説明

電気化学素子

【課題】 信頼性および高温下での安全性に優れた電気化学素子を提供する。
【解決手段】 正極、負極、セパレータおよび非水電解質を含む電気化学素子であって、セパレータは、光重合により形成され、架橋構造を有する樹脂Aと、電気絶縁性の無機微粒子Bとを含み、空孔体積を除き、前記樹脂Aの体積aと、前記無機微粒子Bの体積bとの比a/bが、0.6〜9であり、正極および/または負極が電気化学素子用セパレータと一体化されたことを特徴とする電気化学素子を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高温時の寸法安定性および折り曲げ時の耐短絡性に優れた電気化学素子用セパレータと一体化された、高温環境下においても安全な電気化学素子に関するものである。
【背景技術】
【0002】
リチウム二次電池などの非水電解質二次電池やスーパーキャパシタに代表される非水電解質を用いた電気化学素子は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられており、携帯機器の高性能化に伴って素子の高容量化が更に進む傾向にあり、更なる安全性の確保が重要な課題となっている。
【0003】
現行のリチウム二次電池では、正極と負極の間に介在させるセパレータとして、例えば厚みが20〜30μm程度のポリオレフィン系の多孔性フィルムが使用されている。しかし、このようなポリオレフィン系の多孔性フィルムを製造する際には、微細且つ均一な孔を開けるために、二軸延伸または開孔剤の抽出などの複雑な工程が用いられ、コストが高く、セパレータが高価になっていることが現状である。
【0004】
また、セパレータの素材としては、電池の熱暴走温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点が120〜140℃程度のポリエチレンが用いられている。しかし、シャットダウン後電池の温度が更に上昇した場合など、溶融したポリエチレンが流れやすくなり、セパレータが破膜する所謂メルトダウンが生じることがある。そのような場合には、正負極が直接接触し、更に温度が上昇して、最悪の場合発火の危険性がある。
【0005】
このようなメルトダウンによる短絡を防ぐために、耐熱性の樹脂を用いた微多孔膜や不織布をセパレータとして用いる方法が提案されている。例えば特許文献1には、全芳香族ポリアミドの微多孔膜を用いたセパレータが、特許文献2にはポリイミド多孔膜を用いたセパレータが開示されている。また、特許文献3にはポリアミド不織布を用いたセパレータ、特許文献4にはアラミド繊維を用いた不織布を基材としたセパレータに関する技術が開示されている。しかし、このような耐熱微多孔膜や不織布を用いる時、材料のコストまたは製造の難しさなどが問題となる。
【0006】
一方、特許文献5には、ポリマー不織布基材の上および中に多孔性の無機被覆を有するセパレータに関する技術が開示されている。このようなセパレータは、耐熱性に優れる一方で柔軟性に乏しい無機被覆を採用しているため、巻回体を用いる電気化学素子に適用する際に、折り曲げによるひび割れが生じて短絡する虞がある。特に角形電池のような扁平状の巻回体を用いる電気化学素子においては、強烈な折り曲げが発生するため、このようなセパレータの適用が非常に困難である。
【0007】
こうしたことから、コストや製造工程の面で生産性を損なうことなく、セパレータの寸法安定性や折り曲げ時の耐短絡性を向上させて、これを用いた電気化学素子の安全性や信頼性を高める技術の開発が求められる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平5−335005号公報
【特許文献2】特開2000−306568号公報
【特許文献3】特開平9−259856号公報
【特許文献4】特開平11−40130号公報
【特許文献5】特表2006−504228号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、前記事情に鑑みてなされたものであり、その目的は、信頼性および高温下での安全性に優れた電気化学素子を提供することにある。
【課題を解決するための手段】
【0010】
前記目的を達成し得た本発明の電気化学素子は、正極、負極、セパレータおよび非水電解質を含み、セパレータは、光重合により形成され、架橋構造を有する樹脂Aと、電気絶縁性の無機微粒子Bとを含み、空孔体積を除き、前記樹脂Aの体積aと、前記無機微粒子Bの体積bとの比a/bが、0.6〜9であり、正極および/または負極が電気化学素子用セパレータと一体化されたことを特徴とするものである。
【発明の効果】
【0011】
本発明によれば、電気化学素子の信頼性および高温下での安全性を向上させることができる。
【図面の簡単な説明】
【0012】
【図1】本発明の電気化学素子(非水電解質二次電池)の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。
【図2】図1に示す電気化学素子の斜視図である。
【発明を実施するための形態】
【0013】
本発明の電気化学素子に使用されるセパレータ(以下、単に「セパレータ」という)は、非水電解質を有する電気化学素子のセパレータに使用されるものであり、光重合により形成され、少なくとも一部に架橋構造を有する樹脂(A)と、電気絶縁性の無機微粒子(B)とを含有している。
【0014】
また、本発明の電気化学素子に使用されるセパレータにおいては、樹脂(A)の体積をa(空孔体積を除いた体積)、無機微粒子(B)の体積をb(空孔体積を除いた体積)との比a/bが、0.6以上9以下である。このように、本発明の電気化学素子に使用されるセパレータでは、樹脂(A)および無機微粒子(B)の組成比を適正化することで、セパレータの柔軟性と、機械的強度や耐熱収縮性とを良好に確保して、信頼性および高温下での安全性に優れた電気化学素子を構成し得るものとしている。
【0015】
すなわち、本発明の電気化学素子に使用されるセパレータでは、前記a/b値を、0.6以上、好ましくは3以上とすることで、柔軟性に富む樹脂(A)の作用によって、例えば、巻回体電極群(特に角形電池などに使用される横断面が扁平状の巻回体電極群)を構成する場合のように折り曲げた場合にも、ひび割れなどの欠陥の発生を抑え得るようにして、耐短絡性に優れたセパレータとしている。
【0016】
また、本発明の電気化学素子に使用されるセパレータでは、前記a/b値を、9以下、好ましくは8以下とすることで、無機微粒子(B)の機能を有効に引き出し得るようにして、高温時の寸法安定性を高めて耐熱収縮性に優れ、また、高い強度(機械的強度)などを確保することで耐短絡性に優れたセパレータとしている。
【0017】
よって、これらの作用を有するセパレータを用いて構成される電気化学素子(本発明の電気化学素子)は、信頼性および高温下での安全性が良好となる。
【0018】
なお、本発明において、樹脂(A)の体積aは、樹脂(A)の密度とセパレータ中の樹脂(A)の質量とから算出される値であり、無機微粒子(B)の体積bは、無機微粒子(B)の密度とセパレータ中の無機微粒子(B)の質量とから算出される値である。
【0019】
本発明の電気化学素子に使用されるセパレータに係る樹脂(A)は、光重合により形成されるものである。このような樹脂(A)であれば、セパレータの製造を簡易なものとでき、かつ製造時間も短くし得るため、セパレータの生産性を高めることができる。
【0020】
