説明

Fターム[2K002DA10]の内容

光偏向、復調、非線型光学、光学的論理素子 (16,723) | 形態 (1,829) | 導波路 (1,108) | ファイバ型 (364)

Fターム[2K002DA10]に分類される特許

61 - 80 / 364


【課題】光デジタル信号だけでなく、光多値信号や光位相変調信号も記録できる光メモリを提供する。
【解決手段】コアの複素屈折率が伝搬光の強度に応じて一時的に変化する非線形光ファイバ6からなり、第1の端面8から第1の光信号が入射する光記録ファイバ12と、第1の光信号が光記録ファイバ12の第2の端面26に到達する前に、第1の光信号の1ビットに対応する光パルスよりパルス幅が狭く、且つ第1の光信号と干渉して、複素屈折率を一時的に変化させることにより、コア4に回折格子を形成する書込み光パルスを、第2の端面26から光記録ファイバ6に入射させる書込み光パルス供給ユニット28とを有する。 (もっと読む)


【解決手段】装置および方法は、光ファイバ(710、718)における誘導ラマン散乱を使用することでレーザスペックルを低減する。ファイバコア径および長さは所望の出力光が得られるように選択される。2つの光ファイバ(710、718)を並列に合成することによって、および、ビームスプリッタとしての回転可能波長板(704)および偏光器(706)の助けにより各経路の光量を調整することによって、調整可能デスペックラが形成される。均質化デバイス(722)はプロジェクタを照らす。 (もっと読む)


【課題】安価でかつ簡単な構造を有し、所望の発振波長のレーザ光を選択的に反射することが可能なファイバファブリペローエタロンとその製造方法、外部共振器型半導体レーザ、ラマン増幅器を提供する。
【解決手段】それぞれコア部およびクラッド部を有する第1および第2の光ファイバ2、3をそれぞれ挿通させる2つのフェルール4、5と、フェルール4、5を固定し、光ファイバ2、3のコア部の端面同士を光軸方向に所定間隔Δの間隙6を設けて対向させる円筒状のスリーブ7と、を備え、該端面のうちの少なくとも一方が凹状の端面である構成を有している。 (もっと読む)


【課題】高速かつ広帯域に波長を掃引することができ、掃引された波長を順に並べて出射することが可能となる波長掃引光源を提供する。
【解決手段】波長掃引光源であって、
波長掃引された光パルス列を発生させる光パルス発生手段と、
前記光パルス列の強度の一部を取り出すための分岐手段と、
前記分岐手段で取り出した光パルス列の波長を、シフトさせる波長シフト手段と、
前記波長シフト手段によって波長がシフトした光パルス列と、前記光パルス発生手段が発生する光パルス列とを合成し、出射光波長を広帯域化して取り出すためのスイッチ手段と、
前記光パルス発生手段からの光と波長シフト手段からの光が波長軸に沿って順に出射され、前記合成されるパルス列が順に波長掃引された光パルス列になるように、前記スイッチ手段を制御する制御手段と、を有する構成とする。 (もっと読む)


【課題】安定した発振波長のレーザ光を出射するとともに、より安価でかつ簡単な構造を有する外部共振器型半導体レーザとそれを用いたラマン増幅器を提供する。
【解決手段】劈開によって形成された後方端面11aおよび出射端面11bと、後方端面11aから出射端面11bにかけて設けられ、駆動電流が供給されることによって光を発生させる活性層110とを有し、活性層110において発生した光を該出射端面から出射するゲインチップ11と、出射端面11bと光軸方向に所定間隔を設けて対向する端面1aを有してゲインチップ11と直接光結合された光ファイバ1と、を備え、後方端面11aと端面1aとの間に光共振器が形成される。 (もっと読む)


【課題】光学回路を製造する方法を提供する。
【解決手段】光学回路を製造する方法は、a)光学回路によって実行される論理演算を選択する段階と、b)前記光学回路によって実行される前記論理演算を実行するべく1つ又は複数のすべて光学的な論理ゲートによって前記光学回路を設計する段階と、c)個々の論理演算を実行して光学入力信号に基づいて個々のバイナリ出力レベルを具備した光学出力信号を生成するべく共振周波数にチューニングされた強度に依存した屈折率の材料を有する対応した光学共振器を具備する個々の非線形素子によって前記すべて光学的な論理ゲートを形成することにより、前記光学回路を製造する段階であって、前記非線形素子を包含するべくフォトニック結晶を形成することによって実行されている、段階と、を有する。 (もっと読む)


【課題】 出力されるレーザ光の立ち上がり期間短くしつつ、出力されるレーザ光の立ち上がり期間のばらつきを抑制することができるファイバレーザ装置を提供する。
【解決手段】 ファイバレーザ装置100は、種レーザ光源10と、励起光源20と、増幅用光ファイバ30と、制御部60と、出力設定部63と、出力命令部65とを備え、出力命令が制御部60に入力されるとき、制御部60は、予備励起状態と、出力状態となる様に種レーザ光源10と励起光源20とを制御し、予備励起状態においては、レーザ光が種レーザ光源10から出力されず、出力設定部63により設定されるレーザ光の強度に基づく所定の強度の励起光が励起光源20から一定期間出力され、出力状態においては、出力設定部により設定される強度のレーザ光が出力されるように、レーザ光が種レーザ光源10から出力されると共に励起光が励起光源20から出力されることを特徴とする。 (もっと読む)


