブを成長させる(ステップS11)。その後、カーボンナノチューブの先端部を温度:700℃、時間:20分、圧力:大気圧、酸素分圧20%の条件下で熱酸化し、熱酸化した部分を除去してカーボンナノチューブの先端部の一部を開放する(ステップS12)。そして、その開放された先端部上に、電子ビーム蒸着法を用いて基板温度:300℃、圧力10-3Paの条件下でMgOを蒸着させて膜厚10nmのMgOを堆積することで本構成は実現される(ステップS13)。MgO堆積時に、カーボンナノチューブの空隙及び欠陥に選択的にMgOが拡散することを利用して、MgOの真空蒸着時に、カーボンナノチューブ層が形成されたSiC基板を100℃以上の高温に保たれる。なぜならば、この温度範囲においてMgOは堆積時に、各カーボンナノチューブの間隙及び欠陥に十分に拡散することが可能であると共に、カーボンナノチューブ自体は機械的な形状を保つことが可能だからである。これにより、カーボンナノチューブの内部に形成されるMgOの量を増加させることができる。なお、カーボンナノチューブの先端部の開放は、電子ビームをカーボンナノチューブの先端部に照射して該先端部を除去することにより行われてもよい。
【0042】
また、本実施の形態の電子放出装置では、カーボンナノチューブ層上に堆積する金属酸化物としてMgOを例示したが、第2族酸化物であればこれに限られず、代替としてSrO、BaO、BeO、CaOまたはこれらのアロイを用いても同等の効果を得ることができる。
【0043】
(第2の実施の形態)
本発明の第2の実施の形態に係る電磁波発生装置について図面を参照しながら説明する。
【0044】
図6は、本実施の形態に係る電磁波発生装置の構造を模式的に示す断面図である。
図6に示されるように、n-型SiC基板11には、SiC基板11表面に対して垂直方向に配向した高さ200nmの複数のカーボンナノチューブから構成されるカーボンナノチューブ層12が形成されている。このカーボンナノチューブ層12は、1×10-5Torrの真空中でSiC基板11に対して温度が1000℃で時間が60分のアニール処理を施し、Siを脱離させて炭素を残留させることにより形成される。
【0045】
また、カーボンナノチューブ層12上には、カーボンナノチューブ層12と接触する100nm以下の厚さ、例えば10nmの厚さのMgO層13が形成されている。このMgO層13は、電子ビーム蒸着法によってカーボンナノチューブ層12上にMgOを堆積して形成される。電子放出面は、MgO層13及びカーボンナノチューブ層12により構成される。
【0046】
ここで、MgO層13及びカーボンナノチューブ層12により構成される電子放出面には、電極25と基板26とを透過する超短パルス光列28が照射される。この超短パルス光列28は、電子が電子放出面から脱出する際の障壁高さとなるMgOの電子親和力χよりも小さいエネルギーの光、例えば波長780nm、パルス幅100fs、繰り返し周波数50MHzのパルス光であり、フェムト秒レーザー光源27で発生する。
【0047】
また、MgO層13上方には、MgO層13との間に間隔10μmの空隙14を隔てて、MgO層13に対向するように電極25が配置されている。この電極25は、SiC基板11に対して相対的に正のバイアス電圧を印加可能な膜厚200nmのITOよりなる電極であり、放出電子を集束させるアノード電極として機能する。電極25はシクロオレフィン系ガラスよりなる基板26上に形成されている。また、SiC基板11の裏面には、カーボンナノチューブ層12と電気的に接続されたオーミック電極17が形成されている。電圧源16は、電極25及びオーミック電極17に接続され、電極25とオーミック電極17との間に電圧を印加する。オーミック電極17はSiC基板11の裏面に形成されるとしたが、MgO層13及びカーボンナノチューブ層12の一部が除去され、SiC基板11の表面に形成されても良い。
【0048】
また、電子放出面は、図1(b)、(c)で示された電子放出面と同様の構成となる。すなわち、SiC基板11表面に形成されたカーボンナノチューブ層12は、平均して5層のカーボン面よりなる平均直径110nmのマルチウォール型の複数のカーボンナノチューブ12aから構成される。各カーボンナノチューブ12aでは、各カーボン面が所定の面間距離を保ったまま最表面で閉じた構造をとり、各カーボンナノチューブ12aの先端部は尖鋭な形状となっている。カーボンナノチューブ12a上には、電子ビーム蒸着によって堆積されたMgO層13が形成されている。