説明

Fターム[2G041EA06]の内容

その他の電気的手段による材料の調査、分析 (22,023) | 試料形態 (2,319) | 気体 (543) | ガスクロマト溶出ガス (289)

Fターム[2G041EA06]に分類される特許

241 - 260 / 289


【課題】 多種異性体が混在するPCB等の有機塩素化合物を、検体中から迅速に分離することが可能となる、有機塩素化合物の分離方法を提供すること。
【解決手段】 多種異性体が混在するPCB等の有機塩素化合物を、低塩素化PCBの吸着能に優れる活性炭もしくはアルカリ改質活性炭に接触させる工程と、高塩素化PCBの吸着能に優れるイオン交換樹脂に接触させる工程とを設け、吸着特性の異なる2種の吸着材を使用して有機塩素化合物を分離する。 (もっと読む)


【課題】製造環境の気体モニタリングシステムにおいて、クリーンルーム環境または装置内に存在する気体の中で特定の基板表面に選択的に付着する成分を一定周期で検出し、その中で基板の透過率を低下させる成分を効率的にモニタリングする気体モニタリングシステムの提供。
【解決手段】製造環境の気体の中で、特定の基板表面に付着する成分を収集する成分収集手段と、収集された成分を少なくとも定性及び定量分析する分析手段と、該分析結果に基づいてモニタリング項目におけるシミュレーションを行うシミュレーション手段と、を有し、前記シミュレーション手段のモニタリング項目が、特定波長における分析物質の光吸収スペクトル及び分光特性の算出する気体モニタリングシステムを具備する装置、及び該装置を用いて、付着する成分中で基板の透過率を低下させる成分をモニタリングする気体モニタリングシステム。 (もっと読む)


ここに記載されているのは、ガス流(2)における化合物を質量分析によって検出する方法である。この方法には、化合物のイオンを形成してガス流(2)における体積ユニットをイオン化することが含まれており、ここでこのイオン化は、ガス流と交わるビーム(9,10)を介して行われ、これらのビームは、電子パルスまたは電子パルス列および光子パルスまたは光子パルス列が交互に切り換わることによって形成される。またこの方法には、電場(13)によってイオンを進路変更して質量分析法を実施することならびに質量分析法によってイオンを検出することが含まれる。本発明の課題は、上記のような方法を提案して、測定範囲を拡げ、分解能を格段に改善することである。この課題は、上記の光子パルスまたは光子パルス列をエキシマランプ(11)によって形成し、電子パルスまたは電子パルス列と、光子パルスまたは光子パルス列との切り換えを50Hz以上の切換替え周波数で行うことによって解決される。
(もっと読む)


本発明は、データベースとそれに連結した演算装置とによって編集された代謝物データの視覚的表示を生成する。特に本発明は、サンプル群の三次元スペクトル分析データを自動的に受け取るためのデータベースを提供する。本発明はまた、複数の選択した代謝物に対応する複数の固有プロットと直接比較できるプロットを生成するためのデータセットを処理する演算装置を提供する。さらに、上記演算装置は、上記サンプル群に渡って上記選択した代謝物が存在することを示す視覚的表示を生成することができる。それゆえ、本発明のユーザは、上記サンプル群に渡って上記選択した代謝物が存在することを示す視覚的表示をもって、一連の複雑なデータセットを解析することができる。さらに、本発明の実施形態によって生成される上記視覚的表示によって、迅速にスペクトル分析データセットの主観的な解析ができる。
(もっと読む)


【課題】 ガスクロマトグラフを質量分析計と組み合わせるには、その結合部における試料の吸着、分解を完全に抑制する必要がある。また、結合部のデッドボリュームを小さくして、クロマトグラフピークの広がりを抑える必要がある。スペクトル選択性を向上させるため、超音速分子ジェット/レーザーイオン化質量分析計と組み合わせる場合には、このような問題を解決することがさらに難しくなる。
【解決手段】 図3の方式では、ガラスキャピラリーをリペラー電極に貫通させているので、試料をノズル先端まで200℃から400℃まで加熱できる。また、試料は金属と接触せず、高温に加熱しても分解しない。本法によればガスクロマトグラフで分離した4個以上の塩素原子を分子内に含む高沸点のダイオキシン化合物を、高温で分解することなく、かつ質量分析計に高密度で導入できる、デッドボリュームが小さな試料導入部を提供することができる。 (もっと読む)


