説明

Fターム[2G059JJ07]の内容

光学的手段による材料の調査、分析 (110,381) | 光学要素 (16,491) | 分光手段 (3,803) | ダイクロイックミラー (229)

Fターム[2G059JJ07]に分類される特許

121 - 140 / 229


【課題】分光特性と構造特性を高精度かつ高解像度で関連付けることが可能な測定装置を提供する。
【解決手段】光源部1と光検出装置5を有して被検体Eの分光特性をAOTを利用して測定する分光特性測定装置101と、超音波検出器6を有して被検体Eの構造特性を超音波エコー信号を利用して測定する超音波エコー測定装置102と、を有する測定装置であって、分光特性測定装置101及び超音波エコー測定装置102は、それらに共通に設けられ、被検体Eに超音波パルスを送信する超音波発生器3と、それらに共通に設けられ、超音波発生器3が送信した超音波パルスを被検体Eの被検部位Xに集束する集束装置4とを有し、被検体Eの被検部位Xにおいて、音響光学効果による光源部1からの光の変調と超音波エコー信号の発生が同時に行われ、光検出装置5は同時に発生した変調光Iacを検出し、超音波検出器6は同時に発生した超音波エコー信号を検出する。 (もっと読む)


【課題】光透過性を有する基材の厚み寸法のバラつきに伴い結晶性評価精度が悪化するのを抑制することができる半導体薄膜の結晶性の評価方法を提供する。
【解決手段】シリコン半導体薄膜の所定の照射領域にキャリア励起光を照射する励起レーザ1と、赤外光を放射する半導体レーザ10と、半導体レーザ10に対し強度変調された電流を供給することにより、当該半導体レーザ10に波長の異なる複数種の赤外光を照射させることが可能な高周波パルス電源18と、シリコン半導体薄膜5a又は基材5bにおいて反射された反射光であって、前記複数種の赤外光のうちの少なくとも2種の赤外光を含む反射光の強度を検出してその検出信号を出力する光検出器13と、前記検出信号に基づいて前記シリコン半導体薄膜5aの結晶性を評価するためのデータを作成する信号処理装置9とを備えている。 (もっと読む)


【課題】使用者に演算の手間をかけることなく、標本のCARS観察に必要な観察条件を自動的に演算できる標本観察条件演算装置を提供する。
【解決手段】CARS顕微鏡により標本を観察するための観察条件を演算する標本観察条件演算装置10であって、標本の分子振動情報を含む標本情報を入力する入力部11と、標本からCARS光を発生させるための振動数の異なる第1パルスレーザ光または第2パルスレーザ光の振動数または波長に関する情報を記憶する記憶部12と、入力部11から入力された標本情報および記憶部12に記憶されている振動数または波長に関する情報に基づいて、CARS顕微鏡により標本を観察する際の観察条件を演算する演算部13と、演算部13で演算された観察条件を出力する出力部14と、を有する。 (もっと読む)


【課題】シリコン半導体薄膜の結晶性の評価を迅速かつ正確に行うことができるシリコン半導体薄膜の結晶性評価装置を提供すること。
【解決手段】励起光レーザ3と、赤外光レーザ4と、赤外光の波長よりも小さな直径の小孔6aを有し、当該小孔6aの一方の開口に照射された赤外光を、当該孔6aの他方の開口から滲み出る近接場光L1としてシリコン半導体薄膜2bに照射することが可能な金属膜6と、赤外光レーザ4から放射された赤外光のうち孔6aの他方の開口の手前側で反射された反射光の強度を検出してその検出信号を出力する光検出器23と、前記検出信号に基づいて薄膜2bの結晶性を評価するためのデータを作成する信号処理装置26とを備えている。 (もっと読む)


【課題】レーザダイオードを自動的に安定してマルチモード発振させることができる試料分析装置及び試料分析方法を提供する。
【解決手段】LD(レーザダイオード)オン時の初期駆動制御として高周波成分を重畳せず直流電流のみを供給し、この直流電流を保持したものに所定値(0.95)を乗じて基準電流値とする。そして、高周波成分を重畳した後の直流電流が、この基準電流値に近づくように制御する。 (もっと読む)


【課題】比較的簡単な構成で、比較的高精度に光路長や被計測物内の散乱光の光路の深度を特定した測定を行うこと。
【解決手段】光測定装置1は、低コヒーレンス光を出射する低コヒーレンス光源2と、低コヒーレンス光を参照光と照射光に分離する分波部3と、参照光の光路長を可変する光制御部4と、照射光を被計測物9に照射する第1の光学系51と、被計測物9の深部からの散乱光を、第1の光学系51による被計測物9への照射光の照射位置と異なる位置から集光して導波する第2の光学系52と、第2の光学系52により導波された光と、参照光とを合波する合波部6と、合波部6により合波された光の強度を検出する光検出部7と、参照光又は照射光の光路長と、光検出部により検出された光の強度とに基づいて、被計測物の深部に関する情報を取得する制御部8(情報処理部81)とを有する。 (もっと読む)


