説明

Fターム[2G085BC05]の内容

粒子加速器 (3,302) | 磁場、磁石 (237) | 磁石の構造的特徴部分 (139) | 鉄芯、ヨークの構造 (43)

Fターム[2G085BC05]の下位に属するFターム

Fターム[2G085BC05]に分類される特許

1 - 17 / 17


【課題】偏向電磁石に荷電粒子加速機能を付加させることにより、円形粒子加速器などで使用される加速機器の数を大幅に低減させることによって円形粒子加速器などの低価格化、小型化を可能にする。
【解決手段】偏向用励磁電流によって、第1偏向磁場用励磁コイル16、第2偏向磁場用励磁コイル17を励磁させて、磁性体15のギャップ14内に偏向磁力線20を生成させ、磁性体15のギャップ14に配置された真空空洞パイプ10中を通過する荷電粒子を偏向させながら、加速用励磁電流によって、加速用励磁コイル22を励磁させて、磁性体15内に加速用磁力線23を生成させるとともに、この加速用磁力線23によって磁性体15の両端部間に誘導電圧Vaを生成させ、磁性体15のギャップ14に配置された真空空洞パイプ4中を通過する荷電粒子を加速させる。 (もっと読む)


【課題】荷電粒子の軌道を調整する磁力線の磁場分布を変化させ、各種偏向機能、各種収束機能、他の機能などを持たせることにより、荷電粒子加速器のリングで使用される電磁石の種類数を大幅に低減させ、加速器の低価格化、小型化を達成する。
【解決手段】励磁電源4によって、第1励磁ユニット2の励磁方向、励磁量、第2励磁ユニット3の励磁方向、励磁量を各々、制御させて、第1励磁ユニット2に、指定された磁場分布パターンの第1ギャップ内磁力線16を生成させるとともに、第2励磁ユニット3に、指定された磁場分布パターンの第2ギャップ内磁力線17を生成させ、指定された磁場分布パターンのギャップ内磁力線18を生成させる。 (もっと読む)


【課題】小型化できる偏向電磁石装置及び挿入光源装置を提供する。
【解決手段】挿入光源装置は、ビーム軌道に沿って第一の偏向電磁石装置、第二の偏向電磁石装置及び第三の偏向電磁石装置をこの順に配置している。第二の偏向電磁石装置14では、リターンポール7A,メインポール11A及びリターンポール7Bがこの順序でビーム進行方向の上流側から連結部材9Aに設置され、リターンポール7C,メインポール1B及びリターンポール7Dがこの順序でビーム進行方向の上流側から連結部材9Bに設置される。対向するリターンポール7Aとリターンポール7Cの間、対向するメインポール11Aとメインポール11Bの間、及び対向するリターンポール7Bとリターンポール7Dの間に、荷電粒子ビームが内部を通過するビームダクトが配置される。連結部材9Aと連結部材9Bが非磁性体の支持部材で連結される。 (もっと読む)


【課題】加速チェンバーから望ましくない気体粒子を除去する改良型の真空システムを提供すること。
【解決手段】加速チェンバーを囲繞するヨーク体部を有するマグネットヨークを含むサイクロトロンを提供する。本サイクロトロンはさらに、荷電粒子を所望の経路に沿って導くための磁場を発生させるためのマグネットアセンブリを含む。このマグネットアセンブリは加速チェンバー内に配置される。この磁場は加速チェンバーを通りかつマグネットヨーク内部を伝播するが、この磁場の一部分はマグネットヨークの外部に漏洩磁場として逃げ出る。本サイクロトロンはさらに、ヨーク体部に結合された真空ポンプを含む。この真空ポンプは、加速チェンバー内に真空を導入するように構成されている。このマグネットヨークは、真空ポンプが75ガウスを超える磁場を受けないように寸法設定している。 (もっと読む)


サイクロトロンが、加速室を包囲するヨーク本体を有する磁石ヨークと、磁石アセンブリとを含んでいる。磁石アセンブリは、荷電粒子を所望の経路に沿って導くように磁場を発生するように構成されている。磁石アセンブリは加速室に位置する。磁場は加速室を通って磁石ヨークの内部を伝播する。磁場の一部は漂遊磁場として磁石ヨークの外側へ漏れ出る。磁石ヨークは、漂遊磁場が外面境界から1メートルの距離において5ガウスを超えないようにする寸法を有する。 (もっと読む)


