説明

Fターム[2G085CA24]の内容

粒子加速器 (3,302) | 動作(制御、運転、測定) (565) | 変量、変数(制御対象量、測定量) (291) | 動作のタイミング、順序 (31)

Fターム[2G085CA24]に分類される特許

1 - 20 / 31


【課題】電子ビームの電流値の瞬時値を測定しなくても、所要のバケットに電子ビームを追加入射して電子ビームの電流値を略一定に維持可能なシンクロトロンのタイミング制御装置を提案する。
【解決手段】タイミング制御装置5は、トリガ信号tを受け取ると電子ビームを出力する電子銃6と、ビーム許可信号eおよびバケット信号bを受け取るとバケット信号bが指定するバケット番号へ電子ビームを出力するよう電子銃6へトリガ信号tを出力するトリガ発生装置11と、を備えるシンクロトロン1に接続し、予め定める時間間隔毎にビーム許可信号eおよびバケット信号bをトリガ発生装置11へ出力する。 (もっと読む)


【課題】直線加速器の運転周期に対する最短周期制限を維持したまま円形加速器に対する荷電粒子ビームの入射を任意のタイミングで行うことを可能として照射時間を短縮し、治療時間を短くする荷電粒子ビーム発生装置、荷電粒子ビーム照射装置及びそれらの運転方法を提供する。
【解決手段】加速器機器制御装置210はビーム利用系制御装置400からのビーム出射要求信号によりシンクロトロン200の運転を制御する。制御装置400はシンクロトロン200の出射完了後に次の運転サイクルの入射タイミングを知らせるタイミング信号を発生し、直線加速器111の運転タイミングを変更して入射タイミングに合致させる。 (もっと読む)


【課題】セクターサイクロトロンの電磁石配列において、誘導電圧により荷電粒子ビームを加速する誘導加速セクターサイクロトロンを提供し、さらにクラスターイオンも効率的かつ現実的に繰り返し加速できる荷電粒子ビームの加速方法を提供する。
【解決手段】セクターサイクロトロンのセクター電磁石配列と、前記セクター電磁石間のギャップの真空チャンバーに接続し荷電粒子ビームに誘導電圧を印可する誘導加速セルとからなり、前記導加速セルを通過する荷電粒子ビームに同期して荷電粒子ビームを進行方向に加速する正の誘導電圧を荷電粒子ビームに印加することを特徴とする誘導加速サイクロトロンの構成とした。さらに、その誘導加速サイクロトロンを用いて荷電粒子ビームを加速し、クラスターイオンの加速も可能とした。 (もっと読む)


【課題】ビーム取り出しの高速ON/OFFが可能な環状加速器、ならびにそれを用いた、柔軟な照射に対応可能な粒子線治療システムを提供する。
【解決手段】上記課題を解決する本発明の特徴は、周回する荷電粒子ビームを加速・減速する環状加速器200と、環状加速器を制御する加速器制御装置501とを備え、環状加速器200は、荷電粒子ビームのビーム軌道上に、少なくとも1台の六極電磁場成分発生装置26と、この六極電磁場成分発生装置26の設置位置での荷電粒子ビームのビーム軌道を変位させる少なくとも1台の軌道偏向電磁石とを有し、加速器制御装置500は、六極磁場成分発生装置26を励磁して環状加速器200から荷電粒子ビームを取り出している期間に、軌道偏向電磁石の励磁を開始するように制御することにある。 (もっと読む)


【課題】放射光発生装置において、電子周回部の周長又はその一部を測長し、その変化量から放射光パルス時間を制御する装置及び方法を提供。
【解決手段】入射した電子ビームを加速し偏向電磁石7により電子周回部を周回させるエネルギー回収型リニアック1と、前記電子周回部に設けた複数の電磁石からなる周長補正用シケイン10と、偏向電磁石7で発生した放射光を2台のスライド移動可能なステージに設置した回転ミラーに斜入射させることにより光軸を変えずに放射光の光路長を変化させる光学遅延機構11とからなる。 (もっと読む)