【課題】撮像装置において、装置の大型化や大幅なコストアップを招くことなく、通常画像に加え、近赤外領域の分光画像を形成する。
【解決手段】白色光と、白色光とは異なる波長帯域の光とを選択的に被観察体3へ照射可能な光源ユニット14と、被観察体3の像を撮像する撮像素子を有する撮像部(CCD15)と、指定された波長の分光画像を示す分光画像信号を形成する分光画像形成回路(色空間変換処理回路29、51)とを備える。撮像部は、可視領域において波長域の異なる3つの第1、第2、第3の光ごとの被観察体3の像と、近赤外領域において波長域の異なる少なくとも2つの第4、第5の光ごとの被観察体3の像とを選択的に撮像する。撮像部は、第1の光と第4の光のみを撮像素子の第1の画素へ入射させる第1の分光素子と、第2の光と第5の光のみを撮像素子の第2の画素へ入射させる第2の分光素子とを有する。 (もっと読む)


【課題】 画像形成装置に搭載された蛍光トナーまたは蛍光インクによって形成される画像の、精度が良く安定した濃度制御を行う。
【解決手段】 発光素子8と前記発光素子8から照射する光を集光する集光用レンズ11と、前記集光用レンズ11にて集光された光を測定物に照射した際に測定物から反射または放射された光を受ける受光素子9と、それらを支えるホルダー10からなる光学濃度センサーにおいて、前記発光素子8が近紫外光または紫外光の波長領域を含む光を発する構成とする。 (もっと読む)


医薬送達システムを製造する製造手段を含む、該医薬送達システムを分析する光干渉断層解析システムであって、該製造手段が少なくとも1つの製造プロセスを含み、光干渉断層システムが該医薬送達システムに放射線ビームを向けるように構成した光源を有し、それによって、該放射線ビームが該医薬送達システムと相互作用し、該相互作用が該医薬送達システムにより放出される光の放出を含み、該干渉計が該医薬送達システムから放出された光を受け、該医薬送達システムの製造中に該放出光から該医薬送達システムの光学像をリアルタイムに構築するように構成される、前記システム。 (もっと読む)


【課題】簡易かつ安価な設備で、試料中の生体小分子を検出する。
【解決手段】試料S中の生体小分子を光学的に検出する。具体的には、生体小分子との相互作用が可能なアプタマーを含む試料Sに対して励起光Leを照射するとともに、この励起光Leの照射により試料S内に生ずる光熱効果を測定するための測定光L2を照射する。この測定光L2の位相変化から、励起光Leによる試料Sの光熱効果を測定し、その測定信号の時間変化に基づいて生体小分子とそのアプタマーとの相互作用の発生の有無を判断する。 (もっと読む)


【課題】白色光及び単色光を用いて色調及び濁りの変化を精度よく測定することができる
自動分析装置を提供する。
【解決手段】測光部13は、白色光を発する白色光源部21及び白色光よりも大きい強度
で直進性を有する単色光を発する単色光源部22を備えた光源部20と、光源部20から
の白色光又は単色光を測光位置の反応容器3に照射する照射方向設定部24と、照射方向
設定部24から照射され、反応容器3を透過した白色光又は単色光を検出する検出部28
とを備え、照射方向設定部24は、分析条件設定画面63,64で設定された分析条件に
基づいて白色光又は単色光を反応容器3に照射する。 (もっと読む)


【課題】検知器内で紫外域光と可視域光の飽和を起こすことなく、試料セルへの照射光量を増加させ、検出感度を向上すること。
【解決手段】この分光光度計は、測定対象の試料を収容する試料セルと、試料に入射する入射光を供給する可視用光源および紫外用光源と、試料を透過した光を分光する分光器と、分光された光を検出する光学検知器と、前記紫外用光源からの紫外域光を反射または透過させ、前記可視用光源からの可視域光を透過又は反射させるダイクロイック素子とを備えている。前記試料セル中に前記ダイクロイック素子を透過し、又は反射した紫外域光及び可視域光を入射するように光学系を構成したことを特徴とする。 (もっと読む)


本発明は、散乱光を測定するための装置に関し、装置は、試料に焦点を合わせることのできる電磁放射を備えた少なくとも一つの集束要素と、検出器と、試料により散乱された電磁放射を検出器に導くことができる検出器光学システムを備える。装置は、環状ビームを形成する手段を備え、その環状ビームは、少なくとも一つの集束要素によって試料内の焦点に焦点を合わせることができる。試料により散乱された電磁放射は、環状ビームに囲まれた領域内で拡散し、検出光学システムにより検出することができる。
(もっと読む)