【課題】 本発明は,外乱の影響を受けにくく,精度を保ちつつ小型で簡便に遅延量を制御できる光制御遅延器,及び分光装置を提供することを目的とする。
【解決手段】 上記の課題は,光を分波する分波器(5)と,分波器(5)により分波された一方の光が入射する第1の波長変換器(1)と,第1の波長変換器(1)により波長が変換されたパルス光が入力される光遅延器(2)と,光遅延器(2)により遅延が与えられたパルス光の波長を変換するための第2の波長変換器(3)とを具備し,光遅延器(2)は,入射光の波長により,入射光に与える遅延量が異なるものであり,分波器(5)により分波された残りの光と,第1の波長変換器(1)に入射され,光遅延器(2)及び第2の波長変換器(3)を経て出力された光との間の遅延時間を制御できる,光制御遅延器により解決される。 (もっと読む)


【課題】すべて光学的なANDゲートを提供する。
【解決手段】すべて光学的なANDゲートは、光学共振器を有し、且つ、バイナリ論理レベルを有する個々のデータを具備した第1及び第2振幅変調光学入力信号を受信するべく構成された非線形素子であって、非線形素子は、第1及び第2光学入力信号の両方がハイ論理レベルを具備している場合にのみ、非線形素子は、ハイ論理レベルを有する光学出力信号として光を出力し、光学入力信号のいずれか又は両方がロウ論理レベルを具備している場合には、非線形素子は、ロウ論理レベルを有する光学出力信号として実質的に光を出力しないように、光学入力信号の少なくとも1つのものの周波数との関係においてチューニングされた共振周波数を具備しており、この結果、光学出力信号は、振幅変調されたバイナリ論理レベルを具備しており、非線形素子は、基板上にリングとして形成されている、非線形素子、を有する。 (もっと読む)


【課題】非線形感受率χ(3)が10−12esu以上と非線形光学特性に優れ、透過率が5%となる吸収端波長が450nm以下であって、良好な非線形性を示す波長帯域が可視波長全域と広く、しかも光吸収が小さく、耐久性に優れ、光強度の減衰が小さく、光応答性の高い、非線型光学ガラスを提供する。
【解決手段】800nmにおける3次の非線形感受率χ(3)の値が1×10−12esu以上で、透過率が5%となる吸収端波長が450nm以下となる、Bi、B及びTeOを必須成分とする非線形光学ガラスであって、好ましくは、酸化物基準のmol%で、Bi:12〜48、B:15〜60、TeO:5〜60、P:0〜15、SiO:0〜20、Nb+Ta:0〜5、ZnO:0〜10、TiO:0〜15、GeO:0〜10を含有する。 (もっと読む)


【課題】伝送性能を向上させること。
【解決手段】光伝送装置は、伝送ファイバにより信号光を伝送する光伝送システムの光伝送装置である。光伝送装置は、パワーモニタと、算出部と、送信レベル決定部と、パワー制御部と、を備える。パワーモニタおよび算出部は、伝送ファイバのラマン利得効率を測定する。送信レベル決定部は、測定されたラマン利得効率に基づいて信号光の入力レベルを決定する。パワー制御部は、決定された入力レベルとなるように、伝送ファイバへ入力される信号光のレベルを制御する。 (もっと読む)


【課題】広い波長帯域内の任意の波長の信号光を波長が異なる変換光として高い変換効率で出力する。
【解決手段】光ファイバ型デバイス1は、第一の波長帯域内に含まれる波長λの信号光を入力し、第二の波長帯域内に含まれて波長λとは異なる波長λの変換光を発生し、ポンプ光を出力するポンプ光源21と、信号光とポンプ光とを合波して出力する光合波器40と、光合波器40により合波されて出力された信号光及びポンプ光を入力して導波し、その導波の間に生じる非線形光学現象によって変換光を発生する光ファイバ10と、を備え、ポンプ光の波長は、2×(1/λ+1/λ−1により求められる波長であり、光ファイバ10の零分散波長は第一の波長帯域内に含まれ、零分散波長における分散スロープが+0.01ps/nm/km以上+0.045ps/nm/km以下であり、光ファイバ10の長さが450m以下である。 (もっと読む)


【課題】高出力、低ノイズの単一の光源から出射される連続スペクトル光をスペクトルスライスし、発生した複数の異なる超短波長信号をfsレベルまで圧縮する全ファイバ構成パルス圧縮技術を提供する。
【解決手段】本願発明は、所定の波長範囲の少なくとも一部に所定の分散を示す高次モード(HOM)ファイバを含み、連続スペクトル光信号源によって導入される分散を補償するようHOMファイバの分散を選択する。連続スペクトル光を従来型の連続スペクトル光源に関連する基底モードからパルス圧縮を実行するために用いるHOMファイバによりサポートされる高次モードに変換すべく入力モード変換器を用いる。連続スペクトル信号の帯域幅をモード変換器の効果的な変換範囲とHOMファイバの所望の分散特性の両方に関わる帯域幅に限定すべくバンドパスフィルタを用いる。 (もっと読む)