なお、樹脂(A)は、その軟化点[JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度、およびガラス転移温度のうちの高い方の値で表される。]が、電気化学素子の通常使用温度の範囲外であることが好ましい。より具体的には、樹脂(A)の軟化点は、0℃以下であるか、または80℃以上であることが好ましく、−10℃以下であるか、または100℃以上であることがより好ましい。
【0021】
このような樹脂(A)としては、公知のモノマーやオリゴマーを光重合して形成されるものが挙げられる。具体的には、例えば、アクリル樹脂モノマー[メチルメタクリレート、メチルアクリレートなどのアルキル(メタ)アクリレートおよびその誘導体]およびこれらのオリゴマーと、架橋剤とから形成されるアクリル樹脂;ウレタンアクリレートと架橋剤とから形成される架橋樹脂;エポキシアクリレートと架橋剤とから形成される架橋樹脂;などが挙げられる。なお、前記のいずれの樹脂においても、架橋剤としては、ジオキサングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、エチレンオキサイド変性トリメチロールプロパントリアクリレート、ジペンタエリスリトールペンタアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ε−カプロラクトン変性ジペンタエリスリトールヘキサアクリレートなどの、2価または多価のアクリルモノマーを用いることができる。
【0022】
また、樹脂(A)には、2価または多価のアルコールとジカルボン酸とを縮重合によって製造されたエステル組成物とスチレンモノマーの混合物とから形成される不飽和ポリエステル樹脂由来の架橋樹脂;多官能エポキシ、多官能オキセタンまたはこれらの混合物から形成される樹脂;ポリイソシアネートとポリオールとの反応によって生成する各種ポリウレタン樹脂;なども用いることができる。
【0023】
なお、前記の多官能エポキシとしては、例えば、エチレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリジルエーテル、ネオペンチルグリコールジグリジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールグリシジルエーテル、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、1,2:8,9ジエポキシリモネンなどが挙げられる。また、前記の多官能オキセタンとしては、例えば、3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン、キシレンビスオキセタンなどが挙げられる。
【0024】
更に、前記のポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、フェニレンジイソシアネート、トルエンジイソシアネート(TDI)、4.4’−ジフェニルメタンジイソシアネート(MDI)、イソホロンジイソシアネート(IPDI)またはビス−(4−イソシアナトシクロヘキシル)メタンなどが挙げられる。また、前記のポリオールとしては、例えば、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオールなどが挙げられる。
【0025】
なお、前記の各樹脂の形成(光重合)に際しては、イソボルニルアクリレート、メトキシポリエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレートなど単官能モノマーを併用することもできる。特に、イソボルニルアクリレートを併用した場合には、柔軟性と強度とのバランスがより良好な樹脂(A)を形成することができることから、好ましい。
【0026】
本発明の電気化学素子に使用されるセパレータに係る無機微粒子(B)は、セパレータの強度や寸法安定性を高めるなどして耐短絡性向上に寄与する成分である。また、無機微粒子(B)によって、セパレータの空孔率や孔径の制御を容易とすることができる。無機微粒子(B)としては、電気絶縁性と、150℃以上の温度下で反応および変形しない耐熱性とを有し、電気化学素子の有する非水電解質やセパレータ製造の際に使用する溶剤(後述する)に対して安定であり、更に電気化学素子の作動電圧範囲において酸化還元されにくい電気化学的に安定なものであれば、特に制限はない。
【0027】
無機微粒子(B)の具体例としては、酸化鉄、シリカ(SiO)、アルミナ(Al)、TiO(チタニア)、BaTiOなどの無機酸化物微粒子;窒化アルミニウム、窒化ケイ素などの無機窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子;モンモリロナイトなどの粘土微粒子;などが挙げられる。ここで、前記無機酸化物微粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などの微粒子であってもよい。また、金属、SnO、スズ−インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、前記の無機酸化物など)で被覆することにより電気絶縁性を持たせた粒子であってもよい。無機微粒子は、前記例示のものを1種単独で使用してもよく、2種以上を併用してもよい。前記例示の無機微粒子の中でも、無機酸化物微粒子がより好ましく、アルミナ、チタニア、シリカ、ベーマイトが更に好ましい。
【0028】
無機微粒子(B)の粒径は、平均粒径で、0.001μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、15μm以下であることが好ましく、1μm以下であることがより好ましい。なお、無機微粒子(B)の平均粒径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA−920」)を用い、無機微粒子(B)を溶解しない媒体に分散させて測定した数平均粒子径として規定することができる。
【0029】
また、無機微粒子(B)の形態としては、例えば、球状に近い形状を有していてもよく、板状または繊維状の形状を有していてもよいが、セパレータの耐短絡性を高める観点からは、板状の粒子や、一次粒子が凝集した二次粒子構造の粒子であることが好ましい。特に、セパレータの空孔率の向上の点からは、一次粒子が凝集した二次粒子構造の粒子であることがより好ましい。前記の板状粒子や二次粒子の代表的なものとしては、板状のアルミナや板状のベーマイト、二次粒子状のアルミナや二次粒子状のベーマイトなどが挙げられる。
【0030】
本発明の電気化学素子に使用されるセパレータにおいて、樹脂(A)と無機微粒子(B)とは、後述する繊維状物からなる多孔質基体を使用しない場合、これらがセパレータの主体をなしていることが好ましく、具体的には、樹脂(A)と無機微粒子(B)との合計体積が、セパレータを構成する成分の全体積(空孔部分を除いた体積)中、50体積%以上であることが好ましく、70体積%以上であることがより好ましく、100体積%であってもよい。他方、本発明の電気化学素子に使用されるセパレータに、後述する繊維状物からなる多孔質基体を使用する場合には、樹脂(A)と無機微粒子(B)との合計体積が、セパレータを構成する成分の全体積(空孔部分を除いた体積)中、20体積%以上であることが好ましく、40体積%以上であることがより好ましい。
【0031】
また、セパレータの強度や形状安定性を確保するために、繊維状物を樹脂(A)や無機微粒子(B)と共に混在させてもよい。繊維状物としては、耐熱温度(目視観察の際に変形が認められない温度)が150℃以上であって、電気絶縁性を有しており、電気化学的に安定で、電気化学素子の有する非水電解質やセパレータ製造の際に使用する溶剤に安定であれば、特に材質に制限はない。なお、本発明でいう「繊維状物」とは、アスペクト比[長尺方向の長さ/長尺方向に直交する方向の幅(直径)]が4以上のものを意味しており、アスペクト比は10以上であることが好ましい。
