説明

Fターム[3C081EA27]の内容

マイクロマシン (28,028) | 用途 (3,912) | 分析、反応機器 (501) | μ−TAS (120)

Fターム[3C081EA27]に分類される特許

61 - 80 / 120


【課題】製造が容易、且つ反応や分析の工程数や量を制限しないマイクロ流体システム用支持ユニットの製造方法を提供する。
【解決手段】第一の支持体2の表面に、第一の接着剤層1aを形成するステップと、該第一の接着剤層1aの表面に中空フィラメント501〜508を敷設するステップと、第一の接着剤層1aと中空フィラメント501〜508の上に第二の接着剤層1bを形成するステップと、真空状態において、第二の接着剤層1bの表面に第二の支持体6を接着するステップとを含む。 (もっと読む)


【課題】製造が容易、且つ反応や分析の工程数や量を制限しないマイクロ流体システム用支持ユニットを提供する。
【解決手段】有機材料の板又は金属製の板である第一の支持体2と、この第一の支持体2の表面に設けられた第一の接着剤層1aと、この第一の接着剤層1aの表面に任意の形状に敷設されたマイクロ流体システムの流路層として機能する中空フィラメント501〜508とを備える。 (もっと読む)


【課題】 反応や分析のステップ数や量の制限が緩く、製造が容易であるマイクロ流体システム用支持ユニット、さらに、複雑な流体回路を高密度に実装できるマイクロ流体システム用支持ユニットを提供する。
【解決手段】 第一の支持体と、マイクロ流体システムの流路を構成する、少なくとも一本の中空フィラメントとを備え、該中空フィラメントが前記第一の支持体に任意の形状に敷設され、かつ前記中空フィラメントの内側の所定箇所が機能性を有するマイクロ流体システム用支持ユニットに関する。 (もっと読む)


【課題】製造が容易、且つ反応や分析の工程数や量を制限しないマイクロ流体システム用支持ユニットを提供する。
【解決手段】フレキシブル回路基板又はプリント回路基板である第一の支持体2と、この第一の支持体2の表面に設けられた第一の接着剤層1aと、この第一の接着剤層1aの表面に任意の形状に敷設されたマイクロ流体システムの流路層として機能する中空フィラメント501〜508とを備える。 (もっと読む)


【課題】 ファージ・ライブラリを効率よくしかも安価にスクリーニングするために使用できる方法を提供する。
【解決手段】 チップと、チップ内に配置された流路であって、入口ポートおよび出口ポートと連絡しており、入口ポートから出口ポートへのライブラリの流れを可能にするように働く流路と、チップ上に配置された基板であって、流路のための上部壁として作用するように働く基板と、基板上に配置された受容体であって、ライブラリからのエレメントと相互作用するように働く受容体とを含むシステムが、開示される。 (もっと読む)


【課題】基板内部の少なくとも1つのプラグの内部における反応を誘導する好適な方法を提供すること。
【解決手段】基板の第1流路へ搬送流体を導入する手段(ステップ)と、搬送流体に対して非混和性を持つ少なくとも2つの異なるプラグ流体を1つ以上のプラグ形成領域の第1流路へ導入する手段と、プラグ流体混合物を含む少なくとも1つのプラグを形成するために基板で流体の流れを誘発することを目的として第1流路に圧力を適用(加圧)する手段を備え、プラグ断面積がプラグ形成領域の第1流路断面積と本質的に同一であることを特徴とする、基板内部の少なくとも1つのプラグの内部における反応を誘導する方法。 (もっと読む)


【課題】微少量の流体(おもに液体)をマイクロポンプなどの送液手段を必要としないで、効率的に安定して供給でき、小型で一体構造内に複雑な3次元流路を簡便に作製できるマイクロ流体デバイスおよびその製造方法を提供する。
【解決手段】このマイクロ流体デバイス1は、積層されたシート状部材2〜5で構成され、各シート状部材2〜5は多孔質材に充填材が充填されて流体が透過できない流体非透過部2A,2B,2C,3A,3B,3C,4A,4B,5A,5Bと、多孔質材からなり流体が通過可能な領域である流路6〜11とを有する。流路6〜11が多孔質材で形成されているので、この流路の多孔質構造内の毛管流動によって流体が移動する。よって、気泡などによって流路が閉塞することなく、微少量の流体に対してもマイクロポンプなどの送液手段を必要としないで、効率的に安定して流体を搬送,供給することができる。 (もっと読む)


