説明

Fターム[2H079EA03]の内容

光の変調 (22,262) | 本体構造 (2,367) | 導波路型 (1,844) | チャンネル型 (1,372)

Fターム[2H079EA03]の下位に属するFターム

Fターム[2H079EA03]に分類される特許

81 - 100 / 366


【課題】 電極間の光導波路が電気分離され、かつ、単純な構成で電極容量を低減可能な半導体光素子を提供する。
【解決手段】 基板101上に下部クラッド層102、活性層103、上部クラッド層105が前記順序で積層され、上部クラッド層105の一部が除去されて形成されたリッジ導波路107の上部クラッド層105上に、その方向に沿って断続的に上部電極109a、109bが配置され、上部クラッド層105より電気抵抗率の高い半導体の高抵抗層108は、上部クラッド層105における前記両上部電極間の領域113を覆うように形成され、かつリッジ導波路107側方に延び、高抵抗層108上に配置された引き出し電極111により上部電極109aに電気的に接続されるパッド電極110は、高抵抗層108上のリッジ導波路107から離れた位置に配置されていることを特徴とする半導体光素子100。 (もっと読む)


【課題】本発明は、従来技術による光パルスシンセサイザが離散的な透過スペクトルを有する、ある周波数間隔のモードを独立に制御することは可能であるものの、連続したスペクトルを制御することはできないという問題点を解決する導波路型分散補償回路を提供することを目的とする。
【解決手段】本発明の導波路型分散補償回路は、第1のアレイ導波路回折格子と、第2のアレイ導波路回折格子と、上記2つのアレイ導波路回折格子を結合する位相制御導波路アレイとを備える導波路型分散補償回路において、上記位相制御導波路アレイの導波路本数が、第1及び第2のアレイ導波路回折格子のアレイの導波路本数の2倍以上であることを特徴とする。 (もっと読む)


【課題】従来よりも小型で低損失であり、設計の自由度の高い光導波路を提供すること。
【解決手段】複合光導波路1は、シリカ系コアを有する第1光導波路9と第1光導波路に接合され、Si系コアを有する第2光導波路11とを有し、第1光導波路9は、第2光導波路11において許容される伝播損失に対応した導波路長を有し、第2光導波路11は、第1光導波路9の最小曲げ半径よりも小さい半径を有する急峻曲がり部13を有する。 (もっと読む)


【課題】LN導波路およびPLC導波路を有する光変調器において、熱応力による機械的信頼性の低下を抑制すること。
【解決手段】光変調器100は、LN導波路111及びPLC導波路112で構成されたPLC−LNチップ110と、PLC−LNチップ110を収納するパッケージ140と、パッケージ140のパイプ部140Aを通るファイバ130と、ファイバ1330をPLC112に接続するファイバブロック120とを備える。LN導波路111がパッケージ140に固定されている。パイプ部140A内にはフェルール150が挿入されており、その端面150Aで、ファイバ130の一端が固定されている。ファイバ130の他端はファイバブロック120との接点で固定されている。この二点の間のファイバ130の長さΔLmax(以下「ファイバ自由長」と言う。)が式(2)の関係ΔLmax/Lfiber<0.0125を満たす。 (もっと読む)


【課題】 導波路型光ゲートスイッチに関し、相変化材料部の放熱効率を高めて、相変化材料部のアモルファス化を確実に且つ短時間で行う。
【解決手段】 単結晶コア層と前記単結晶コア層を囲むクラッド層とからなる光導波路に設ける複素屈折率を変化させることによって前記光導波路を伝搬する光の透過量を変化させる相変化材料部を多層構造或いは100nm以下の膜厚にする。 (もっと読む)


【課題】半導体製造プロセスを用いてフォトニック結晶構造を有する各種光デバイスを容易に形成することができるフォトニック結晶半導体デバイスおよびその製造方法を提供する。
【解決手段】n−InP基板11上に下部DBR層1、コア層2、上部DBR層3、誘電体多層膜6が順次積層される。コア層2及び上部DBR層3には膜厚方向に延びる複数の空孔9が形成され、これによりフォトニック結晶構造が実現される。このフォトニック結晶構造は、複数の空孔9に挟まれて空孔9が存在しない線欠陥部10を有し、線欠陥部10が光導波路として機能する。 (もっと読む)


光路は、入力光学信号を伝搬するように構成される。複数の電極は、光学信号に関して複数の離散的位相偏移を生成するように構成される。出力光学信号は、複数の離散的位相偏移の和だけ入力光学信号に対して位相偏移される。
(もっと読む)