サイクロトロンが、荷電粒子を所望の経路に沿って導くように磁場を発生する磁石アセンブリを含んでいる。このサイクロトロンはまた、加速室を包囲するヨーク本体を有する磁石ヨークを含んでいる。磁石アセンブリはヨーク本体に位置する。ヨーク本体は、加速室に流体結合されているポンプ収容(PA)窩を形成する。このサイクロトロンはまた、加速室に真空を導入するように構成されている真空ポンプを含んでいる。真空ポンプはPA窩に配置される。 (もっと読む)


【課題】シンクロトロン等の荷電粒子ビーム加速器において、荷電粒子ビーム軌道に偏向電磁石と真空容器のアライメント回数を少なくすることが可能な電磁石構造を提供する。
【解決手段】偏向電磁石4の磁極ギャップ間に設置の真空ダクト20を偏向電磁石4の端面4Eで、真空ダクト20と一体化された支持板22を位置決め部材23で所定位置に固定保持することにより、真空ダクト20が偏向電磁石4にアライメントされることにより、サイトにおける荷電粒子ビーム加速器のアライメント回数が低減される。 (もっと読む)


ベータトロンは、第1磁極面を有する第1ガイド磁石および第2磁極面を有する第2ガイド磁石を備えたベータトロン磁石を含む。第1および第2ガイド磁石は、中心配置のアパーチャを有し、第1磁極面は、ガイド磁石ギャップによって第2磁極面から分離している。コアは、両ガイド磁石と当接(abut)する関係で、中心配置のアパーチャ内に配置される。コアは、少なくとも1つのコアギャップを有する。駆動コイルは、両方のガイド磁石磁極面の周りに巻回される。軌道制御コイルは、コアギャップの周りに巻回された収縮(contraction)コイル部分と、ガイド磁石磁極面の周りに巻回されたバイアス制御部分とを有する。収縮コイル部分およびバイアス制御部分は、反対の極性で接続される。コアおよびガイド磁石内の磁束は、ベータトロン磁石の周辺部分を通って戻る。
(もっと読む)


シンクロサイクロトロンは、共振空胴を画定する磁気構造と、共振空胴に粒子を供給するイオン源と、共振空胴に高周波(RF)電圧を供給する電圧源と、RF電圧と時間とともに変化する共振空胴の共振周波数との間の位相差を検出する位相検出器と、この位相差に応答して、RF電圧の周波数が共振空胴の共振周波数と実質的に一致するように電圧源を制御する制御回路とを含む。電圧源が電圧制御発振器VCOを備え、フィードバック回路が、入力電圧の周波数と共振周波数との間の位相差を検出する位相検出器を備え、VCOが、位相差が所定値を逸脱したとき入力電圧の周波数を変化させるように構成される。
(もっと読む)


シンクロサイクロトロンが、空洞に磁界を与える磁気構造物と、空洞にプラズマカラムを与える粒子源であって、プラズマカラムを保持するハウジングを有し、ハウジングが、プラズマカラムを露出するように加速領域で中断されている粒子源と、加速領域でプラズマカラムからの粒子を加速するために空洞に高周波(RF)電圧を与える電圧源とを含む。
(もっと読む)


【課題】対向する磁極の曲面により形成される対向部空間における真空容器の位置決めを正確かつ容易に行うことができる荷電粒子加速装置を得る。
【解決手段】上部及び下部鉄心31,32の磁極複合部31h,32hに対向方向貫通孔形成部31m,32mを設け、まず上部鉄心31の対向方向貫通孔形成部31mに位置決め棒8を挿通して真空容器1に固設された座7に螺合させ、ナット9を回して位置決め棒8の端部8aと背面31dとの距離を測定して所定値に設定する。次に、下部鉄心32の対向方向貫通孔形成部32mに位置決め棒8を挿通して座7に螺合させ、ナット9を回して真空容器1に下方から所定の張力を与えて固定する。左右方向についても同様に行う。位置決め棒8にて位置決めするので、曲面31b,32bを有する磁極31a,32aであっても、正確かつ容易に真空容器1の位置を決めることができる。 (もっと読む)