【課題】スポットスキャニング照射で治療精度を容易に向上できる粒子線治療システムを提供する。
【解決手段】粒子線治療システム100は、シンクロトロン200とビーム輸送系300と照射装置500から構成される。制御装置600は、照射装置500に荷電粒子ビームを供給する際には出射装置26に印加する高周波電力をONし、荷電粒子ビームの供給を遮断する際には出射装置26に印加する高周波電力をOFFした後に、シンクロトロン200に設置した電磁石の励磁量を変化させて安定限界を広げ荷電粒子ビームの出射を停止し、次に荷電粒子ビームの供給を再開する前に安定限界を狭め荷電粒子ビームの一部を出射し、該荷電粒子ビームをビーム輸送系300に設置した電磁石で遮断する。 (もっと読む)


【課題】簡単な制御で高周波の非正弦波の加速電圧を加速空洞に印加しビーム損失を改善する高周波加速装置を得る。
【解決手段】高周波の正弦波信号を出力する第1加速電圧信号生成装置6aと、任意波形生成器18により高周波の非正弦波信号を出力する第2加速電圧信号生成装置6bと、前記高周波の正弦波信号と前記高周波の非正弦波信号を切り替える加速電圧信号切替器7と、この加速電圧信号切替器7への切替えタイミング信号を発生する制御信号発生装置8と、この制御信号発生装置8の切替えタイミング信号により加速電圧信号切替器7で切り替え選択された前記高周波の正弦波信号と前記高周波の非正弦波信号のいずれかの信号を増幅し、加速電圧として加速空洞4に印加する電力増幅器5とを備えた。 (もっと読む)


【課題】荷電粒子照射システムにおいて、ビーム走査とエネルギースタッキングにより動く照射対象を照射し、一様な線量分布を形成したいニーズがある。
【解決手段】目標ビーム電流値を設定してイオンビームを出射する荷電粒子ビーム発生装置1と、走査電磁石23,24及びエネルギーフィルタ26を有し、イオンビームを出射する照射装置21と、照射対象の位置を測定し、照射対象の移動によって時間変化する信号を出力する監視装置66を備え、監視装置から出力される信号に基づいて、イオンビームの出射タイミングを決定し、イオンビームのエネルギーを順次変更して各エネルギーでリペイント照射することで、上記課題を解決する。 (もっと読む)


【課題】簡単な構成と制御で非正弦波の加速電圧を発生させ、荷電粒子ビームを加速する円形加速器を得る。
【解決手段】円形加速器において、偏向電磁石13に通電する電磁石電源22は、通電電流値の時間変化波形I(t)データと、これに対応して偏向電磁石13で発生する偏向磁場強度Bの時間変化波形B(t)データとの間の、予め求められたI(t)/B(t)相関データに対応し、クロック信号と同期して前記I(t)データに対応する電流の時間変化波形I(t)を出力し、高周波加速装置15に入力する高周波電圧を出力する高周波加速電源20は、前記B(t)データに対して荷電粒子ビームを所定の軌道に維持できるエネルギーEの時間変化波形E(t)データで定められるエネルギーに対応した加速に必要な非正弦波電圧の時間変化波形V(t)を前記クロック信号と同期して出力する。 (もっと読む)


【課題】荷電粒子線の照射状態/非照射状態の切替の高速化を図ると共に、出射される荷電粒子線の安定化を図ることが可能な荷電粒子線照射制御装置及び荷電粒子線照射方法を提供することを目的としている。
【解決手段】荷電粒子線の照射状態の加速電圧を基準加速電圧とし、加速電圧を、基準加速電圧より大きい又は小さい設定加速電圧に切り替えることで、荷電粒子線の軌道を変更して、他の物体に荷電粒子線R0を衝突させ、荷電粒子線を非照射状態とする。加速電圧を大きく又は小さく切り替えるだけで、非照射状態とすることが可能であるため、照射状態/非照射状態の切替の高速化を図ることができる。また、イオン源21のアーク放電のON/OFF制御を行う必要がないため、アーク放電の立ち上がりにおける不安定さの影響を受けることがなく、荷電粒子線の安定化を図ることができる。 (もっと読む)


