説明

Fターム[2F103EC17]の内容

光学的変換 (13,487) | 光学要素 (1,283) | 反射防止、漏洩光防止部材 (51)

Fターム[2F103EC17]に分類される特許

1 - 20 / 51


【課題】エンコーダの検査を高精度且つ容易に行うことが可能なサーボモータを提供する。
【解決手段】エンコーダ100は、シャフトSHに連結され、複数の反射スリット111からなるスリットアレイSAが円周方向に沿って形成された円板状のディスク110と、スリットアレイSAに光を照射する点光源121、及び、点光源121から照射されスリットアレイSAで反射された光を受光する受光アレイ122を備えた光学モジュール120と、光学モジュール120が設けられる基板130と、モータMのハウジング10に固定され、ディスク110を内部に収容しつつ、光学モジュール120がスリットアレイSAと対向するように基板130を支持する、円筒状の支持部材140と、を有する。 (もっと読む)


【課題】スケールからの反射光による像のコントラストを高くし光検出器の誤検出を防ぐ。
【解決手段】下地部材に第1領域と第2領域とが交互に配置された反射型光学式スケールであって、下地部材に第1領域と第2領域とが交互に配置され、第1領域は、波長λの光の反射率が第2領域よりも高く、第1領域は、下地部材の上に配された反射部材と、反射部材の上に配された第1材料で構成された層と、第1材料で構成された層の上に配された第2材料で構成された層と、で構成され、第2領域は、下地部材の上に配された第2材料で構成された層で構成され、第1材料および第2材料は、光について透過性を有し、第1材料は、反射部材および第2材料よりも光の屈折率が低く、第2材料は、下地部材よりも光の屈折率が低く、第1材料および第2材料の光学膜厚は、第1領域の方が第2領域よりも光の反射率が大きくなるように設けられている。 (もっと読む)


【課題】迷光が回路要素に入射するのを防止できる光学リードヘッドを提供する。
【解決手段】リードヘッドとスケールトラックとの測定軸方向に沿った変位を測定するための光学リードヘッドは、スケールトラックへ光源光を出力するように構成された照明部と、モノリシック検出器構造と、を備える。モノリシック検出器構造はスケールトラックからのスケール光を受光するように構成された第1トラック光検出器部と、第1金属層と、第2金属層と、第1金属層と第2金属層との間に形成された複数のダミービア371と、を備える。複数のダミービア371は、第1金属層と第2金属層の間の層を通り抜ける光の伝達を遮るように配置され、かつ、複数のダミービア371はモノリシック検出器構造上の回路要素間を接続するための複数の有効ビアを製造する工程と同じ工程によって形成されている。 (もっと読む)


【課題】 本発明は、湾曲可能であって高精度に微小位置変位の測定を実現することの可能な光学スケール、及び、それを備えた光学ユニットを提供することを目的とする。
【解決手段】 光透過性を有する樹脂基板2と、該樹脂基板2面上に所定のパターンにて積層形成されているアルミニウム金属膜3とからなる積層構造体4を備え、該積層構造体4におけるアルミニウム金属膜形成面側の表面を覆って光透過性を有する粘着層5が積層されており、且つ、粘着層5面上にアルミニウム金属膜3よりも正反射率の低い低反射層6が積層されている光学スケール1により、湾曲可能であって高精度に微小位置変位の測定を実現することの可能な光学スケール1、及び、それを備えた光学ユニット10が提供される。 (もっと読む)


【課題】迷光/ノイズ問題に対処する反射型エンコーダを提供する。
【解決手段】光学エンコーダ及び光学エンコーダシステムであって、光源208に対して光検出器212を上方に配置し、光源208と光検出器212との相対的な高さの差により、反射迷光232の影響を阻止し、光学エンコーダ204が、光源208と光検出器212との間に別個の光バッフルを必要とすることなく、光検出器212におけるノイズを最小限にすることが可能となる。 (もっと読む)


【課題】光源とスケールと受光素子の配置の自由度が高い光学式エンコーダを提供する。
【解決手段】光学式エンコーダ100は、空間的に光学的特性が周期的に変化するスケールスリット122を有するスケール110と、スケール110に向けて光を発光する複数の発光部142を有する発光ユニット140と、発光部142から発光されスケールスリット122を経由した光を受光する受光部172を有する受光ユニット170を有している。発光ユニット140と受光ユニット170は共に基板192に搭載されてヘッド190を構成している。スケール110とヘッド190(受光部172)は、スケールスリット122の光学的特性の変化方向に沿って相対的に移動可能である。スケール110は、発光部142に対向した光入射部118と、受光部172に対向した光出射部120と、光入射部118から入射した光を光出射部120へ導光する導光部を有している。 (もっと読む)