【0032】
繊維状物の具体的な構成材料としては、例えば、セルロースおよびその変成体(カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース(HPC)など)、ポリオレフィン(ポリプロピレン(PP)、プロピレンの共重合体など)、ポリエステル(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)など)、ポリアクリロニトリル(PAN)、ポリアラミド、ポリアミドイミド、ポリイミドなどの樹脂、ガラス、アルミナ、ジルコニア、シリカなどの無機酸化物などを挙げることができ、これらの構成材料は2種以上を含有していても構わない。また、繊維状物は、必要に応じて、公知の各種添加剤(例えば、樹脂である場合には酸化防止剤など)を含有していても構わない。
【0033】
また、繊維状物の直径は、セパレータの厚み以下であればよいが、例えば、0.01〜5μmであることが好ましい。径が大きすぎると、繊維状物同士の絡み合いが不足して、シート状物を形成してセパレータの基体を構成する場合に、その強度が小さくなって取り扱いが困難となることがある。また、径が小さすぎると、セパレータの空孔が小さくなりすぎて、イオン透過性が低下する傾向にあり、電気化学素子の負荷特性を低下させてしまうことがある。
【0034】
セパレータにおける繊維状物の含有量は、全構成成分中、例えば、10体積%以上であることが好ましく、20体積%以上であることがより好ましい。なお、セパレータにおける繊維状物の含有量は、70体積%以下であることが好ましく、60体積%以下であることが好ましいが、後述する多孔質基体として使用する場合には、90体積%以下であることが好ましく、80体積%以下であることがより好ましい。
【0035】
セパレータ中での繊維状物の存在状態は、例えば、長軸(長尺方向の軸)の、セパレータ面に対する角度が平均で30°以下であることが好ましく、20°以下であることがより好ましい。
【0036】
本発明の電気化学素子に使用されるセパレータは、使用される電気化学素子の安全性を更に高める観点から、シャットダウン機能を有していることが好ましい。セパレータにシャットダウン機能を付与するには、例えば、融点が80℃以上140℃以下の熱可塑性樹脂[以下、「熱溶融性樹脂(C)という」]を含有させるか、または、加熱によって液状の非水電解質(非水電解液。以下「電解液」と省略する場合がある。)を吸収して膨潤し且つ温度上昇とともに膨潤度が増大する樹脂[以下、「熱膨潤性樹脂(D)」という]を含有させることが挙げられる。前記の方法によりシャットダウン機能を持たせたセパレータでは、電気化学素子内が発熱した際に、熱溶融性樹脂(C)が溶融してセパレータの空孔を塞いだり、熱膨潤性樹脂(D)が電気化学素子内の非水電解質(液状の非水電解質)を吸収したりして、電気化学反応の進行を抑制するシャットダウンを生じる。
【0037】
熱溶融性樹脂(C)としては、融点、すなわちJIS K 7121の規定に準じて、DSCを用いて測定される融解温度が80℃以上140℃以下の樹脂であり、融解温度が120℃以上であることがより好ましく、電気絶縁性を有しており、電気化学素子の有する非水電解質やセパレータ製造の際に使用する溶剤に対して安定であり、更に、電気化学素子の作動電圧範囲において酸化還元されにくい電気化学的に安定な材料が好ましい。具体的には、ポリエチレン(PE)、ポリプロピレン(PP)、共重合ポリオレフィン、ポリオレフィン誘導体(塩素化ポリエチレンなど)、ポリオレフィンワックス、石油ワックス、カルナバワックスなどが挙げられる。前記共重合ポリオレフィンとしては、エチレン−ビニルモノマー共重合体、より具体的には、エチレン−プロピレン共重合体、EVA、エチレン−メチルアクリレート共重合体やエチレン−エチルアクリレート共重合体などのエチレン−アクリル酸共重合体が例示できる。前記共重合ポリオレフィンにおけるエチレン由来の構造単位は、85モル%以上であることが望ましい。また、ポリシクロオレフィンなどを用いることもできる。熱溶融性樹脂(C)には、前記例示の樹脂を1種単独で用いてもよく、2種以上を用いても構わない。
【0038】
熱溶融性樹脂(C)としては、前記例示の材料の中でも、PE、ポリオレフィンワックス、PP、またはエチレン由来の構造単位が85モル%以上のEVAが好適に用いられる。また、熱溶融性樹脂(C)は、必要に応じて、樹脂に添加される公知の各種添加剤(例えば、酸化防止剤など)を含有していても構わない。
【0039】
熱膨潤性樹脂(D)としては、通常、電池が使用される温度領域(およそ70℃以下)では、電解液を吸収しないかまたは吸収量が限られており、従って膨潤の度合いが一定以下であるが、必要となる温度(Tc)まで加熱されたときには、電解液を吸収して大きく膨潤し且つ温度上昇と共に膨潤度が増大するような性質を有する樹脂が用いられる。熱膨潤性樹脂(D)を含有するセパレータを用いた電気化学素子では、Tcより低温側においては、熱膨潤性樹脂(D)に吸収されない流動可能な電解液がセパレータの空孔内に存在するため、セパレータ内部のLi(リチウム)イオンの伝導性が高くなり、良好な負荷特性を有する電気化学素子となるが、温度上昇に伴って膨潤度が増大する性質(以下、「熱膨潤性」という場合がある)が現れる温度以上に加熱された場合には、熱膨潤性樹脂(D)は素子内の電解液を吸収して大きく膨潤し、膨潤した熱膨潤性樹脂(D)がセパレータ
の空孔を塞ぐと共に、流動可能な電解液が減少して電気化学素子が液枯れ状態となることにより、電解液と活物質との反応性を抑制し電気化学素子の安全性がより高められる。しかも、Tcを超える高温となった場合、熱膨潤性により前記液枯れが更に進行し、電池の反応が更に抑制されることになるため、高温での安全性を更に高めることもできる。
【0040】
熱膨潤性樹脂(D)が熱膨潤性を示し始める温度は、75℃以上であることが好ましい。熱膨潤性樹脂(D)が熱膨潤性を示し始める温度を75℃以上とすることにより、Liイオンの伝導性が著しく減少して素子の内部抵抗が上昇する温度(Tc)を、およそ80℃以上に設定することができるからである。一方、熱膨潤性を示す温度の下限が高くなるほど、セパレータのTcが高くなるので、Tcをおよそ130℃以下に設定するために、熱膨潤性樹脂(D)の熱膨潤性を示し始める温度は、125℃以下とすることが好ましく、115℃以下とすることがより好ましい。熱膨潤性を示す温度が高すぎると、素子内の活物質の熱暴走反応を十分に抑制できず、電気化学素子の安全性向上効果が十分に確保できないことがあり、また、熱膨潤性を示す温度が低すぎると、通常の電気化学素子の使用温度域(およそ70℃以下)におけるLiイオンの伝導性が低くなりすぎることがある。
【0041】
また、熱膨潤性を示す温度より低い温度では、熱膨潤性樹脂(D)は電解液をできるだけ吸収せず、膨潤が少ない方が望ましい。これは、電気化学素子の使用温度領域、例えば室温では、電解液は、熱膨潤性樹脂(D)に取り込まれるよりもセパレータの空孔内に流動可能な状態で保持される方が、電気化学素子の負荷特性などの特性が良好になるからである。
【0042】
常温(25℃)において熱膨潤性樹脂(D)吸収する電解液量は、熱膨潤性樹脂(D)の体積変化を表す下記式(1)で定義される膨潤度Bにより評価することができる。
【0043】
= (V/V)−1 (1)
[前記式中、Vは、電解液中に25℃で24時間浸漬後の熱膨潤性樹脂(D)の体積(cm)、Vは、電解液に浸漬する前の熱膨潤性樹脂(D)の体積(cm)をそれぞれ表す。]