【課題】シンクロトロン内の蓄積ビームを効率良く出射・利用でき、かつ照射線量の平坦度を担保することができる荷電粒子ビーム照射システムおよび荷電粒子ビーム出射方法を提供する。
【解決手段】シンクロトロン13の運転サイクルにおける出射制御期間の直前にシンクロトロン内を13周回しているイオンビームの蓄積ビーム電荷量Qm0を測定する計測手段15と、イオンビームの蓄積量の測定結果Qm0に基づいてイオンビームの全量が予め設定した出射制御時間Texの終了に合わせて出射し終わるようにイオンビームの出射を制御するビーム出射制御手段20,24,28,29とを設ける。照射装置がRMW32を備える場合、蓄積ビーム電荷量の基準値に対する測定値の割合Qm0/Qs0と、出射制御時間Texに対する実際のビーム出射時間の割合Tb/Taに応じて出射用高周波電圧の振幅値を制御する。 (もっと読む)


【課題】電磁石励磁電源の出力電流の微調整や出力値を定数倍する際、励磁電源に入力される電流パターンデータの変更を、電源を停止することなく行う。
【解決手段】電流パターン制御装置20からの信号を入力する電流パターン発生器1の出力する信号を基に、制御される電源本体10の電流パターンデータが、基準データメモリ部5に格納されている基準データと、定数レジスタ4に格納されている所定の定数が読み出され乗算されることによって作成される。 (もっと読む)


本発明は、癌腫瘍の荷電粒子照射と併用する荷電粒子ビーム抽出方法及び装置を有する。そのシステムは、高周波空洞システムを使用して荷電粒子の流れのベータトロン振動を誘導する。荷電粒子の流れの十分な振幅変調によって、荷電粒子の流れは箔などの部材を叩く。箔は荷電粒子の流れのエネルギーを低下させ、シンクロトロン130内の荷電粒子の流れの曲率半径が十分に小さくし、エネルギーが低下した荷電粒子の流れを最初の荷電粒子の流れから物理的に分離することができる。次に、物理的に分離された荷電粒子の流れは、供給される磁場及び偏向器の使用によって、シンクロトロン130から取り除かれる。 (もっと読む)


本発明は、癌腫瘍に対する荷電粒子照射治療と併用されるX線方法及び装置を有する。そのシステムは、陽子ビーム癌治療システムの陽子ビーム経路と実質的に同じ経路に位置し、長い寿命を有し、及び又は、患者の呼吸と同期するX線を使用する。そのシステムは、陽子ビーム経路に近接したところに配置されたX線発生源を叩く電子ビームを生成する。陽子ビーム経路の近傍にX線を発生することによって、実質的に陽子ビーム経路であるX線経路が生成される。そのシステムは、発生されたX線を用いて、癌腫瘍のまわりの局部的な体の組織範囲のX線画像を収集し、そのX線画像は、陽子ビーム経路に対する体の位置合わせを細かく調整すること、及び又は陽子ビーム経路を正確且つ精密に目標の腫瘍に制御すること、に使用できる。 (もっと読む)


【課題】加速パターンの切替操作を1つのビームサイクル内で速やかに行える粒子加速器の制御装置を提供することである。
【解決手段】スーパーサイクルパターンメモリ4は、電磁石電源群1及び電磁波発生装置2に設定値を送るパターンメモリ群に対する複数のパターンデータ及び実行順序を記録し、タイミング信号発生装置6はスーパーサイクルパターンメモリ4に対してパターンデータ及び実行順序の切替タイミング信号を発生し、パターンメモリ群3に対する複数のパターンデータ及び実行順序を切り替える。整合判定部7は、パターンメモリ群3のパターンデータの切り替えが完了したことを判定し、パターンメモリ群3のパターンデータの切り替えが完了したことを確認して加速運転を継続する。 (もっと読む)