結合非対称量子閉じ込め構造(300)は、量子井戸または量子ドットのような、第1の量子閉じ込め構造(302)および第2の量子閉じ込め構造(322)を含み、第1および第2の構造は、幅(320、324)のような少なくとも1つの物理的な寸法が異なり、連続して結合される。結合された構造(300)は、光信号の遅延および/または周波数に影響を与えることができ、フォトニック集積回路のコンポーネントとして使用されうる。第1および第2の構造(320、322)は、共通の基板(311)上に形成されうる。 (もっと読む)


【課題】 光機能導波路に関し、高度な加工技術を要することなく、無害なニオブ酸リチウム基板を用いた光機能導波路を小型化且つ高機能化する。
【解決手段】 ニオブ酸リチウム基板と、前記ニオブ酸リチウム基板の表面上に前記ニオブ酸リチウム基板とは異なった材料で形成されたストライプ状の異種材料光導波路と、前記ニオブ酸リチウム基板の前記異種材料光導波路に対向する表面側に前記異種材料光導波路中を伝搬する光が漏れ出して形成された基板内光導波部分、或いは、前記異種材料光導波路に対向する表面側に形成したTi若しくはプロトンを導入した基板内光導波路のいずれか一方と、前記異種材料光導波路と、前記基板内光導波部分或いは前記基板内光導波路のいずれか一方とに変調電圧を印加する第1の電極と第2の電極とで光機能導波路を構成する。 (もっと読む)


【課題】電圧を印加することにより屈折率が可変な半導体コア領域と屈折率が可変ではないコア領域との接続部において、屈折率が可変な半導体コア領域から屈折率が可変ではないコア領域を経由した不要なリーク電流を低減することが可能な光学素子を提供する。
【解決手段】本発明の光学素子WG1は、一端部がコア1の外周部に達する第1ギャップ部31と、第1ギャップ部31の他端部から前記光の光軸を挟んで互いに反対方向に分岐し、それぞれがコア1の外周部に達する第2ギャップ部21a及び第3ギャップ部21bと、を有し、第1ギャップ部31を挟んで対向する2つの分離領域A,Bの一方が第1導電型、他方が第2導電型の半導体コア領域32,33をそれぞれ部分領域として含み、この2つの半導体コア領域32,33に電圧印加用の電極が接続されている。 (もっと読む)


【課題】コアを光の導波方向に分割してそれぞれ独立に屈折率を調整しようとした場合に、分割されたコア間に発生する光の導波方向のリーク電流を低減することが可能な光学素子を提供する。
【解決手段】半導体のコア1をブロッキング領域13,14,17,18によって複数の領域に分離する。光の導波方向において対向配置された導電性コア11,12をそれぞれP型、N型とし、それとブロッキング領域を挟んで対向する導電性コア15,16をそれぞれP型、N型とする。導電性コア11と導電性コア15との間に配置するブロッキング領域13をN型とし、導電性コア12と導電性コア16との間に配置するブロッキング領域14をP型とする。 (もっと読む)


【課題】安定した温度特性を有する光回路を実現する。
【解決手段】光リング共振器は、第1リングと第2リングと第3リングとを備えた平面導波路型光リング共振器であって、第2リングの光路上に配置された第1熱光学位相シフタと、第3リングの光路上に配置された第2熱光学位相シフタとを備える。第2リングの光路長は第1リングの光路長よりも長い。第3リングの光路長は第1リングの光路長よりも短い。 (もっと読む)


【課題】電圧を印加することにより屈折率が可変な半導体コア領域と屈折率が可変ではないコア領域との接続部において、屈折率が可変な半導体コア領域から屈折率が可変ではないコア領域を経由した不要なリーク電流を低減することが可能な光学素子を提供する。
【解決手段】光学素子WG1のコア1は、第1導電型の第1半導体コア領域32と、第1半導体コア領域32とギャップ部40を挟んで対向配置された第2導電型の第2半導体コア領域33と、第1半導体コア領域32と光の導波方向において隣接する第2導電型又は無極性の第3半導体コア領域22と、第2半導体コア領域33と光の導波方向において隣接し、第3半導体コア領域22とギャップ部40を挟んで対向配置された第1導電型又は無極性の第4半導体コア領域23と、を部分領域として含み、第1半導体コア領域32と第2半導体コア領域33とに電極が接続されている。 (もっと読む)


【課題】
基本モードの損失を抑制しながら、効率的に高次モードを減衰させることが可能な光導波路、所謂、低損失かつ単一モードの光導波路を有する光導波路素子を提供すること。
【解決手段】
高屈折率のコアと、該コアより低屈折率のクラッドからなり、少なくとも複数の導波モードを有する光導波路を備えた光導波路素子において、該光導波路の長手方向の一部もしくは全長に渡り、該光導波路の外側の片側もしくは両側に、該光導波路における基本モードと2番目のモードとの間の実効屈折率に設定された導波手段が配置され、該導波手段で高次モード光を除去し、該光導波路にシングルモード光を残すことを特徴とする。
好ましくは、該光導波路はリブ導波路構造23であり、該導波手段は該リブ導波路構造のコア部の高さより低いスラブ導波路構造24であることを特徴とする。 (もっと読む)