磁石構造体によって画定される加速チャンバ内の磁場は、中央加速面内に、中心軸からの半径方向距離を増大させるにつれて減少する磁場を生じさせるために、磁石ヨークの極を形作ることによって、および/またはさらなる磁石コイルを提供することによって形作られる。磁石構造体は、したがって、シンクロサイクロトロン内における荷電粒子の加速に適したものとなる。中央加速面内の磁場は「コイル支配的」であり、これは、中央加速面内の大多数の磁場が、加速チャンバの周囲に配置された1対の1次磁石コイル(例えば、超伝導コイル)によって直接生成され、磁石構造体が加速チャンバ内に弱収束および位相安定性の両方を提供するように構造化されることを意味する。磁石構造体は、極めて小型であってもよく、特に高い磁場を生じさせることができる。
(もっと読む)


【課題】エッジ角による収束力を容易に変えることにある。
【解決手段】電子銃から出射した電子を高周波加速空胴1に導き、この高周波加速空胴1内で電子を加速すると共に、この加速された電子を前記高周波加速空胴1の外部に設けられた偏向電磁石2により、ビーム軌道を180度偏向した後、再度前記高周波加速空胴1内に入射して加速することを複数回繰返して、高エネルギーを得る電子線装置において、前記偏向電磁石2の磁極端部に入出射ビームに対して所望のエッジ角を有する鉄片10を着脱可能に取付けて、収束力を調整可能にする。 (もっと読む)


【課題】従来に比べて小型で電源容量も小さい電磁波発生装置を実現する。
【解決手段】内部を密閉して真空に保つ矩形断面の環状の真空チャンバー及び真空チャンバーに電子ビームを放出する電子銃を備え、また、内側から順に円筒形の加速用磁極61、矩形断面の環状の収束用磁極62、矩形断面の環状のリターンヨーク63の3つを同心円状に配置して円盤状に構成して、真空チャンバーと同一の中心軸をもって真空チャンバーの両側に対称に配置される1対の電磁石を備え、また加速用磁極61の周囲に巻かれて、加速用磁極61を励磁する加速用コイル70、及び収束用磁極62の周囲に巻かれて、収束用磁極62を励磁する収束用コイル40を備えた電磁波発生装置の、加速用コイル70と、この加速用コイル70に電力を供給する加速用電源とを接続する給電線を、加速用磁極61の中心軸に設けた貫通孔を通して取り出す。 (もっと読む)


粒子加速のための磁石構造体は、電流が通る、超伝導材料[例えば、Al5種液晶構造を有するニオブスズ(NbSn)]の連続的な経路を含む少なくとも2つのコイルを含む。コイルはボビン内に装着され得、ボビンとコイルとは一緒になってコールドマス構造体を形成する。コイルはクライオクーラを介してそれらの超伝導温度まで冷却される。半径方向張力部材がコールドマス構造体を中心に保持するために、該コールドマス構造体に結合され、その結果、コールドマス構造体は中心軸の周りに実質的に対称であり、その上に作用する磁力によってアラインメントの外に引っ張られない。ワイヤはコイルの周りに覆われ得、電圧が印加され得、部分的に超伝導の条件においてコイルの動作を防ぐためにコイルを急冷する。磁石ヨークは該コールドマス構造体を囲み、部分的にそれらの間に加速チャンバを部分的に画定する1対の極を含む。
(もっと読む)


経路に沿って移動する荷電粒子源を備えた放射線源を開示する。ビームが衝突すると放射を生成するターゲット材料が、経路に沿って配置されている。ターゲットに衝突する前のビームを偏向させるために磁石が設けられている。この磁石は、時間に対して変化する磁場または定常磁場を生成ことができる。定常磁場は、ビームにかけて空間的に変化する。磁石は電磁石または永久磁石であってよい。或る例では、ビームを偏向させることにより、ビームが複数の軸に沿ってターゲットに衝突する。別の例では、ビームの各部分が異なった形で偏向される。そのため、線源は、走査する対象物を均等な放射線によって照射することができる。荷電粒子は電子または陽子であってよく、また放射はX光線またはガンマ光線放射、または中性子であってよい。このような線源を組み込んだ走査システム、放射の生成方法、および対象物の検査方法も開示している。
(もっと読む)


【課題】磁場が安定するまでの時間遅れを短縮することができる。
【解決手段】磁場を発生する磁極6a,6b及びこの磁極6a,6bに設けたリターンヨーク7a,7bを有する複数の電磁鋼板5を積層して構成した磁心2と、磁極6a,6bを励磁するコイル3,4とを備え、複数の電磁鋼板5のうちの少なくとも1つの電磁鋼板5に、磁極6a,6b側で閉塞し、磁極6a,6b側と反対側で開放したスリット8を少なくとも1つ形成する。 (もっと読む)


1 - 17 / 17