【課題】分布ラマン増幅用の励起光パワー増大を抑制しつつOSNRを改善することができる光通信システムを提供する。
【解決手段】光通信システム1では、光ファイバ10が送信局(または中継局)20と受信局(または中継局)30との間の伝送区間に布設されていて、この光ファイバ10により送信局20から受信局30へ光信号を伝送する。通信システム1では、受信局30に設けられた励起光源31から出力されたラマン増幅用の励起光が光カプラ32を経て光ファイバ10に供給されて、光ファイバ10において光信号を分布ラマン増幅する。波長1550nmにおける光ファイバ10の伝送損失および実効断面積は所定の関係を満たす。 (もっと読む)


【課題】短尺な光ファイバで大きな遅延量を発生させ、波長分散と分散スロープの補償が可能である信号光の可変遅延発生装置を提供することにある。
【解決手段】送信機11と受信機12との間に配置された第1の光ファイバ13および第2の光ファイバ14と、送信機と第1の光ファイバとの間に配置され、前記信号光の波長を第1の光ファイバの累積分散値がB(ps/nm)であり、累積分散スロープ値がC(ps/nm2)である波長に変換する波長変換器15と、第1の光ファイバと第2の光ファイバとの間に配置され、第2の光ファイバの分散値がD(ps/nm/km)であり、分散スロープの符号が前記累積分散スロープ値Cと異なる波長の位相共役光に変換する位相共役光発生器16とを具備し、第1,第2の光ファイバが、共に通信波長領域600nm〜1700nmにおいて下に凸となる波長分散特性を有する。 (もっと読む)


インターリーブ・チャープド・アレイ導波路グレーティング(AWG)を用いた光コヒーレント検出器。このAWGは、AWGが光90度ハイブリッドとして機能することを可能にする周期的なチャープパターンを有する。AWGが複屈折材料を使用して実現される場合、AWGは偏光デマルチプレクサとしても機能し得る。一実施形態において、AWGは、波長デマルチプレクサ、各波長分割多重(WDM)信号成分に対する偏光デマルチプレクサ、および各WDM信号成分の各偏光分割多重成分に対する90度ハイブリッドとして同時に機能するように設計されている。
(もっと読む)


【目的】活性層温度をほぼ一定に保つ。
【構成】半導体ゲインチップ11に駆動電流が供給されると,半導体ゲインチップ11の前方端面および後方端面から光が出射する。後方端面からの光はフォトダイオード14に入射して受光電流Imを出力する。受光電流Imは,サーミスタ13の近傍に設けられた薄膜抵抗17に通電され,これによって薄膜抵抗17が加熱される。薄膜抵抗17からの熱がサーミスタ13に伝達される。 (もっと読む)


【課題】 波長多重密度の向上及び雑音光の低減を実現した光スイッチングシステムを提供する。
【解決手段】 光スイッチングシステムは、周波数・偏波情報を生成するテーブル部100と、テーブル部からの周波数・偏波情報に基づいて、互いに波長が異なりかつ各々偏波方向が制御された複数の第1の光信号を生成し多重化して送信信号とする送信部200と、テーブル部からの周波数・偏波情報を利用して、送信部からの送信信号から複数の第1の光信号を夫々分離し、複数の出力パスのうちのいずれかに送出するスイッチ部300とを備える。 (もっと読む)


【課題】パルスエネルギーのレーザーパルス光源を用いて通信波長帯CEOロックを実現し、ファイバレーザーアンプ段を必要としない小型化を実現した光周波数コム安定化光源を提供する。
【解決手段】低パルスエネルギーの光パルス列を出力する光パルス列発生部(10)と、前記光パルス列を用いて、この光パルス列の基本波スペクトル帯域を1オクターブ以上まで拡大した広帯域光を発生させるテルライトPCFを使用した高非線形光学媒質部(11)と、光学素子を簡素化した自己参照型干渉計により遅延機構を必要とせずCEO周波数を検出する検出部(12)と、CEO周波数と外部から入力されるマイクロ波基準周波数とを比較し、この比較結果に基づいて前記レーザー光を制御する帰還制御部(13)とを設けた。 (もっと読む)


光増幅システムおよび技術では、励起光源は、励起パワーを光源波長で提供する。励起パワーは、カスケード型ラマン共振器への入力として送り出される。波長依存損失要素は、それがカスケード型ラマン共振器に先行するように接続される。波長依存損失要素は、光源波長での光パワーを低損失で伝送し、第1のストークス・シフトで高損失を提供するように構成される。波長依存損失要素は、励起光源とカスケード型ラマン共振器との間での光パワーの蓄積を防止し、それによって励起光源に戻る光パワーの後方伝播を防止する。
(もっと読む)


61 - 80 / 364