【0044】
本発明の電気化学素子に使用されるセパレータに熱膨潤性樹脂(D)を使用する場合では、常温(25℃)における熱膨潤性樹脂(D)の膨潤度Bは、1以下であることが好ましく、電解液の吸収による膨潤が小さいこと、すなわち、Bはできるだけ0に近い小さな値となることが望まれる。また、熱膨潤性を示す温度より低温側では、膨潤度の温度変化ができるだけ小さくなるものが望ましい。
【0045】
その一方で、熱膨潤性樹脂(D)としては、熱膨潤性を示す温度の下限以上に加熱された時は、電解液の吸収量が大きくなり、熱膨潤性を示す温度範囲において、温度と共に膨潤度が増大するものが用いられる。例えば、120℃において測定される、下記式(2)で定義される膨潤度Bが、1以上であるものが好ましく用いられる。
【0046】
= (V/V)−1 (2)
[前記式中、Vは、電解液中に25℃で24時間浸漬後の熱膨潤性樹脂(D)の体積(cm)、Vは、電解液中に25℃で24時間浸漬後、電解液を120℃に昇温させ、120℃で1時間経過後における熱膨潤性樹脂(D)の体積(cm)をそれぞれ表す。]
【0047】
一方、前記式(2)で定義される熱膨潤性樹脂(D)の膨潤度は、大きくなりすぎると電気化学素子の変形を発生させることもあるため、10以下であることが望ましい。
【0048】
前記式(2)で定義される膨潤度は、熱膨潤性樹脂(D)の大きさの変化を、光散乱法やCCDカメラなどにより撮影された画像の画像解析といった方法を用いて、直接測定することにより見積もることができるが、例えば以下の方法を用いてより正確に測定することができる。
【0049】
前記式(1)および式(2)と同様に定義される、25℃および120℃における膨潤度が既知のバインダ樹脂を用い、その溶液またはエマルジョンに、熱膨潤性樹脂(D)を混合してスラリーを調製し、これをPETシートやガラス板などの基材上に塗布してフィルムを作製し、その質量を測定する。次に、このフィルムを、25℃の電解液中に24時間浸漬して質量を測定し、更に、電解液を120℃に加熱昇温させ、120℃で1時間保持後における質量を測定し、下記式(3)〜(9)によって膨潤度Bを算出する。なお、下記(3)〜(9)式では、25℃から120℃までの昇温した際の、電解液以外の成分の体積増加は無視できるものとする。
【0050】
= M×W/P (3)
= (M−M)/P (4)
= M/P−M/P (5)
= M×(1−W)/P (6)
= V+V−V×(B+1) (7)
= V×(B+1) (8)
= {V+V−V×(B+1)}/V−1 (9)
ここで、前記式(3)〜(9)中、
:電解液に浸漬する前の熱膨潤性樹脂(C)の体積(cm)、
:電解液中に25℃で24時間浸漬後の熱膨潤性樹脂(C)の体積(cm)、
:電解液中に常温で24時間浸漬後に、フィルムに吸収された電解液の体積(cm)、
:電解液中に常温に24時間浸漬した時点から、電解液を120℃まで昇温させ、更に120℃で1時間経過するまでの間に、フィルムに吸収された電解液の体積(cm)、
:電解液に浸漬する前のバインダ樹脂の体積(cm)、
:電解液中に常温で24時間浸漬後のバインダ樹脂の体積(cm)、
:電解液に浸漬する前のフィルムの質量(g)、
:電解液中に常温で24時間浸漬後のフィルムの質量(g)、
:電解液中に常温で24時間浸漬した後、電解液を120℃まで昇温させ、更に120℃で1時間経過した後におけるフィルムの質量(g)、
W:電解液に浸漬する前のフィルム中の熱膨潤性樹脂(C)の質量比率、
:電解液に浸漬する前の熱膨潤性樹脂(C)の比重(g/cm)、
:常温における電解液の比重(g/cm)、
:所定温度での電解液の比重(g/cm)、
:電解液に浸漬する前のバインダ樹脂の比重(g/cm)、
:電解液中に常温で24時間浸漬後のバインダ樹脂の膨潤度、
:前記(2)式で定義される昇温時のバインダ樹脂の膨潤度
である。
【0051】
また、前記の方法により前記(3)式および前記(7)式から求められるVおよびVから、前記(1)式を用いて常温での膨潤度Bを求めることができる。
【0052】
なお、本発明の電気化学素子は、従来から知られている電気化学素子と同様に、例えば、リチウム塩を有機溶剤に溶解した溶液が非水電解質として使用される(リチウム塩や有機溶剤の種類、リチウム塩濃度などの詳細は後述する)。よって、熱膨潤性樹脂(D)としては、リチウム塩の有機溶剤溶液中で、75〜125℃のいずれかの温度に達した時に前記の熱膨潤性を示し始め、好ましくは該溶液中において膨潤度BおよびBが前記の値を満足するように膨潤し得るものが推奨される。
【0053】
熱膨潤性樹脂(D)としては、耐熱性および電気絶縁性を有しており、電解液に対して安定であり、更に、電池の作動電圧範囲において酸化還元されにくい電気化学的に安定な材料が好ましく、そのような材料としては、例えば、樹脂架橋体が挙げられる。より具体的には、スチレン樹脂〔ポリスチレン(PS)など〕、スチレンブタジエンゴム(SBR)、アクリル樹脂〔ポリメチルメタクリレート(PMMA)など〕、ポリアルキレンオキシド〔ポリエチレンオキシド(PEO)など〕、フッ素樹脂〔ポリフッ化ビニリデン(PVDF)など〕およびこれらの誘導体よりなる群から選ばれる少なくとも1種の樹脂の架橋体;尿素樹脂;ポリウレタン;などが例示できる。熱膨潤性樹脂(D)には、前記例示の樹脂を1種単独で用いてもよく、2種以上を併用してもよい。また、熱膨潤性樹脂(D)は、必要に応じて、樹脂に添加される公知の各種添加剤、例えば、酸化防止剤などを含有していても構わない。
【0054】
前記の構成材料の中でも、スチレン樹脂架橋体、アクリル樹脂架橋体およびフッ素樹脂架橋体が好ましく、架橋PMMAが特に好ましく用いられる。
【0055】
これら樹脂架橋体が、温度上昇により電解液を吸収して膨潤するメカニズムについては明らかでないが、ガラス転移温度(Tg)との相関が考えられる。すなわち、樹脂は、一般にそのTgまで加熱されたときに柔軟になるため、前記のような樹脂は、Tg以上の温度で多くの電解液の吸収が可能となり膨潤するのではないかと推定される。従って、熱膨潤性樹脂(D)としては、実際にシャットダウン作用が生じる温度が熱膨潤性樹脂(D)樹の熱膨潤性を示し始める温度より多少高くなることを考慮し、およそ75〜125℃にTgを有する樹脂架橋体を用いることが望ましいと考えられる。なお、本明細書でいう熱膨潤性樹脂(D)である樹脂架橋体のTgは、JIS K 7121の規定に準じて、DSCを用いて測定される値である。
【0056】
前記樹脂架橋体では、電解液を含む前の所謂乾燥状態においては、温度上昇により膨張しても、温度を下げることにより再び収縮するというように、温度変化に伴う体積変化にある程度可逆性があり、また、熱膨潤性を示す温度よりもかなり高い耐熱温度を有するため、熱膨潤性を示す温度の下限が100℃くらいであっても、200℃またはそれ以上まで加熱することが可能な材料を選択することができる。そのため、セパレータの作製工程などで加熱を行っても、樹脂が溶解したり樹脂の熱膨潤性が損なわれたりすることがなく、一般の加熱プロセスを含む製造工程での取り扱いが容易となる。
【0057】
熱溶融性樹脂(C)や熱膨潤性樹脂(D)[以下、熱溶融性樹脂(C)と熱膨潤性樹脂(D)とを纏めて「シャットダウン樹脂」という場合がある]の形態は特に限定はされないが、微粒子の形状のものを用いることが好ましく、その大きさは、乾燥時における粒径がセパレータの厚みより小さければよく、セパレータの厚みの1/100〜1/3の平均粒径を有することが好ましく、具体的には、平均粒径が0.1〜20μmであることが好ましい。シャットダウン樹脂粒子の粒径が小さすぎる場合は、粒子同士の隙間が小さくなり、イオンの伝導パスが長くなって電気化学素子の特性が低下する虞がある。また、シャットダウン樹脂粒子の粒径が大きすぎると、隙間が大きくなってリチウムデンドライトなどに起因する短絡に対する耐性の向上効果が小さくなる虞がある。なお、シャットダウン樹脂粒子の平均粒径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA−920」)を用い、シャットダウン樹脂を膨潤させない媒体(例えば水)に当該微粒子を分散させて測定した数平均粒子径として規定することができる。
