説明

Fターム[2F112DA21]の内容

光学的距離測定 (16,745) | 光学系 (4,180) | 波長 (253)

Fターム[2F112DA21]の下位に属するFターム

可視 (37)

Fターム[2F112DA21]に分類される特許

201 - 216 / 216


【課題】構造が簡単なカメラを提供すること。
【解決手段】特定の輻射パターンを持つ投射光を被写体に照射するストロボ505、506を有し、ストロボ505、506の被写体反射光を撮像し、撮像した画像の光強度を用いて奥行き画像を得る、形状計測用または被写体抽出用のカメラであって、ストロボ505、506の発光なしの状態にて動画像を撮像し記録メディアに録画できるビデオカメラ533を兼ねており、ストロボ505、506が発光した時に撮像した画像データにインデックス信号を付加しておき、インデックス信号が付加された特定の画像のみを用いて奥行き画像を算出する。 (もっと読む)


【課題】広い範囲で波を受けることができる受波装置の提供
【解決手段】受波装置は、受光素子3と、受光素子3に向けて反射光12、13を集約させるレンズ2とを備えており、レンズ2は焦点距離が異なった部分を少なくとも3つ以上備えている。レンズ2は焦点距離が異なった部分を少なくとも3つ以上備えており、広い範囲で受光素子3に安定した光量を入射させることができる。 (もっと読む)


【課題】 カメラにより得られる対象物像が画像の端部に接しているような場合において、対象物の相対的な移動方向を誤って検出することを防止できる移動対象物検出装置を提供する。
【解決手段】 カメラ1Rにより得られる基準画像に含まれる対象物像が、基準画像の端部に接するときは、その対象物像の位置を代表する判定点が、対象物像の面積重心Gから、画像の中心に近い外接四角形の端部の点GEに移動され、該移動後の判定点に基づいて対象物の移動方向が検出される。 (もっと読む)


【課題】傾斜焦点試験を行う方法及び露光装置、及びそれに応じて製造されたデバイスを提供すること。
【解決手段】本発明は、
・ 少なくとも1つの反射デバイスを第2の向きに傾斜させるために傾斜用デバイスを使用して、前記第1の投影ビームに対して傾斜を有する第2の投影ビームを供給するステップと、
・ 第2の投影された投影放射ビームを目標物体に生じさせるステップと、
・ 第1及び第2の投影された投影ビームの目標物体上での横方向シフトを決定し、且つ投影された投影ビームに対する目標物体のデフォーカスを前記横方向シフトから決定するステップと、を備える傾斜焦点試験を行う方法に関する。 (もっと読む)


【課題】コストを抑え、高速、かつ高精度な距離計測を行うことができる距離計測装置及び距離計測方法を提供する。
【解決手段】2つのカメラによって撮影対象物(対象物)を撮影する撮影手段104と、画像の画質改善処理を行う画質改善手段106と、画質改善された画像に基づき、画像上における対象物の位置情報を検出する検出手段107と、検出された対象物の位置情報に基づき、処理対象となる画像上の画像領域を限定し、2つのカメラによって撮影された2つの画像に対して、輝度変化を強調する処理を行う補正処理手段108と、限定された画像領域において、補正処理された2つの画像間の対応点を探索し、視差画像情報を生成する視差画像情報生成手段109と、生成された視差画像情報に基づき視差値を求め、撮像手段と撮影対象物との間の距離を算出する距離算出手段110とを備える。 (もっと読む)


本発明は、液体ジェット器具(1)に対して取り付けられ得るよう構成された光学的近接センサ(5)に関するものである。このセンサは、少なくとも1つの発光部材(14)および少なくとも1つの受光部材(15)が設置され、さらに、これら発光部材および受光部材により、センサと所定表面(8)との間の距離を測定し得るものとされた、プリント回路(12)と;発光部材(14)および受光部材(15)を受領するための中間部分(16)と;この中間部分をカバーする保護手段(17)と;を具備している。プリント回路(12)と中間部分(16)とには、貫通穴(18,19)が形成され、これら貫通穴(18,19)は、スプレーヘッドからの液体の噴射を可能とする通路を形成し得るよう、互いに位置合わせされている。
(もっと読む)


増分干渉計を使用することなく、移動外部再帰反射器またはそのほかの移動目標表面の1またはそれを超える次元の絶対距離測定および/または表面走査および/または座標測定が可能なレーザ・デバイスおよび方法。
(もっと読む)


【課題】 より改良されたデジタルカメラにおけるオートフォーカスの実施が要求される。
【解決手段】 カメラ(100)は、光パルスを第1のレートで送るように構成された光トランスミッタ(204)と、該光トランスミッタによって送られた前記光パルスに対応するリターン信号を受け取るように構成された光レシーバ(205)と、該光レシーバが受け取った前記リターン信号に対応する電気信号をサンプリングするように構成されたサンプラ(207)であって、前記電気信号を前記第1のレートよりも低い第2のレートでサンプリングするように構成されたサンプラとを備える。 (もっと読む)