本発明は、コンパクト性が高く且つ光波及び電波の適合性に利するように改良された電気光学変調の素子、デバイス及びシステム、並びに製造方法に関する。本発明によれば、前記素子は、導波路(690)のアーキテクチャを備えており、そして、制御電気信号の進む経路の長さ(L609)に対して、光束の進む経路の長さ(L611)が、光束と電気信号との伝播速度(V609,V611)の差を低減又は補正するように決定された差を有するように、前記導波路を配置する。特に、変調領域は光束の経路を含み、前記光束は、これらの制御要素の少なくとも2つから出ている少なくとも2つの欠刻を連続的に通過し、そして、それ自体巻かれている。このようにして、前記光束経路は、例えば、この制御信号とこの光束との間の相互作用の第一領域(R1a)と第二領域(R2a)との間で、電気信号が進む長さより大きい長さを備えている。
(もっと読む)


【解決手段】 ウェハ貼り合わせ技術を用いる光変調器を提供する。ある実施形態に係る方法は、シリコン・オン・インシュレータ(SOI)ウェハにエッチングを実施して、SOIウェハの第1の表面にシリコン導波路構造の第1の部分を形成する段階と、結晶質シリコン層を含む第2のウェハであって、結晶質シリコンの第1の表面を持つ第2のウェハを用意する段階とを備える。当該方法はさらに、ウェハ貼り合わせ技術を用いて、薄い酸化物を介して、第2のウェハの第1の表面を、SOIウェハの第1の表面に、貼り合わせる段階を備える。尚、シリコン導波路構造の第2の部分は、結晶質シリコン層にエッチングで形成される。 (もっと読む)


【課題】本発明は、光通信ネットワークの長距離伝送装置において、光ファイバの群速度分散と偏波分散を同時に補償する全分散補償回路を提供することを目的とする。
【解決手段】本発明では、第1のアレイ導波路回折格子によって、光信号を周波数成分に分離し、周波数成分毎に、第1のニオブ酸リチウム導波路を用いた可変位相子により偏光の主軸を回転し、1/2波長板により偏光面を45度回転させ、第2のニオブ酸リチウム導波路を用いた可変位相子により二つの偏光間の位相差を補償し、第2の1/2波長板により偏光面をTMあるいはTEモードに一致させ、第3の可変位相子により、周波数成分間の位相歪を補償し、第2のアレイ導波路回折格子により光信号を多重することにより、全分散補償が可能となる。 (もっと読む)


【課題】再成長が不要である分離溝を形成する光変調器において、分離溝部で損失の増大を抑制することができる光変調器を提供することにある。
【解決手段】導波路構造の活性領域16aに接続して形成され、キャリアバリア層14より上層にある層15の少なくとも一部の幅が、導波路内光伝搬方向にて徐々に狭くなる第1のテーパ部18と、第1のテーパ部に対向し、前記導波路構造の非活性領域に接続して形成され、キャリアバリア層14より上層にある層15の少なくとも一部の幅が、徐々に広くなる第2のテーパ部19とを具備する。 (もっと読む)


【課題】 導波路型光ゲートスイッチ及び多段導波路型光ゲートスイッチに関し、作製上の誤差の影響を受けない、超小型の導波路型光ゲートスイッチを実現する。
【解決手段】 光導波路の一部分の複素屈折率を変化させることによって光の透過量を変化させる導波路型光ゲートスイッチであって、光導波路は、光軸方向において互いに対向する一対のコア層と、一対のコア層の間に配置された相変化材料部と、一対のコア層及び相変化材料部を覆うクラッド層とを有するとともに、相変化材料部に、相変化材料部の相を変化させる相変化手段を設ける。 (もっと読む)


【課題】光変調部と光強度検出部とがモノリシックに集積されているシリコンからなるリブ型導波路構造の集積光デバイスにおいて、光強度の正確な測定ができるようにする。
【解決手段】光強度検出部106を囲うようにスラブ層102に形成された下部クラッド層に達する溝部107を備える。溝部107により、光強度検出部106が、他の領域より、電気的に分離された状態となる。また、溝部107により、モニター導波路のシリコンコア101aも分離されるが、この分離された間に、溝部107によるシリコンコア101aの2つの端部の各々に接続し、互いに離間するシリコンコア111aおよびシリコンコア111bを備える。また、シリコンコア111aおよびシリコンコア111bの間を中心として一部のシリコンコア111aおよび一部のシリコンコア111bを覆うスポットサイズ変換部コア113を備える。 (もっと読む)


81 - 100 / 366