【0058】
また、シャットダウン樹脂は、前記以外の形態であってもよく、他の構成要素、例えば、無機微粒子や繊維状物の表面に積層され一体化された状態で存在していてもよい。具体的に、無機微粒子をコアとしシャットダウン樹脂をシェルとするコアシェル構造の粒子として存在してもよく、また、芯材の表面にシャットダウン樹脂を有する複層構造の繊維であってもよい。更に、セパレータの片面または両面に、シャットダウン樹脂を含む層(シャットダウン樹脂のみで形成された層や、シャットダウン樹脂とバインダとを含む層など)を形成することで、セパレータにシャットダウン樹脂を持たせてもよい。
【0059】
セパレータにおけるシャットダウン樹脂の含有量は、シャットダウンの効果をより得やすくするために、例えば、下記のようであることが好ましい。セパレータの全構成成分中におけるシャットダウン樹脂の体積は、10体積%以上であることが好ましく、20体積%以上であることがより好ましい。一方、セパレータの高温時における形状安定性確保の点から、セパレータの全構成成分中におけるシャットダウン樹脂の体積は、50体積%以下であることが好ましく、40体積%以下であることがより好ましい。
【0060】
本発明の電気化学素子に使用されるセパレータは、例えば、下記の(a)〜(d)の方法により製造することができる。セパレータの製造方法(a)は、樹脂(A)を形成するためのモノマーやオリゴマー、光重合開始剤、並びに無機微粒子(B)、更には必要に応じて熱溶融性樹脂(C)や熱膨潤性樹脂(D)の粒子などを含み、これらを揮発性物質(揮発性の溶剤)に分散させた液状組成物(スラリーなど)を調製し(モノマーやオリゴマー、光重合開始剤は、揮発性物質中に溶解していてもよい)、この液状組成物を多孔質基体に塗布または含浸させ、光照射してセパレータ形成用のシートとした後、揮発性物質を所定の温度で乾燥により除去して空孔を形成する方法である。この場合の多孔質基体としては、具体的には、前記例示の各材料を構成成分に含む繊維状物の少なくとも1種で構成される織布や、これら繊維状物同士が絡み合った構造を有する不織布などの多孔質シートなどが挙げられる。より具体的には、紙、PP不織布、ポリエステル不織布(PET不織布、PEN不織布、PBT不織布など)、PAN不織布などの不織布を例示できる。
【0061】
前記液状組成物に使用する揮発性物質としては、モノマーやオリゴマー、光重合開始剤、無機微粒子(B)などを均一に分散したり溶解したりできるものが好ましく、例えば、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類など、一般に有機溶剤が好適に用いられる。なお、これらの溶剤に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、水を揮発性物質に用いる
こともでき、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。
【0062】
また、光重合開始剤としては、例えば、2,4,6−トリメチルベンゾイルビスフェニルホスフィンオキシド、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノンなどを使用することができる。光重合開始剤の使用量は、モノマーおよびオリゴマーの量100質量部に対し、1〜10質量部とすることが好ましい。
【0063】
前記液状組成物では、モノマーやオリゴマー、光重合開始剤、無機微粒子などを含む固形分含量を、例えば10〜50質量%とすることが好ましい。
【0064】
本発明の電気化学素子に使用されるセパレータの製造方法(b)は、樹脂(A)を形成するためのモノマーやオリゴマー、光重合開始剤、無機微粒子(B)、並びに、特定の溶剤に溶解し得る材料(液状組成物の調製に使用する溶剤には溶解しない材料)、更には必要に応じて熱溶融性樹脂(C)や熱膨潤性樹脂(D)の粒子などを含み、これらを溶剤に分散させた液状組成物(スラリーなど)を調製し(モノマーやオリゴマー、光重合開始剤などは、溶剤に溶解していてもよい)、この液状組成物を多孔質基体に塗布または含浸させ、光照射してセパレータ形成用のシートとした後、前記材料を前記特定の溶剤で抽出して空孔を形成する方法である。
【0065】
前記の特定の溶剤に溶解し得る材料としては、例えば、ポリオレフィン樹脂、ポリウレタン樹脂、アクリル樹脂などを用いることができる。これらの材料は、例えば粒子状のものを用いることが好ましいが、そのサイズや使用量は、セパレータに要求される空孔率や孔径に応じて調整することができる。通常は、前記材料の平均粒径[無機微粒子(B)の平均粒径と同じ方法で測定される平均粒径]が0.1〜20μmであることが好ましく、また、使用量は、前記液状組成物における全固形分のうち、1〜10質量%とすることが好ましい。
【0066】
製造方法(b)に係る前記液状組成物における溶剤には、製造方法(a)に係る液状組成物に使用し得る揮発性物質と同じものが使用できる。また、製造方法(b)に係る前記液状組成物の固形分含量は、製造方法(a)の場合と同様に、例えば10〜50質量%とすることが好ましい。また、製造方法(b)に係る前記液状組成物には、製造方法(a)の場合と同様の材料を使用して、界面張力を制御することもできる。
【0067】
本発明の電気化学素子に使用されるセパレータの製造方法(c)は、製造方法(a)に係る前記液状組成物と同じものを、フィルムや金属箔などの基材上に塗布し、光照射してセパレータ形成用のシートとした後、揮発性物質を所定の温度で乾燥により除去して空孔を形成し、その後に基材から剥離する方法である。なお、製造方法(c)に係る液状組成物は、繊維状物を含有していてもよく、その繊維状物も含めた固形分量が、例えば10〜50質量%であることが好ましい。
【0068】
本発明の電気化学素子に使用されるセパレータの製造方法(d)は、製造方法(b)に係る前記液状組成物と同じものを、フィルムや金属箔などの基材上に塗布し、光照射してセパレータ形成用のシートとした後、前記材料を前記特定の溶剤で抽出して空孔を形成し、その後に基材から剥離する方法である。なお、製造方法(d)に係る液状組成物は、繊維状物を含有していてもよく、その繊維状物も含めた固形分量が、例えば10〜50質量%であることが好ましい。
【0069】
また、製造方法(c)や製造方法(d)でセパレータを製造する場合に、電気化学素子に係る正極および負極のいずれか一方を基材とすることで、セパレータと電極とを一体化した構造としてもよい(この場合、セパレータは基材となる電極からは剥離しない)。
【0070】
なお、製造方法(a)〜(d)において、光照射の条件は、一般的な光重合で採用されている条件とすればよい。具体的には、例えば、紫外光の光源として波長365nmの高圧水銀ランプを使用し、照射強度60mW/cmで、10秒間光照射するなどすればよい。なお、光照射に使用する光の波長、照射強度および照射時間などは適宜変更することができる。
【0071】