多重反射のビーム成分を意図的に減衰させる。減衰フィルタ(18,19)を受信器(2)の前に及び送信器(1)の後にそれぞれ設ける。ビーム成分の強度の減衰は、ファクターで0.7、少なくとも0.5または0.3となる。別の方法または追加的に、ミラー(10)または立方体プリズム(14)の偏向手段を用いてビームを減衰させることができる。多重反射するビーム成分は、減衰手段を少なくとも2回通過する。従って、通常のビーム成分に比べて、一層減衰される。さらに受信器(2)の入力表面(5)は、円錐の偏向表面で囲まれている。この偏向表面は、そこに入射する光を吸収し、残部を入力方向以外の方向に反射して、多重反射を生じさせない。
(もっと読む)


本発明は、車両またはロボットアームなど移動プラットフォームの制御に使用できる移動制御システムに関する。本発明は特に車両用の運転支援、車両用のセルフパーキング支援システムに利用できる。3次元カメラ(12)がプラットフォーム、例えば車(102)上に置かれ、プラットフォームまわりの環境を撮像する(114)ように配置される。プロセッサ(7)が3次元情報を用いて環境モデルを生成し、このモデルを利用して移動制御信号を生成する。好ましくは、プラットフォームは環境に対して移動し、様々な位置からの環境の複数の画像を取得する。
(もっと読む)


深度情報を含む画像を生成する方法と装置が提供される。この方法では、場面から発する放射を検出し、異なる面における場面の少なくとも2つの画像を形成する。各画像は強度データ値のセットを有する。データ値の変動が得られ、強度分散の2つのセットがデータ値から得られ、強度分散データは深度情報を得るために処理される。深度情報は、画像データにおける異なる深度情報を識別するためにコード化される。

(もっと読む)


RGB−Zセンサーは単一のICチップ上に実施可能である。ホットミラーなどのビームスプリッタが、対象物から入射する第一及び第二のスペクトルバンド光エネルギーを受信し、好ましくはRGBであるイメージ成分及び好ましくはNIRZである成分に分離する。RGBイメージとZ成分は、それぞれイメージデータとZデータを出力するRGBピクセル検出器及びNIRピクセル検出器のアレイ領域によってそれぞれ検出される。これらの領域のピクセルサイズ及びアレイ解像度は同一である必要はなく、またこれら両方のアレイ領域を共通のICチップ上に形成しても良い。対象物の認識を容易にするために、イメージデータを用いたディスプレイはZデータによって補助できる。その結果得られる構成は、ビームスプリットを行なうことによる光学的効率性と単一のICチップに実施することによる簡素性とを組み合わせたものとなる。この単一チップの赤、緑、青、距離(RGB−Z)センサーの使用方法も開示されている。
(もっと読む)


プロセッサベースのシステム(301)において使用される位置判定及びモーショントラッキングのためのシステム及び方法。実施形態は、固定点(132)を中心として少なくとも1つの方向に動く方向転換器(130)と、サーチビーム(131)を位置ビーム(141)として反射する対象物(101)と、方向転換器の向きから少なくとも1つの角度位置を判定する論理回路(160)と、固定点(132)からの対象物の距離(104)を判定する論理回路(161)とを含む場合がある。
(もっと読む)


本発明は、第1カメラ(1)が可視スペクトル域に感応し、第2カメラ(2)が赤外線スペクトル域に感応する2つのカメラ(1;2)を有する装置に関する。カメラ(1;2)は、少なくとも1つの物体(4)を含む同一の場面(3)の像を撮像するために相互に所定の間隔(a)をおいて配置される。装置は、さらに、所定の間隔(a)と2つのカメラ(1;2)によって撮像される像とに基づいてカメラ(1;2)からの物体(4)の距離を計算する三角測量装置(7)を備えている。
(もっと読む)


【課題】水中の遠距離の被写体に対してオートフォーカス撮影を行う。
【解決手段】デジタルカメラには、赤外光測距を行う第1測距部と、超音波測距を行う第2測距部と、撮影環境が空気中か水中かを判定する水中検知部とが設けられている。水中検知部により撮影環境が水中と判定された場合、第2測距部を用いて測距を行う。第2測距部は、超音波を発信してから、被写体から戻ってくる超音波の反射波を受信するまでの時間を測定することで、被写体距離を測定する。このように、水中撮影時に、水中ではエネルギーが減衰しない超音波を使用して測距を行うから、遠距離の被写体に対しても正確にピントを合わせることができる。 (もっと読む)


【課題】 AFの為にも苦手な被写体が無く、しかもタイムラグ対策やまぶしさ対策が図られた測距装置を提供すること。
【解決手段】 被写体像をモニタして複数の像信号を出力する複数のセンサアレイ3a,3bと、これらセンサアレイから出力される複数の像信号が測距演算に適した信号であるか否かを判定する手段(パターン判定部11)と、この手段の判定結果に応じて被写体にパルス光を投射する手段(IRED4a又はストロボ装置5a)と、上記各センサアレイに定常的に入射する信号光に基づく像信号を除去し上記パルス光に応じた複数の信号を抽出する手段(定常光除去部7,A/D変換部16)と、この手段により出力される所定の抽出信号を用いて被写体距離を算出する手段(制御部1a)とを備えた測距装置を提案する。そして上記判定部11の判定基準としては、上記像信号のコントラスト、その像信号の変化率の高低、或いはその像信号のパターンの規則性を用いる。 (もっと読む)


201 - 216 / 216