【課題】回転情報の制御の精度低下を抑制できる駆動装置を提供する。
【解決手段】駆動装置は、中空部、及び中空部から外周面へ通じる貫通孔を有する第1軸部材と、中空部に挿入され、第1軸部材と動力伝達部を介して連結された第2軸部材と、第1軸部材を回転させる駆動部と、第1軸部材と第2軸部材とのうちの一方の軸部材に設けられたスケールを有し、一方の軸部材の回転に関する情報を検出する検出部と、を備える。 (もっと読む)


【課題】迷光による干渉信号の変動を抑え、位置検出信号の内挿精度を改善し検出精度の向上を図る。
【解決手段】保護層表面の法線と入射光のなす角度をθ、回折格子11で発生する回折光が保護層12の境界面で反射し、迷光となって回折格子に再入射するとき回折格子面の法線のなす角をθ’としたとき、Δ=2L(n/cosθ’+tanθ’・sinθ)にて示される迷光とその迷光と干渉する光線の光路長差Δを、当該光路長差Δが0の場合における干渉信号の干渉強度に対し2%以下の干渉強度の干渉信号となる範囲内とする厚さLを有する屈折率nの保護層12で上記回折格子11の表面を覆う。 (もっと読む)


【課題】投光部とスケールと受光部の配置の自由度が高い光学式エンコーダを提供する。
【解決手段】光学式エンコーダ100は、スケール110と、スケール110に向けて光を投光する投光部142と、投光部142から投光されスケール110を経由した光を受光する受光部172を有している。スケール110は、受光部172に対して移動可能である。スケール110はまた、投光部142に対向した光入射部118から入射した光を受光部172に対向した光出射部120へ導光する導光部を有している。光出射部120には、スケール110の移動方向に沿って光学的特性が周期的に変化しているスケールスリット124が設けられている。光入射部118には、スケール110の移動方向に垂直な平面に対して、平行成分の光に対する斜め成分の光の相対強度を低減する働きをする斜め光低減スリット122が設けられている。 (もっと読む)


【課題】スケールに対する被検出光の照射位置が基準からずれた場合でも、絶対角度を精度良く検出することができるエンコーダ、及びこのようなエンコーダに用いるエンコーダ用受光装置を提供する。
【解決手段】エンコーダ1では、一直線状の光透過部17に被検出光を透過させることにより、スケール板11において、配列ラインL1,L2の互いに離間した一部を含む領域に被検出光が照射される明部19が形成され、他の領域に被検出光が照射されない暗部20が形成される。したがって、光強度ピークP1,P2間の相対角度(基準相対角度)は、光透過部17の形状から一義的に算出できる。そこで、エンコーダ1では、角度検出時の相対角度と基準相対角度とのずれ量を補正量α°として算出することにより、スケール板11に対する被検出光の照射位置が基準からずれた場合でも、絶対角度を精度良く検出することができる。 (もっと読む)


【課題】トラック数を増やさなくても高分解能なアブソリュートエンコーダ、絶対位置検出装置、及びアブソリュートエンコーダの信号パターン配置作成方法を提供する。
【解決手段】信号パターンを読み取り可能なセンサと、センサと相対的に移動可能とされ、センサに読み取られてK(K>2)段階に分かれてセンサ出力される信号パターンを有する信号トラックを含む基体と、を含むアブソリュートエンコーダとする。また、前記アブソリュートエンコーダと、センサ出力の検出結果に基づいて、センサと基体との絶対位置を算出する演算装置とを有する絶対位置検出装置とする。 (もっと読む)


【課題】受光素子に十分な光量を確保させることができ、小型化することができる光学式エンコーダの提供。
【解決手段】光学式エンコーダ1は、格子状の目盛り21を有するスケール2と、スケール2に光を出射する光源31、スケール2と平行に配設され、スケール2にて反射される光を受光する受光素子32、スケール2にて反射される光を受光素子32に伝達するスケール側レンズ33、及びスケール2にて反射される光を導光するスケール用プリズム34を有するヘッド3とを備える。光源31から出射される光の光軸Lsrcは、目盛り21の直交方向では、スケール側レンズ33の光軸Lsに対して傾斜している。スケール用プリズム34は、目盛り21の直交方向では、スケール2にて反射される光の光軸をスケール側レンズ33の光軸Lsと一致させる。 (もっと読む)


【課題】検出器に設けられたレンズアレイの線膨張係数が検出器の受光部とスケールのうちのいずれかと異なっても、動作温度範囲を拡大しつつ、スケールに対する検出器の位置を正確に求めることが可能となる。
【解決手段】第1レンズアレイ114、第2レンズアレイ122がスケール102と受光部124とは異なる線膨張係数αLAを備え、第1レンズアレイ114、第2レンズアレイ122の特定の一箇所Xstで第1レンズアレイ114、第2レンズアレイ122と受光部124とが一体的に固定され、周期信号Fiから求められる位相信号φiはそれぞれ、異なる線膨張係数αLAに起因する位相ずれが解消されるように補正され、更に、補正された補正位相信号Cφiを平均して平均位相信号φavが求められ、スケール102に対する検出器110の位置が求められる。 (もっと読む)