セパレータの空孔率としては、乾燥した状態で、電解液の保液量を確保してイオン透過性を良好にするために、10%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。なお、乾燥した状態でのセパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記(10)式を用いて樹脂B以外の各成分iについての総和を求めることにより計算できる。
【0072】
P = 100−(Σa/ρ)×(m/t) (10)
ここで、前記式中、a:質量%で表した成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:乾燥した状態で測定したセパレータの厚み(cm)である。
【0073】
また、本発明の電気化学素子に使用されるセパレータは、JIS P 8117に準拠した方法で行われ、0.879g/mmの圧力下で100mlの空気が膜を透過する秒数で示されるガーレー値が、樹脂Bを溶解して乾燥した状態で、10〜300secであることが望ましい。ガーレー値が大きすぎると、イオン透過性が小さくなり、他方、小さすぎると、セパレータの強度が小さくなることがある。さらに、セパレータの強度としては、直径1mmのニードルを用いた突き刺し強度で50g以上であることが望ましい。かかる突き刺し強度が小さすぎると、リチウムのデンドライト結晶が発生した場合に、セパレータの突き破れによる短
絡が発生する場合がある。前記の構成を採用することにより、前記のガーレー値や突き刺し強度を有するセパレータとすることができる。
【0074】
本発明の電気化学素子に使用されるセパレータの厚みは、正極と負極とをより確実に隔離する観点から、6μm以上であることが好ましく、10μm以上であることがより好ましい。他方、セパレータの厚みが大きすぎると、電池としたときのエネルギー密度が低下してしまうことがあるため、その厚みは、50μm以下であることが好ましく、30μm以下であることがより好ましい。
【0075】
本発明の電気化学素子は、非水電解質を有し、かつ前記セパレータを有していればよく、その他の構成および構造については特に制限はなく、従来から知られている電気化学素子で採用されている各種構成および構造を適用することができる。
【0076】
なお、本発明の電気化学素子は、非水電解質二次電池の他、非水電解質一次電池やスーパーキャパシタなどが含まれ、特に高温での安全性が要求される用途に好ましく適用できる。以下、本発明の電気化学素子が非水電解質二次電池である場合を中心に詳述する。
【0077】
非水電解質二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
【0078】
正極としては、従来から知られている非水電解質二次電池に用いられている正極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する正極であれば特に制限はない。例えば、活物質として、Li1+xMO(−0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1−xCox−yAl(0.1≦x≦0.3、0.01≦y≦0.2
)などのほか、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiMn3/5Ni
1/5Co1/5など)などを例示することができる。
【0079】
導電助剤としては、カーボンブラックなどの炭素材料が用いられ、バインダとしては、PVDFなどのフッ素樹脂が用いられ、これらの材料と活物質とが混合された正極合剤により正極活物質含有層が、例えば集電体上に形成される。
【0080】
また、正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。
【0081】
正極側のリード部は、通常、正極作製時に、集電体の一部に正極活物質含有層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。
【0082】
負極としては、従来から知られている非水電解質二次電池に用いられている負極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する負極であれば特に制限はない。例えば、活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素およびその合金、リチウム含有窒化物、または酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどのバインダなどを適宜添加した負極合剤を、集電体を芯材として成形体(負極活物質含有層)に仕上げたもの、または、前記の各種合金やリチウム金属の箔を単独、もしくは集電体上に積層したものなどが用いられる。
【0083】
負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。
【0084】
電極は、前記の正極と前記の負極とを、セパレータを介して積層した積層型の電極群や、更にこれを巻回した巻回体電極群の形態で用いることができる。なお、本発明の電気化学素子では、折り曲げ時の耐短絡性に優れたセパレータを用いていることから、セパレータに変形を加える巻回体電極群を用いた場合に、その効果がより顕著となり、セパレータを強く屈曲させる扁平状の巻回体電極群(横断面が扁平状の巻回体電極群)を用いた場合に、その効果が特に顕著となる。
【0085】
非水電解質としては、リチウム塩を有機溶媒に溶解した溶液(非水電解液)が用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限は無い。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。
【0086】
非水電解質に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ−ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。また、これらの非水電解質に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキサン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤を適宜加えることもできる。
【0087】
このリチウム塩の非水電解質中の濃度としては、0.5〜1.5mol/Lとすることが好ましく、0.9〜1.3mol/Lとすることがより好ましい。
【0088】
本発明の電気化学素子は、従来から知られている電気化学素子と同様の用途に用いることができる。
【実施例】
【0089】
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
【0090】
実施例1
<セパレータの作製>
オリゴマーであるウレタンアクリレート:3.5質量%、モノマーであるジペントキシ化ペンタエリストールジアクリレート:3.5質量%、光重合開始剤である2,4,6−トリメチルベンゾイルビスフェニルホスフィンオキシド:0.05質量%、無機微粒子(B)であるベーマイト(平均粒径0.6μm):32.95質量%、および揮発性物質であるトルエン:60質量%を均一に混合してセパレータ形成用のスラリーを調製した。このスラリー中に厚みが12μmのPET製不織布を通し、引き上げ塗布によりスラリーを塗布した後、所定の間隔を有するギャップの間を通し、続いて波長365nmの紫外線を照度60mW/cmで10秒間照射し、その後乾燥して、厚みが16μmのセパレータを得た。
【0091】
<正極の作製>