本発明は、二酸化炭素などのガスを分析するための方法を提供する。不純物を分析する前にそれらを濃縮することにより、現場での経済的な分析の可能性が提供される。
【添付図面】 図1
(もっと読む)


【課題】 cICAT試薬を用いる同位体標識法を改良し、試料中に存在する多数の微量たんぱく質の発現差解析を効率よく行う方法、およびそのためのシステムを提供する
【解決手段】 cICAT試薬にて標識されたペプチドからタグを開裂させ、得られた標識ペプチドを分離・精製し、質量分析を行うことを特徴とする、同位体標識を用いるたんぱく質の発現差解析方法。 (もっと読む)


【課題】 類似の構造を有する成分が複数存在する試料を連続して測定する場合における成分のグループ分けに有用なマスクロマトグラムの表示方法を提供。
【解決手段】 マスクロマトグラムを作成するマスクロマトグラム作成手段と、マスクロマトグラムからピークを検出するピーク検出手段と、保持時間範囲と質量電荷比範囲とピーク表示色又はピーク表示マークを記憶する手段と、被検体のピークの一部が保持時間範囲と質量電荷比範囲に含まれる場合に対応する表示色又は表示マークでピークを表示する手段、を備えたマスクロマトグラム表示方法。 (もっと読む)


少なくとも1種の化合物を含む試料、好ましくは少なくとも1種の代謝産物を含む生物試料を特徴づける方法が提案される。第1のプロセスステップでは、少なくとも1つの時間分解分離技法(214)および少なくとも1つの質量分解分離技法(216)を使用して試料を分析することによって、第1の3次元データセットが生成される。このデータセットは、第1の測定範囲(420)をとる質量変量および第2の測定範囲(422)をとる時間変量の関数として、少なくとも1つの信号Iを含む。第2のプロセスステップでは、第1の測定範囲(420)が少なくとも2つの質量変量区間(424)に分割される。それぞれの質量変量区間(424)について、時間変量の関数である抽出信号が選択される。第3のプロセスステップでは、第2の測定範囲(422)が少なくとも1つの時間変量区間(426)に分割される。 (もっと読む)


【課題】温度条件の異なる複数のカラムを同時に装着可能なGC/MSを提供する。
【解決手段】それぞれ少なくとも試料導入部12、22とキャピラリカラム11、21とカラムオーブン13、23とを備えた複数のガスクロマトグラフ部1、2と質量分析部5とをキャピラリ直結形のインターフェイス3を介して連結してGC/MSを構成する。質量分析部5に隣接配置できないガスクロマトグラフ部2は加温されたトランスファーライン4を介してインターフェイス3と接続する。このように構成することにより、各ガスクロマトグラフ部1、2に装着した複数のキャピラリカラム11、21をそれぞれの分析目的に応じた最適の温度条件で用いることが可能となる。 (もっと読む)


【課題】
本発明の課題は、生体内における代謝物の網羅的な定量方法を見出すことにある。
【解決手段】
代謝的に同位体標識された第一の代謝物群を調製し、サンプルと混合して質量分析装置で測定することにより、サンプル(例えば、組織、生体液、細胞など)中の複数の代謝物を精度よく定量することが可能となった。また、代謝的に同位体標識された第一の代謝物群中の代謝物を定量しておくことにより、代謝物の網羅的な絶対定量が可能となった。
(もっと読む)