【課題】
スポットスキャニング法などの高精度な粒子線治療に好適な照射ビームを実現する。
【解決手段】
上記課題を達成するための粒子線治療システムは、荷電粒子ビームを所定のエネルギーまで加速し、安定限界を越えた前記荷電粒子ビームを出射するシンクロトロンと、前記荷電粒子ビームを照射対象に照射する照射装置と、前記シンクロトロンから出射した前記荷電粒子ビームを前記照射装置に輸送するビーム輸送系と、前記シンクロトロンを周回する前記荷電粒子ビームの一部を除去した後、周回する他の前記荷電粒子ビームを前記シンクロトロンから出射して前記照射装置に輸送するように制御する制御装置を有する。 (もっと読む)


荷電粒子ビーム移送システムおよび線形加速器のための方法は、荷電粒子源と線形加速器との間に、加速軸に沿って直列に設けられた2つの電極を有するレンズスタックを含む。粒子源から荷電粒子束(つまり、粒子ビーム)を生成して抽出した後、2つの電極間の電位差が時間的にランプされ、粒子ビームは加速器で生成される加速パルスのパルス幅よりも短くなるように縦方向に圧縮される。荷電粒子束を横方向に集束し最終的なビームのスポットサイズを粒子ビームの電流およびエネルギとは独立に制御するための追加的な電極をレンズスタックに設けてもよい。複数の個々にスイッチ可能なパルス形成線を有する進行波加速器の例では、加速電場の物理的なサイズが荷電粒子束よりも長くなるように隣接する複数の線を同時にトリガすることによって、および、交替位相集束が行われるようにパルス形成線のトリガタイミングを制御することによって、ビーム移送が制御されうる。 (もっと読む)


【課題】交流電流検出器の特性によるパルス電流の検出誤差を補正して、高精度にパルス電流を検出する。
【解決手段】パルス電流の指令波形(71)と交流電流検出器5の出力のいずれか一方をパルス電流の通電期間に合わせて積分又は擬似積分し(83)、該積分値を交流電流検出器の出力に設定された比率で加算し(84)、該加算値にパルス電流の休止期間において保持した前記交流電流検出器の出力を加算して(82)、電磁石3に通電されたパルス電流の検出値とする。 (もっと読む)


【課題】主電磁石電源のリップルによってはベータトロン振動の安定領域境界が変動し出射されてしまうという課題を解決する荷電粒子ビーム加速器及びその荷電粒子ビーム加速器を用いた粒子照射システムの提供。
【解決手段】周回軌道からのビーム出射は、安定領域境界を変化させる手段が出射のタイミングで運転されるとともに、RFKO機器(高周波発生装置)8の高周波信号発生部は、周回ビーム中心付近の荷電粒子を共鳴状態にする周波数f1から、安定領域境界内のほぼ最大振幅の荷電粒子を共鳴状態にする周波数f2で掃引され、かつf1>f2の振幅変調波形で制御される。 (もっと読む)


【課題】出射されるイオンビームの強度制御を簡素な装置構成で実現できる荷電粒子ビーム出射方法及び粒子線照射システムを提供することを課題とする。
【解決手段】荷電粒子ビームを加速して出射するシンクロトロン3と、シンクロトロン3から導かれた荷電粒子ビームを出射する照射装置32と、シンクロトロンの運転サイクルにおける出射制御区間で、シンクロトロンから出射する荷電粒子ビームのビーム強度を制御する第1のビーム強度変調手段14と、運転サイクルにおける出射制御区間に含まれる複数の照射区間のそれぞれにおいてビーム強度を制御する第2のビーム強度変調手段15とを備えたことによって、上記課題を解決する。 (もっと読む)


1 - 20 / 31