正極活物質であるLiCoO2:90質量部、導電助剤であるアセチレンブラック:7質量部、およびバインダであるPVDF:3質量部を、NMPを溶剤として均一になるように混合し、正極合剤含有ペーストを調製した。このペーストを集電体となる厚み15μmのアルミニウム箔の両面に、塗布長が表280mm、裏面210mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が150μmになるように正極活物質含有層の厚みを調整し、幅43mmになるように切断して正極を作製した。その後、正極におけるアルミニウム箔の露出部にタブ付けを行った。
【0092】
<負極の作製>
負極活物質である黒鉛:95質量部とPVDF:5質量部とを、NMPを溶剤として均一になるように混合して負極合剤含有ペーストを調製した。このペーストを銅箔からなる厚み10μmの集電体の両面に、塗布長が表290mm、裏面230mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が142μmになるように負極活物質含有層の厚みを調整し、幅45mmになるように切断して負極を作製した。その後、負極における銅箔の露出部にタブ付けを行った。
【0093】
<電池の組み立て>
前記のようにして得た正極と負極とを、前記のセパレータを介在させつつ重ね、渦巻状に巻回して巻回体電極群を作製した。得られた巻回体電極群を押しつぶして扁平状にし、厚み4mm、高さ50mm、幅34mmのアルミニウム製外装缶に入れ、電解液(エチレンカーボネートとエチルメチルカーボネートを体積比で1対2に混合した溶媒にLiPFを濃度1.2mol/Lで溶解したもの)を注入した後に封止を行って、図1に示す構造で、図2に示す外観の角形非水電解質二次電池を作製した。
【0094】
ここで図1および図2に示す電池について説明すると、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した巻回体電極群6として、角形の外装缶4に非水電解液とともに収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や電解液などは図示していない。
【0095】
外装缶4はアルミニウム合金製で電池の外装材を構成するものであり、この外装缶4は正極端子を兼ねている。そして、外装缶4の底部にはポリエチレンシートからなる絶縁体5が配置され、前記正極1、負極2およびセパレータ3からなる電極群6からは、正極1および負極2のそれぞれ一端に接続された正極集電板7と負極集電板8が引き出されている。また、外装缶4の開口部を封口するアルミニウム合金製の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板(電極端子集電機構)13が取り付けられている。
【0096】
そして、この蓋板9は前記外装缶4の開口部に挿入され、両者の接合部を溶接することによって、外装缶4の開口部が封口され、電池内部が密閉されている。
【0097】
なお、蓋板9には注液孔が設けられており(図中、14)、電池組み立ての際には、この注液孔から電池内に電解液が注入され、その後、注液孔は封止される。また、蓋板9には、防爆用の安全弁15が設けられている。
【0098】
この実施例1の電池では、正極集電板7を蓋板9に直接溶接することによって外装缶4と蓋板9とが正極端子として機能し、負極集電板8をリード板13に溶接し、そのリード板13を介して負極集電板8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、外装缶4の材質などによっては、その正負が逆になる場合もある。
【0099】
図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極群の内周側の部分は断面にしていない。
【0100】
実施例2
オリゴマーであるウレタンアクリレート:15質量%、モノマーであるジペントキシ化ペンタエリストールジアクリレート:15質量%、光重合開始剤である2,4,6−トリメチルベンゾイルビスフェニルホスフィンオキシド:0.15質量%、無機微粒子(B)であるベーマイト(平均粒径0.6μm):10質量%、および揮発性物質であるトルエン:59.85質量%を均一に混合して調製したセパレータ形成用のスラリーを用いた以外は、実施例1と同様にしてセパレータを作製した。そして、このセパレータを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
【0101】
実施例3
無機微粒子(B)をチタニア(平均粒径0.6μm)に変更した以外は、実施例1と同様にしてセパレータ形成用のスラリーを調製し、このスラリーを用いた以外は、実施例1と同様にしてセパレータを作製した。そして、このセパレータを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
【0102】
実施例4
無機微粒子(B)をアルミナ(平均粒径0.4μm)に変更した以外は、実施例1と同様にしてセパレータ形成用のスラリーを調製し、このスラリーを用いた以外は、実施例1と同様にしてセパレータを作製した。そして、このセパレータを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
【0103】
実施例5
実施例1で調製したものと同じセパレータ形成用のスラリーを、ポリテトラフルオロエチレン製の基材表面に、ダイコーターを用いてギャップを40μmとして塗布し、続いて紫外線を照度60mW/cmで10秒間照射し、乾燥した後に基材から引き剥がして、厚みが16μmのセパレータを得た。このセパレータとして用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
【0104】
実施例6
オリゴマーであるウレタンアクリレート:13質量%、モノマーであるジペントキシ化ペンタエリストールジアクリレート:13質量%、光重合開始剤である2,4,6−トリメチルベンゾイルビスフェニルホスフィンオキシド:0.13質量%、無機微粒子(B)であるベーマイト(平均粒径0.6μm):12.87質量%、および揮発性物質であるトルエン:61質量%を均一に混合してセパレータ形成用のスラリーを調製した。このスラリー中に厚みが12μmのPET製不織布を通し、引き上げ塗布によりスラリーを塗布した後、所定の間隔を有するギャップの間を通し、続いて紫外線を照度60mW/cmで10秒間照射し、その後乾燥して、厚みが12μmの多孔質膜を得た。前記の多孔質膜の片面に、PE微粒子を含むエマルジョン(PE微粒子の平均粒径1.0μm)をダイコーターによって、乾燥後の厚みが4μmとなるように塗布し、乾燥してシャットダウン層を形成して、セパレータを得た。このセパレータを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
【0105】
実施例7
オリゴマーであるウレタンアクリレート:15.7質量%、モノマーであるイソボルニルアクリレート:10.4質量%、光重合開始剤である2,4,6−トリメチルベンゾイルビスフェニルホスフィンオキシド:0.78質量%、無機微粒子(B)であるベーマイト(平均粒径0.6μm):23.5質量%、および揮発性物質であるトルエン:49.62質量%を均一に混合して調製したセパレータ形成用のスラリーを用いた以外は、実施例1と同様にしてセパレータを作製した。そして、このセパレータを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
【0106】
実施例8