【課題】測定ヘッドが小型で、構造の簡単な位置決定デバイスを提供すること。
【解決手段】マーカー11、12を備える測定スケール10と、測定スケール10に対して移動可能な測定ヘッド21を備え、測定ヘッド21は、測定スケール10の画像を生成するテレセントリック光学系30と、この画像を捕獲し、測定ヘッド21の位置決定を可能とする信号を提供するセンサ40を備え、テレセントリック光学系30は、光軸34を含む第1のレンズ要素33と、レンズ要素33の測定スケール10とは逆側に面する焦点F1に配置されるアパーチャ35を含む。テレセントリック光学系30は、レンズ要素33と一体のブロック31を備え、ブロック31の表面32の第1の領域32.1がレンズ要素33の表面を形成し、アパーチャは、表面32の第2の領域32.2に設けられ、光軸34に対して鋭角で傾斜した第1のミラー表面35として実現される。 (もっと読む)


【課題】受光部の感度が偏光方向に依存する場合であっても、物理量を高精度に検出できる光学式センサを提供する。
【解決手段】本発明に係る光学式センサ10は、光源11と、光源11からの光を伝播する第1光ファイバ12aと、第1光ファイバ12aの端面からの距離が物理量に応じて変動し、第1光ファイバ12aの上記端面から出射された光を反射する反射板14と、反射板14が反射した光をそれぞれ伝播する第2光ファイバおよび第3光ファイバ12b、12cと、第2光ファイバ12bが伝播する光を受光して、受光した光を第1の電流信号に変換する第1受光部15aと、第3光ファイバ12cが伝播する光を受光して、受光した光を第2の電流信号に変換する第2受光部15bと、を備えており、第1〜第3光ファイバ12a〜12cは偏波保持ファイバで構成されている。 (もっと読む)


【課題】迷光が抑制され、低ノイズで高精度の位置検出を実現することができる光学式エンコーダ用スケールを得る。
【解決手段】基材1は、鏡面状の反射表面を有する。光吸収層2は、レーザ光の照射により、目盛りとして基材表面が露出するまでの開口領域を略周期的に設け、基材1の反射表面側に積層する。 (もっと読む)


【課題】ハンドリング及び作業性に優れる光電式エンコーダ及びそれを用いた真空装置を提供することである。
【解決手段】光電式エンコーダは、測定軸方向に所定ピッチで形成された回折格子11を有するスケール10と、スケール10に照射された光の反射光を伝搬する第1ファイバ20を備える検出ヘッド30と、第1ファイバ20を伝搬した反射光を集光する第1レンズ60,62と、集光された反射光を受光し、電気信号に変換する受光素子54とを備える。 (もっと読む)


【課題】簡便な構成により位相格子を保護できるエンコーダ用スケール、及びエンコーダ装置を提供する。
【解決手段】位相格子51が形成された基板50と、位相格子51を保護する保護部60と、位相格子51の周囲のうち少なくとも一部に配置され、基板50と保護部60とを貼り合せる接着部55と、を備えたエンコーダ用スケール100である。 (もっと読む)


【課題】結像光学系を用いながら小型の検出器ユニットを可能とすると共に、検出器ユニットの受光面に到達する光量を増大させて高精度な位置測定を可能とする。
【解決手段】光学格子114が設けられたスケール110と、スケール110に対峙して測定軸方向Xに相対移動可能に配置される検出器ユニット120と、を有する光電式エンコーダ100において、スケール110に対峙して光学格子114に光を照射する面発光光源である有機EL素子124と、光学格子114で変調された光を検出器ユニット120の受光面に結像させる両側テレセントリック光学系130と、を検出器ユニット120に備える。 (もっと読む)


【課題】樹脂封止されたエンコーダの迷光によるエンコーダ信号の劣化や外部への影響を低減することができる光学式エンコーダを提供すること。
【解決手段】相対的に移動する固定体と移動体のいずれか一方に取り付けられた検出ヘッドと、検出ヘッドに対向して、固定体と移動体の他方に取り付けられ、所定ピッチの光学パタンを有する第2格子71が設けられたスケール7とを備えた光学式エンコーダであって、検出ヘッドは、スケール7に所定の光を照射するLED2と、LED2からの光を透過する光透過部材3と、光検出素子が所定のピッチで複数形成された光検出部4とを有し、光透過部材3には、所定ピッチの光学パタンを有する第1格子31と、LED2からスケール7の第2格子71へ至る光を絞るための開口絞り32と、が形成されており、LED2からの光を光透過部材3を介してスケール7に照射した後、スケール7の第2格子71により反射または回折した光が光検出部4の光検出素子上に形成するイメージの動きを検出する。 (もっと読む)


1 - 20 / 51