【課題】特に耐薬品性に優れると共に、通路用空間部を高精度、しかも製造も容易で量産性に優れている構成を提供する。
【解決手段】耐薬品性に優れた基材に設けられた流路を有しているマイクロ化学プラントの製造方法において、前記基材として樹脂粉末を用い、該樹脂粉末中に前記流路形成用中子11を配置した状態で圧縮する予備成形工程と、前記予備成形工程で得られた圧縮体1を焼成すると共に、得られる焼結体1Aから前記中子を焼成時の熱で分解除去して前記通路11aを形成する焼結・中子除去工程とを経ることを特徴としている。 (もっと読む)


【課題】特に耐薬品性に優れると共に、通路用空間部を高精度、しかも製造も容易で量産性に優れている構成を提供する。
【解決手段】耐薬品性に優れた基材に設けられた流路又は該流路を形成する空間部11aを有しているマイクロ化学プラント10の製造方法において、前記基材として樹脂粉末を用いて、該樹脂粉末中に前記流路又は前記空間部形成用中子21を配置した状態で圧縮する予備成形工程と、前記予備成形工程で得られた圧縮体を焼成する焼結工程と、前記焼結工程で得られた焼結体1を所定厚さの板状に切断する切断工程を経ることを特徴としている。 (もっと読む)


【課題】マイクロチャンネルを覆うマスクを必要とせずにレーザ光による接合の可能なマイクロチップの接合方法を提供する。
【解決手段】表面側にマイクロチャンネル11Aが形成された樹脂基板11のマイクロチャンネル11Aが形成された側の面と、樹脂基板12の平坦な面とを接触させて被接合面112とし、レーザ光LAを、樹脂基板12を介して被接合面112に、接合幅SH以上の長さのライン状に、長手方向に略均一な光強度で集光させ、ライン状の集光部LPにより、被接合面112を集光部LPの長手方向に交わる向きに走査して、レーザ光LAの光エネルギによる光融着により被接合面112において樹脂基板11、12の表面同志を接合し、ライン状に集光するレーザ光LAのエネルギが、マイクロチャンネル11A内部においては熱ストレスを生じない程度に分散するように、レーザ光LAのライン状の集光態様を設定する。 (もっと読む)


【課題】比較的簡易な構造によっても密封状態に近い状態で液体試薬を保持することが可能であり、マイクロチップが外的な衝撃を受けた場合や液体試薬保持部の内圧が上昇した場合などであっても、液体試薬が液体試薬保持部から流出することを防止することができるマイクロチップを提供する。
【解決手段】第1の基板が備える溝と第2の基板表面とから構成される流体回路を有し、該流体回路は、液体試薬を収容するための液体試薬保持部を含み、第1の基板は、液体試薬を前記液体試薬保持部内に注入するための液体試薬注入口を有しており、該液体試薬保持部は、液体試薬を流出させるための液体試薬流出口または流出用流路と、液体試薬保持部を、液体試薬注入口を有する第1の区画と、液体試薬流出口または流出用流路とを有する第2の区画とに二分する隔壁とを有し、該隔壁は、第1の区画と第2の区画とを連通させる少なくとも1つの連通口を備えるマイクロチップである。 (もっと読む)


【課題】安価な空気ポンプを用いても、検体や試薬等の液体を正確に送液することのできるマイクロ検査チップおよび送液システムを提供すること。
【解決手段】液体を貯留する液体貯留部に連通する流路の一部に、前記液体の送液速度を減じるための減速手段を備えることにより、安価なポンプを用いても、検体や試薬等の液体を正確に送液することのできるマイクロ検査チップおよび送液システムを提供することができる。 (もっと読む)


【課題】流路や反応容器等に残留する気泡を減少させる。
【解決手段】カバー基板11及びベース基板13が貼り合わされ、その接合面には液体を流す流路17,23と反応容器15が形成されている。両基板の接合面の材質は流路を流れる液体が両基板の接合面に対して90°以上の接触角をもつように選定されている。両基板の少なくとも一方には、流路17,19及び反応容器15とデバイスの端面との間に、凹凸が形成されていることにより空隙が形成されている。この空隙の大きさは気体を通過させ液体を通過させない大きさである。 (もっと読む)


本発明はマイクロ流体チャネルが備えられたマイクロ流体回路素子に関するものであって、マイクロ流体チャネルの両側面にマイクロ流体チャネルの中央部の高さより低い高さのナノ隙間を備えることによって、マイクロ流体チャネルの駆動力を向上させることができ、安定した流体の流れを得ることができる。
(もっと読む)