MgO層13は、カーボンナノチューブ12aの先端部に選択的にマイグレートして垂直方向における長さがカーボンナノチューブ12aの最大直径よりも小さくなった、先端部上に位置するMgO13aと、先端部以外の部分に形成されたMgO13bとから構成される。このようにカーボンナノチューブ12aの先端部にマイグレートしたMgO13aが形成されるのは、カーボンナノチューブ12aの先端部では理想的なカーボン面におけるグラファイト型のカーボンの原子配列が崩れ、原子が再配列をなした欠陥構造が形成され、異種原子、分子に対して極めて高い反応性が示されるためである。このとき、その最大膜厚がカーボンナノチューブ12aの最大直径よりも薄くなる、好ましくはカーボンナノチューブ12aの最大直径の10分の1以下になるように、SiC基板11の温度が300℃以下に保たれるように制御してMgO層13を形成する。これにより、カーボンナノチューブ12aの先端部で選択的に被覆量を増加させたMgO層13を形成することが可能となる。
【0049】
上記のような構造を有する電磁波発生装置においては、電圧源16によりSiC基板11に対して相対的に正のバイアス電圧を印加し、更にフェムト秒レーザー光源27で発生する超短パルス光列28を電子放出面に照射することにより、カーボンナノチューブ層12内の電子が電子放出面から放出される。MgO層13より電界放出されて電極25に集束する電子群29は、照射レーザーパルスの時間幅程度のパルス列となり、100fsから1ps程度のパルス電流が電極25と電子放出面との間を流れる。従って、この瞬時電流の時間変化率に比例した電界強度を有する電磁波30が発生する。このとき、発生した電磁波30の周波数は、ほぼ上記瞬時電流のパルス幅の逆数に等しく、1〜10THzの領域すなわちテラヘルツ帯となるため、電極25と電子放出面との間隔はこのテラヘルツ帯電磁波の波長とオーダーが整合する10μmとされる。
【0050】
次に、図7を参照しながら上記構造を有する電磁波発生装置の特性について説明する。図7は、電磁波発生装置で発生する電磁波のパワースペクトル特性を示す図である。なお、図7において、実線(カーブI)は上記構造の電磁波発生装置で発生する電磁波のパワースペクトル特性(カーブI)を示し、破線(カーブII)は光電面にMgOを用いていない上記構造の電磁波発生装置で発生する電磁波のパワースペクトル特性を示している。
【0051】
図7から、本実施の形態の電磁波発生装置は、MgOを用いていない電磁波発生装置と比較して、電磁波のピークパワーが100倍近く改善されていることがわかる。これは、光電面にMgOを用いた結果、図3に示したように放射電流が10倍改善されたことに起因する。
【0052】
以上のように本実施の形態の電磁波発生装置によれば、第1の実施の形態と同様の理由により、励起エネルギーが小さい場合においても高い電子放出効率を実現することができる。そして、電子の放出によりテラヘルツ波が発生する。よって、高出力のテラヘルツ波発生装置を実現することができる。
【0053】
なお、本実施の形態の電磁波発生装置では、カーボンナノチューブ層上に堆積する金属酸化物としてMgOを例示したが、第2族酸化物であればこれに限られず、代替としてSrO、BaO、BeO、CaOまたはこれらのアロイを用いても同等の効果を得ることができる。
【0054】
また、本実施の形態の電磁波発生装置では、金属酸化物が形成される基板としてSiC基板を例示したが、炭素を含む基板であればこれに限られず、代替として他の基板を用いても同等の効果を得ることができる。
【産業上の利用可能性】
【0055】
本発明は、電子放出装置に利用でき、特にディスプレイ、電子顕微鏡、照明装置及び電磁波発生装置等に利用することができる。
【図面の簡単な説明】
【0056】
【図1】(a)本発明の第1の実施の形態に係る電子放出装置の構造を模式的に示す断面図である。(b)電子放出面の最表面の詳細な構造を示す断面図である。(c)電子放出面の最表面の詳細な構造を示す上面図である。
【図2】(a)MgO層で表面が被覆されていないカーボンナノチューブ層に表面真空側から正の電圧を印加した場合の電子放出面のエネルギーダイアグラムである。(b)MgO層で表面が被覆されているカーボンナノチューブ層に表面真空側から正の電圧を印加した場合の電子放出面のエネルギーダイアグラムである。
【図3】電子放出装置の電流−電圧特性曲線を示す図である。
【図4】電子放出面の最表面の詳細な構造を示す断面図である。
【図5】電子放出装置の製造方法を示すフローチャートである。
【図6】本発明の第2の実施の形態に係る電磁波発生装置の構造を模式的に示す断面図である。
【図7】電磁波発生装置で発生する電磁波のパワースペクトル特性を示す図である。
【図8】従来の電子放出装置の構成を模式的に示す断面図である。