本発明の方法及び測定システムはクロマトグラフィーと質量分析の複合分析を実施するためのもので、C/MS分析を実施する段階(300)と、少なくとも1つの第一の溶出プロファイルを生成する段階(305)であって、1つの次元がクロマトグラフィーの溶出時間であり、1つの次元が質量/電荷比(m/z)であり、少なくとも1つの次元がシグナル強度であり、各生体分子種由来のシグナルが分散して各生体分子種について複数のシグナルピークを溶出プロファイルに形成する段階と、溶出プロファイル中のある生体分子種由来の分散シグナルを再構築する段階(310)とを含む。再構築段階は、同一生体分子種由来の溶出プロファイルのシグナル変化を再構築するように適合化された自動アノテーションと生体分子マップの作成とを含む。自動アノテーションは溶出時間次元とm/z次元の両者に同時に基づく。 (もっと読む)


【課題】微量なタンパク質由来のペプチドなどを、ユーザの欲するタンデム質量分析ターゲットとして計測の無駄なく自動的に判定処理する。
【解決手段】測定対象物質をイオン化し、生成した種々のイオン種を質量分析し、生成した種々のイオン種の中から特定の質量対電荷比を持つイオン種を選択して解離させ、イオンの質量分析測定をn段階(n=1,2,…)繰り返すタンデム型の分析システムである。n段階目の質量分析であるMSn結果で、イオンの質量対電荷比に対するピークで表されたイオン強度に基づき、MSnの次の分析の制御内容を分析対象イオン毎に判定するデータ処理する。イオン化検出部14は試料から計測されイオン化されたデータを高精度に照合、同位体ピーク判定する。データ処理部15は、ある一定期間に測定した、例えば親イオンペプチドのMSのカウント数をIとするとき、ペプチドのMSの積算回数又は分析時間を1/Iに比例させる。 (もっと読む)


【課題】タンパク質やペプチドを、高速且つ高感度に同定可能な質量分析方法を実現する。
【解決手段】基準試料である健常者のマススペクトルを得てこのマススペクトルから選出したイオンを前駆イオンとするマススペクトルを取得する((a)〜(d))。測定対象試料である患者のマススペクトルを得てこのマススペクトルから基準試料の前駆イオン以外の新たなイオンを前駆イオンとしてそのマススペクトルを取得する((g)〜(k))。基準試料固有の、測定対象試料固有の、基準試料と測定試料共通の、ペプチド/タンパク質の同定((r)〜(q))を行いこれらに基づき測定対象試料のペプチド/タンパク質の比較解析を行なう(t)。測定対象の全ての成分に由来するイオンを前駆イオンとする必要なくMS/MSスペクトルを得て測定対象の複数成分の同定を短時間、高感度に行なえる。 (もっと読む)


【課題】 GC/MSでカラム入口切除等の分離条件の変更を行った場合に、その前に設定してあるSIM測定パラメータを1つずつ変更しなければならず面倒である。
【解決手段】 分離条件の変更の後、所定の参照成分を含む標準試料を分析すると、データ処理部31ではその分析により得られるクロマトグラムに現れている参照成分のピークの保持時間の実測値を求め、その実測値と分析条件情報格納部34に格納されている分離条件変更前の参照成分の保持時間の情報とに基づいて、目的成分のピークの保持時間のずれを推定して分析条件情報格納部34に格納されているSIM測定パラメータの各イオンセットの測定時間範囲を修正する。目的試料を分析する際に修正されたパラメータに従ってSIM測定を行うことにより、オペレータが所望する測定が行える。 (もっと読む)


本発明は、任意の多次元分離に適用されるソフトウェア発展形態および動作を含むデータ処理/視覚化の方法である。ディーゼルのGC−MS分析を例にとって、このソフトウェアの発展形態および動作を実証する。本方法の工程は、(1)GC−MS試験から得られた総イオンクロマトグラムを表示する工程と、(2)各々の質量スペクトル対保持時間を表示する工程と、(3)相対極性を表示するために参照化合物ファミリーとしてノルマルパラフィンファミリーを選択する工程と、(4)全ての質量スライスをそれぞれ変換し、ノルマルパラフィン化合物ファミリーを同じ相対保持時間(位置)で揃える工程と、(5)2次元(多次元)のデータを最も効果的に表示するために軸を回転させる工程とを含む。 (もっと読む)