本発明は、化学組成分析のための高波数(HW)ラマン分光法と、深度および形態学的情報を提供する光コヒーレンストモグラフィ(OCT)とを統合した組織分析等の試料分析のための装置および方法を提供する。また、本発明は、結合されたHWラマン分光法およびOCTを実施するための単一ダブルクラッド光ファイバに基づく側方観察光プローブを提供する。また、血管内カテーテルの実施形態および関連する血管の診断方法が提供される。
(もっと読む)


【課題】光学部品などが不純物に晒される前にケミカルフィルタなどの不純物除去部材の劣化度を判定することが出来る劣化判定装置を提供すること。
【解決手段】光源(短波長光源28)からの光を誘導する光誘導部(ハーフミラー11)と、前記光誘導部から誘導された光の照射下で、所望の雰囲気以外の不純物に晒される劣化判定部材(ターゲット板12)と、前記劣化判定部材の劣化度を監視するモニター部(光電センサ14、モニター部16)と、を備える。 (もっと読む)


【課題】分光エリプソメータにおいて基板の傾斜角を測定するとともに小型化する。
【解決手段】分光エリプソメータ1の照明部3は測定用光源部31および補助光源部34を有し、補助光源部34からの補助光は測定用光源部31からの光と共にポーラライザ32を介して基板9上へと導かれる。基板9にて反射された補助光はアナライザ41を介して遮光パターン撮像部44にて受光され、遮光パターンの像が取得される。演算部5では、遮光パターンの像に基づいて基板9の傾斜角が求められ、傾斜角を利用しつつ偏光解析が行われる。分光エリプソメータ1では、基板9の傾斜角を測定するための光学系の一部と、偏光状態を取得するための光学系の一部とが共有されるため、小型化可能とされる。 (もっと読む)


生物学的試料の画像を提供する方法が開示される。本方法は、少なくとも1つの生物学的試料の画像を取得すること、該少なくとも1つの生物学的試料の画像を位置決めすること、該少なくとも1つの生物学的試料の画像を評価すること、該少なくとも1つの生物学的試料の画像、及び該少なくとも1つの生物学的試料の制御パラメータの取得に応答して、該少なくとも1つの生物学的試料の対象領域を同時に求めながら、該少なくとも1つの生物学的試料の該画像を自動的にセグメント化すること、並びに、対象領域を受信すると共に該対象領域のロケーションの表示を提供することを含む。 (もっと読む)


【課題】被測定物体の計測範囲や計測タイミングを高精度で設定できる光画像計測装置を提供する。
【解決手段】眼底観察装置1は、低コヒーレンス光L0を信号光LSと参照光LRに分割し、被検眼Eを経由した信号光LSと参照ミラー174を経由した参照光LRを重畳して得られる干渉光LCを検出して眼底Efの画像を形成する光画像計測装置である。眼底観察装置1は、被検眼Eに対して信号光LSを走査する走査ユニット141を有する。眼底画像Ef′に断面位置が指定されると、眼底観察装置1は、各断面位置に沿って信号光LSを反復走査させて各断面位置における断層画像を反復して形成し、それにより各断面位置における断層動画像を表示部240Aに表示する。オペレータは、断層動画像を観察し、断層静止画像の計測範囲や計測タイミングを指定できる。 (もっと読む)


【課題】 組織標本のような対象物、コンピュータチップのような産業上の対象物、又は顕微鏡、内視鏡、望遠鏡若しくはカメラのような光学システムで目視可能の他の任意の対象物から同時に画像及びスペクトルを提供する光学システムを提供すること。
【解決手段】 組織の蛍光画像を生じさせる方法は、a)前記組織の各点について、前記点に対応する比率信号の強度が、第1の近赤外線波長帯における前記点の反射率の強度対前記点の蛍光の強度の比率に比例するような前記比率信号を発生させること、及びb)前記比率信号が前記組織の前記蛍光画像を生じさせるためにディスプレイ装置の入力に提供されるようにすることを含む。 (もっと読む)


【課題】被検眼に信号光の強度を低減させる部位が存在する場合であっても、明瞭なOCT画像を容易に取得できる。
【解決手段】眼底観察装置1は、干渉光LCの検出結果を基に干渉光の強度分布を求める干渉強度分布演算部213と、この強度分布に基づいて被検眼Eに対する信号光LSの照射位置を決定する照射位置決定部214とを有する。照射位置決定部214は、干渉光の強度が小さい領域を避けるように、つまり被検眼E内の混濁部位を避けるように、信号光LSの照射位置を決定する。主制御部211は、決定された照射位置に向けて新たな信号光LSを照射する。演算制御装置200は、被検眼Eを経由した新たな信号光LSと、参照ミラー174を経由した新たな参照光LRとに基づく新たな干渉光LCの検出結果に基づいて眼底EfのOCT画像を形成する。 (もっと読む)


121 - 140 / 229