【符号の説明】
【0057】
11 SiC基板
12 カーボンナノチューブ層
12a カーボンナノチューブ
13 酸化マグネシウム(MgO)層
13a、13b、13c、13d MgO
14 空隙
15、25 電極
16 電圧源
17 オーミック電極
26 基板
27 フェムト秒レーザー光源
28 超短パルス光列
29 電子群
30 電磁波

【特許請求の範囲】
【請求項1】
基板上に形成され、前記基板表面に対して垂直方向に配向した複数のカーボンナノチューブから構成されるカーボンナノチューブ層と、
前記カーボンナノチューブ層上に形成され、前記カーボンナノチューブ層と接触する金属酸化物層と、
前記カーボンナノチューブ層と接続された第1電極と、
前記金属酸化物層と間を置いて対向するように配置された第2電極とを備える
ことを特徴とする電子放出装置。
【請求項2】
前記金属酸化物層の最大膜厚は、前記カーボンナノチューブの最大直径よりも小さい
ことを特徴とする請求項1に記載の電子放出装置。
【請求項3】
前記基板表面に対して垂直方向における前記カーボンナノチューブの先端部上に位置する金属酸化物層の長さは、前記カーボンナノチューブの最大直径よりも小さい
ことを特徴とする請求項1に記載の電子放出装置。
【請求項4】
前記金属酸化物層は、前記複数のカーボンナノチューブの間に形成される
ことを特徴とする請求項1に記載の電子放出装置。
【請求項5】
前記金属酸化物層は、前記カーボンナノチューブの内部に形成される
ことを特徴とする請求項1に記載の電子放出装置。
【請求項6】
前記金属酸化物層は、MgO、BaO、CaO、BeO及びSrOのうちいずれかを含む
ことを特徴とする請求項1に記載の電子放出装置。
【請求項7】
前記金属酸化物層の前記カーボンナノチューブの先端部上に位置する部分の膜厚は、前記金属酸化物層の前記カーボンナノチューブの先端部上に位置する部分以外の部分の膜厚より厚い
ことを特徴とする請求項1に記載の電子放出装置。
【請求項8】
基板上に形成され、複数のカーボンナノチューブから構成されるカーボンナノチューブ層と、
前記カーボンナノチューブ層上に形成され、前記カーボンナノチューブ層と接触する金属酸化物層と、
前記カーボンナノチューブ層にパルス光を照射する光源と、
前記カーボンナノチューブ層と接続された第1電極と、
前記金属酸化物層と間を置いて対向するように配置された第2電極とを備える
ことを特徴とする電磁波発生装置。
【請求項9】
基板上に、複数のカーボンナノチューブから構成されるカーボンナノチューブ層を形成するカーボンナノチューブ形成工程と、
前記カーボンナノチューブ層上に、前記カーボンナノチューブ層と接触するように金属酸化物層を形成する金属酸化物形成工程とを含み、
前記金属酸化物形成工程において、前記金属酸化物層の最大膜厚が前記カーボンナノチューブの最大直径よりも小さくなるように前記金属酸化物層を形成する
ことを特徴とする電子放出装置の製造方法。
【請求項10】
前記金属酸化物形成工程において、前記基板の温度を300℃以下に保った状態で金属酸化物層を形成する
ことを特徴とする請求項9に記載の電子放出装置の製造方法。
【請求項11】
前記金属酸化物形成工程において、前記基板の温度を100℃以上に保った状態で金属酸化物層を形成する
ことを特徴とする請求項10に記載の電子放出装置の製造方法。
【請求項12】
前記カーボンナノチューブ形成工程において、前記基板表面に対して垂直方向に配向する複数のカーボンナノチューブから構成されるカーボンナノチューブ層を形成し、
前記電子放出装置の製造方法は、さらに、前記カーボンナノチューブの先端部の一部を除去する除去工程を含み、
前記金属酸化物形成工程において、前記先端部の一部が除去されたカーボンナノチューブから構成されるカーボンナノチューブ層上に金属酸化物層を形成する
ことを特徴とする請求項9に記載の電子放出装置の製造方法。
【請求項13】
前記カーボンナノチューブ形成工程において、炭素を含む前記基板を熱処理して前記炭素を脱離させることにより前記カーボンナノチューブ層を形成する
ことを特徴とする請求子9に記載の電子放出装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2007−214117(P2007−214117A)
【公開日】平成19年8月23日(2007.8.23)
【国際特許分類】
【出願番号】特願2007−1691(P2007−1691)
【出願日】平成19年1月9日(2007.1.9)
【出願人】(000005821)松下電器産業株式会社 (73,050)
【Fターム(参考)】