本発明は、コレステロール逆輸送(RCT)を測定するための生化学的方法に関する。具体的には、RCTの3つの成分(流出成分、血漿成分および排出成分)を、同位体標識コレステロールまたはコレステロール関連分子もしくはコレステロール関連複合体を投与するステップ、および続いて種々のコレステロールまたはコレステロール関連分子もしくはコレステロール関連複合体での同位体の希釈または出現、ならびにステロール最終産物(RCTの一部分である)中への回収を測定するステップにより、in vivoで測定する。生体で初めて、組織から血中へのコレステロール流出速度と血液から体外へのコレステロール排出速度との組み合わせを表す、包括的RCT流(Global RCT flux)のパラメータが作成される。そのような方法は、創薬および薬物開発、アテローム硬化その他の血管疾患および症状の診断および予後診断、疾患治療のための適正な用量の選択、ならびにRCT流を標的とする治療法のための被験体の選択に用いられる。 (もっと読む)


【課題】水中に含まれる疎水性有機化合物を効率良く回収する。
【解決手段】疎水性有機化合物の吸着剤であって、平均粒径が1〜100μmであり、BET法における比表面積が1〜800m/gであり、かつESCA分析におけるO/C値(炭素原子に対する酸素原子のモル比)が0.05以下である炭素質粒状吸着剤を調製する。前記吸着剤は、例えば、平均粒径が3〜50μm程度であり、比表面積が1〜700m/g程度であり、かつO/C値が0.001〜0.045程度のグラファイト状炭素粒子で構成されていてもよい。また、前記吸着剤は、平均孔径が0.5〜10nm程度であり、かつBET法における空孔率が0.0001〜0.5ml/g程度である多孔質グラファイト状炭素粒子で構成されていてもよい。前記吸着剤は、水中に含まれる塩素又は臭素原子を含有する疎水性化合物(例えば、ダイオキシン類など)を吸着するのに用いることができる。 (もっと読む)


【課題】簡便かつ正確に、測定対象物質の飽和蒸気圧を測定する方法を提供する。
【解決手段】ステップ1〜4を含む測定対象物質jの温度T℃における飽和蒸気圧PTjの測定方法。
ステップ1:基準物質i及びjをガスクロマトグラフ装置に導入し、得られたクロマトグラムからそれぞれの重量及びピーク面積の関係を表す換算係数fを求めるステップ。
ステップ2:気液平衡状態のiの気相部をガスクロマトグラフ装置に導入し、得られたクロマトグラムからピーク面積Aとiの飽和蒸気圧Pとの比を求めるステップ。
ステップ3:T℃における気液平衡状態のjの気相部をステップ2と同一体積でガスクロマトグラフ装置に導入し、得られたクロマトグラムからピーク面積ATjを求めるステップ。
ステップ4:換算係数f、AとPとの比、ATj、iの分子量Mwi、及びjの分子量MwjからPTjを求めるステップ。 (もっと読む)


【課題】 現在、GC/MSにおいて、負化学イオン化は、選択性が高く、高感度な測定法として広がってきている。しかしながら、負化学イオン化法で得られるマススペクトルは情報が少なく、同定にクロマトの保持時間や保持指標を用いることが望まれる。しかしながら、負化学イオン化法においては保持指標を用いることができず、必ず、標準物質を準備し、保持時間を測定しなければならなかった。
【解決手段】
炭素数の異なる脂肪酸を誘導体化試薬により誘導体化し、「NCI用基準物質」とする。同じ条件下で「NCI用基準物質」の保持時間と、各成分の保持時間を求め、「NCI用保持指標」とする。この、「NCI用保持指標」を利用すれば、標準物質を測定しなくても、保持時間での訂正を行うことができる。 (もっと読む)


241 - 260 / 289