実施例1で調製したものと同じセパレータ形成用のスラリーを、同じく実施例1で作製した負極上に、ダイコーターを用いてギャップを40μmとして塗布した。塗布後に紫外線を照度60mW/cmで10秒間照射し、さらに乾燥させて、負極活物質含有層上にセパレータが形成された電極(負極)を得た。前記セパレータは、負極の両面に形成し、負極活物質含有層とセパレータとが一体化された層の厚みは、負極の集電体の両面で、それぞれ70μmとした。
【0107】
前記セパレータと一体化された電極(負極)と、実施例1で作製した正極とを、間に別のセパレータを介在させずに重ね、渦巻状に巻回して巻回体電極群を作製した。以下、実施例1と同様にして非水電解質二次電池を作製した。
【0108】
比較例1
オリゴマーであるウレタンアクリレート:2質量%、モノマーであるジペントキシ化ペンタエリストールジアクリレート:2質量%、光重合開始剤である2,4,6−トリメチルベンゾイルビスフェニルホスフィンオキシド:0.02質量%、無機微粒子(B)であるベーマイト(平均粒径0.6μm):35.98質量%、および揮発性物質であるトルエン:60質量%を均一に混合して調製したセパレータ形成用のスラリーを用いた以外は、実施例1と同様にしてセパレータを作製した。そして、このセパレータを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
【0109】
比較例2
オリゴマーであるウレタンアクリレート:16質量%、モノマーであるジペントキシ化ペンタエリストールジアクリレート:16質量%、光重合開始剤である2,4,6−トリメチルベンゾイルビスフェニルホスフィンオキシド:0.16質量%、無機微粒子(B)であるベーマイト(平均粒径0.6μm):7.84質量%、および揮発性物質であるトルエン:60質量%を均一に混合して調製したセパレータ形成用のスラリーを用いた以外は、実施例1と同様にしてセパレータを作製した。そして、このセパレータを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
【0110】
比較例3
厚みが16μmのPE製微多孔膜をセパレータに用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
【0111】
実施例1〜7および比較例1〜3の非水電解質二次電池について、以下の充放電試験を行った。
【0112】
実施例1〜8および比較例1〜3の電池について、0.2Cの電流で4.2Vまで定電流充電し、その後4.2Vでの定電圧充電を行った。なお、総充電時間は、8時間とした。定電圧充電の終了時点で電流が0.02C以下にならなかった電池は、微短絡が発生したものとした。そして、微短絡が発生していない電池について、内部抵抗を測定してから、0.2Cの電流で3Vまで定電流放電した。
【0113】
次に、放電後の各電池について、前記と同じ条件で充電を行い、その後に2Cの電流で3Vまで定電流放電して、良好な充放電特性が得られているかを確認した。
【0114】
また、実施例1〜8の電池に用いたセパレータについて、高温での寸法安定性を確認するために、150℃の恒温槽中で1時間保持し、保持前の寸法(幅および長さ)と保持後の寸法を比較したが、寸法変化は認められず、高温下での収縮による電池の安全性低下を防ぐことのできるセパレータであることが確認できた。
【0115】
更に、シャットダウン樹脂を有するセパレータを用いた実施例6および比較例3の電池については、シャットダウン特性評価のために、充放電試験時と同じ条件で充電を行った後に恒温槽に入れ、30℃から150℃まで毎分1℃の割合で温度上昇させて加熱し、電池の内部抵抗の温度変化を求めた。そして、抵抗値が30℃での値の5倍以上に上昇した時の温度を、そのセパレータのシャットダウン温度とした。また、電池の温度が150℃に到達した後で、恒温槽の温度を150℃で2時間保持し、電池の様子を観察し、電池の最高到達温度を測定した。
【0116】
実施例1〜8および比較例1〜3の電池に使用したセパレータの構成を表1に、前記の充放電試験結果を表2に、シャットダウン特性評価結果を表3に、それぞれ示す。
【0117】
【表1】

【0118】
なお、表1における「樹脂(A)と無機微粒子(B)との総量」とは、セパレータの構成成分の全体積(空孔を除く体積)中の、光重合により形成された樹脂(A)と無機微粒子(B)との合計体積の割合を意味している。
【0119】
【表2】

【0120】
【表3】

【0121】
表2から明らかなように、光重合により形成され、少なくとも一部に架橋構造を有する樹脂(A)と、無機微粒子(B)とを適正な組成比で含有するセパレータを使用した実施例1〜7の非水電解質二次電池は、微短絡の発生がなく、充放電特性が良好である。また、前述のように、実施例の電池で使用したセパレータは高温下での寸法安定性に優れていることから、表3に示す通り、実施例6の非水電解質二次電池は昇温試験後における電圧低下が小さく、シャットダウン機能を有効に作用させることができるために、昇温試験時の温度上昇が抑えられており、高い信頼性と安全性とを有している。
【0122】
これに対し、樹脂(A)の体積と無機微粒子(B)との体積との比a/b値が小さすぎるセパレータを用いた比較例1の電池、およびa/b値が大きすぎるセパレータを用いた比較例2の電池では、充放電試験における充電時に微短絡が生じていた。これらは、比較例1の電池ではセパレータの柔軟性が欠如していることに、また、比較例2の電池ではセパレータにおける無機微粒子(B)の少なさによって正負極間の耐短絡性が欠如していることに、それぞれ起因していると推測される。更に、通常のPE製微多孔膜セパレータを用いた比較例3の電池では、昇温試験において、最高到達温度が高くなり、電圧も0V近
辺まで低下しているが、これは、セパレータの熱収縮および破膜が生じた結果、正負極間で短絡が発生したためと考えられる。
【0123】
なお、実施例1〜7の電池に用いたセパレータ(実施例1〜7のセパレータ)、および、実施例8の電池に用いた電極(実施例8の電極)は、簡単な工程のみで製造可能であるため、セパレータ並びに電池(電気化学素子)の生産性を高めることができる。
【符号の説明】
【0124】
1 正極
2 負極
3 セパレータ

【特許請求の範囲】
【請求項1】
正極、負極、セパレータおよび非水電解質を含む電気化学素子であって、
セパレータは、光重合により形成され、架橋構造を有する樹脂Aと、電気絶縁性の無機微粒子Bとを含み、
空孔体積を除き、前記樹脂Aの体積aと、前記無機微粒子Bの体積bとの比a/bが、0.6〜9であり、
正極および/または負極が電気化学素子用セパレータと一体化されたことを特徴とする電気化学素子。
【請求項2】
前記無機微粒子Bが、アルミナ、チタニア、シリカおよびベーマイトからなる群から選択される少なくとも一つである請求項1に記載の電気化学素子。
【請求項3】
セパレータに、繊維状物を更に含む請求項1に記載の電気化学素子。
【請求項4】
融点が80〜140℃の熱溶融性樹脂C、および、加熱により液状の非水電解質を吸収して膨潤し且つ温度上昇と共に膨潤度が増大する熱膨潤性樹脂Dから選ばれる少なくとも一方を更に含む請求項1に記載の電気化学素子。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−33498(P2012−33498A)
【公開日】平成24年2月16日(2012.2.16)
【国際特許分類】
【出願番号】特願2011−204183(P2011−204183)
【出願日】平成23年9月20日(2011.9.20)
【分割の表示】特願2010−236425(P2010−236425)の分割
【原出願日】平成22年10月21日(2010.10.21)
【出願人】(511084555)日立マクセルエナジー株式会社 (212)
【Fターム(参考)】