【課題】 柔軟で自己粘着性を有する樹脂を用いたマイクロサイズの加工方法において、従来のフォトリソグラフィー技術に代わり、エンドユーザーから要求された様々なパターンに対応でき、且つ、複雑な3次元形状も高効率・高精度に加工することができる新らたなマイクロ加工方法を提供する。
【解決手段】 柔軟で自己粘着性のある高分子材料に極低温冷却を適用してガラス転移温度以下に冷却し、ガラス状態として、一刃あたりの切り取り量をサブマイクロスケールにした延性モード切削を適用することにより、機械的切削加工によりマイクロサイズの溝や穴を極めて精度よく形成でき、特に、得られた切削表面が非常に高い平滑性を有したマイクロ流路を形成できる。さらに、常温で任意の形状に弾性変形させて、これを極低温冷却して切削加工を行うことにより、特殊形状を有する溝や穴を形成することができる。 (もっと読む)


【課題】マイクロ混合器内部での液体の流れは、レイノルズ数が非常に小さく、その流れは層流状態を保つ。このため液体を混合する場合には、混合流路内に、凹凸などの固体障害物を設置することで、混合効率を高めることが可能であるが、圧力損失が大きくなる問題が発生していた。
【解決手段】本件発明では、混合すべき複数の液体を混合流路に導くための複数の導管と、混合流路と、混合流路を流れる液体に対して露出配置される気泡と、からなるマイクロ混合器を提供する。またさらに混合流路を形成する流路壁には、気泡を少なくとも一時的に固定する凹部が設けられているマイクロ混合器を提供する。 (もっと読む)


【課題】簡単な流路構成であっても、圧力差に依存せずに微細流路内の液体を所定の位置に送液することが可能なマイクロチップを提供する。
【解決手段】微細流路rと、微細流路rを送液された液体を貯留する貯留部139と、
を有するマイクロチップであって、
貯留部139は、貯留部139に対する上流側の微細流路r1と下流側の微細流路r2とを連通し、断面積が上流側の微細流路r1の断面積よりも小さい側道路139s、を備えていることを特徴とするマイクロチップとする。 (もっと読む)


【課題】効率的に混合、分離作用を行わせることが可能なマイクロ流体コンポーネントの製造方法を提供する。
【解決手段】マイクロ流体コンポーネント1のチャンネル2の内壁にナノ構造体13a〜13cを埋設する。このナノ構造体13a〜13cは、その場成長により形成され、それにより前記チャンネル2の側壁4,5上及び前記下部壁3上に堆積された金属触媒の層となる。さらにマイクロチャンネル2に前記ナノ構造体が形成される前に、基板7の前記表面上を保護カバー11で封止する。封止はカバー11の材料と前記触媒の金属との間に共晶化合物を形成することにより行われ、その触媒は、前記ナノ構造体13a〜13cのその場成長の目的で用いられ、かつ、前記カバー11と接触するように設計された前記基板7の表面上に堆積されている。 (もっと読む)


【課題】従来の改質方法と比較して、より簡単および安定的に表面処理の効果や持続性を向上させる基板の表面処理方法を提供することを目的とする。
【解決手段】被加工物に集束イオンビームを選択的に照射することにより該被加工物のあらかじめ決められた領域に表面改質部を形成する表面改質方法であって、該集束イオンビームの照射は表面改質用ガスの雰囲気中においてなされ、および該集束イオンビームの照射によって該表面改質用ガスの成分を該被加工物の内部に導入することを特徴とする表面改質方法。 (もっと読む)


【課題】流路内の流体を外部から視認することのできる流体素子及び積層構造体の製造方法を提供する。
【解決手段】このマイクロリアクタ1は、第2の基板として設けられるガラス基板10に対して、電鋳法により形成された複数の導電膜12A〜12Dを順次常温接合することにより形成されている。ガラス基板10と導電膜12Aは、ガラス基板10に接合膜として設けられるCr膜11を介して常温接合されており、導電膜12Aに形成された流路121がガラス基板10の上面10a側から視認できるようになっている。導電膜12A〜12Dは、それぞれ流体を通過させるための孔や溝等の形状の流路パターンを有しており、積層されることによって積層体内に流体の入口から出口にかけて連結された3次元的な流路を形成するように構成されている。 (もっと読む)


61 - 80 / 120