説明

Fターム[3G071EA06]の内容

タービンの制御 (4,929) | 調節部 (286) | 関数発生器を有する (18)

Fターム[3G071EA06]に分類される特許

1 - 18 / 18


【目的】2個の制御系統の両方が故障した場合であっても、それらの故障の程度(故障レベルの大小)を考慮してエンジン制御を継続するようにした航空機用ガスタービン・エンジンの制御装置を提供する。
【解決手段】2個の制御系統(Channel A,B)がそれぞれ、入力された出力信号に基づいてセンサと機器に異常があるか否か検知し、センサと機器のいずれかに異常があると検知されたとき、異常を有するセンサと機器の種類および個数に基づいて自己の制御系統の故障の程度(故障レベルの大小)を判定し、判定された故障レベルを他方の制御系統に送信すると共に、他方の故障レベルを受信し、自己の故障レベルと他方の故障レベルを比較し、故障レベルにおいて小さい(より健全な)側の制御系統の指令値を機器に出力するように構成する。 (もっと読む)


【課題】タービンロータに発生する熱応力と、熱膨張による車室の伸びとタービンロータの伸びとの差である伸び差を規定値以下に抑えてタービンを起動することができるタービンシステムを提供する。
【解決手段】本発明によるタービンシステム1は、車室2と、この車室2内に回転自在に取り付けられたタービンロータ3とを有するタービン4と、このタービン4の車室2の上流側に連結された主蒸気管5とを備えている。この主蒸気管5に、車室2に流入する蒸気の流量を調節する制御弁6が設けられ、タービンロータ3に発電機7が連結されている。また、制御弁6に、制御弁6を操作する操作量を求めて制御弁6を制御してタービン4を起動させる起動制御装置10が接続されている。 (もっと読む)


【課題】蒸気発電設備が商用電力系統から切り離されたときに、多量の余剰蒸気を速やかに処理し、スムーズに自立運転に移行できるようにする。
【解決手段】蒸気タービン3に蒸気を供給して発電し、その発電電力を自家消費するとともに余剰電力を商用電力系統に供給する蒸気発電設備において、蒸気タービン3による発電電力から自家消費電力を減じて余剰電力量を算出する演算(余剰電力量算出手段11による演算)と、余剰電力量を自立運転移行時に余る余剰蒸気流量に変換する演算(余剰蒸気流量変換手段12による演算)と、余剰蒸気流量を、高圧蒸気だめから余剰蒸気を蒸気タービン系統外に流出させるタービンバイパス弁5の開度に変換する演算(弁開度変換手段13による演算)とを反復して常時行い、商用電力系統から切り離されたときに、タービンバイパス弁5の開度を、その直近の開度に直近の前記演算により求めた開度を加算した開度に設定して自立運転に移行する。 (もっと読む)


【課題】高蒸気条件である蒸気タービンプラントでも、抽気に伴うタービントリップの発生を避けてタービンの運転継続を第1としつつ、抽気蒸気の安定的な供給を可能とする抽気制御を行えるようにする。
【解決手段】蒸気タービンの中間段で主蒸気の一部を抽気し、抽気蒸気を需要先に供給する抽気系を備え、抽気状態を制御する抽気制御システムを備えた蒸気タービンプラントについて、抽気系に、抽気蒸気流量計と抽気蒸気止め弁を設け、抽気蒸気の流量に関して警報流量と抽気蒸気停止流量を制限流量値として設定でき、抽気蒸気流量計からの抽気蒸気流量計測値が警報流量に達した場合に警報を出し、警報の一定時間後に抽気蒸気止め弁を一定の開度として抽気蒸気流量を制限した状態とし、抽気蒸気流量を制限した状態で抽気蒸気流量が増大し、抽気蒸気流量計測値が抽気蒸気停止流量に達した場合に抽気蒸気止め弁を全閉として抽気を停止させる。 (もっと読む)


【課題】蒸気タービンシステムにおいて動作パラメータの制限値の超過を判断する方法およびシステムを提供する。
【解決手段】動作パラメータに関連する測定データ220を受信し、所定の時間期間を通して受信したデータ220の変化速度が所定の制限値を超えた場合に制限値超過と判断するステップと、制御値超過と判断された場合に制御動作を行うステップとを含む。測定データ220を受信するステップは、前記蒸気タービンシステムの蒸気タービンに流入する蒸気の温度/温度に関連するデータを受信すること含むことができる。 (もっと読む)


【課題】比例・積分制御の時定数を長めに設定しても、要求負荷設定値の変化に対する発電機出力の追従を速くすることができるガスタービン負荷制御装置を提供する。
【解決手段】負荷設定手段、第1のバイアス設定手段と、第2のバイアス設定手段と、目標出力設定手段などを備え、目標出力設定手段では、要求負荷設定手段から入力する要求負荷設定値の増加に応じて負荷設定手段にて負荷設定値を徐々に増加させているときには、LDSETにプラス側バイアス値を加算することにより目標出力を設定し、要求負荷設定値の減少に応じて負荷設定手段にて負荷設定値を徐々に減少させているときには、LDSETからマイナス側バイアス値を減算することにより目標出力を設定する構成とする。 (もっと読む)


【課題】 負荷急減時において、高圧タービンバイパス蒸気量の過剰な増加によって、高圧タービンの排気温度上昇によるタービン保護動作を回避する。
【解決手段】 高圧タービン5をバイパスさせる主蒸気量を制御する高圧タービンバイパス弁22と、中圧タービン11と低圧タービン13をバイパスさせる高温再熱蒸気量を制御する低圧タービンバイパス弁36とを備え、高圧タービンバイパス弁の開度を負荷指令値に基づいて制御し、低圧タービンバイパス弁の開度を高圧タービンの前段部の圧力に対応する再熱蒸気圧力に基づいて制御する蒸気タービンプラントにおいて、負荷急減時に高圧タービンの加減弁4が絞り込まれて主蒸気圧力が上昇しても、高圧タービンバイパス弁の開度を開度上限に抑えて高圧タービンに主蒸気をある程度流通させて、高圧タービンの排気温度の過度な上昇を抑えることにより、高圧タービン排気温度の異常上昇に起因するタービン保護動作を回避する。 (もっと読む)


【課題】原子力発電プラントのタービン制御装置において、負荷要求信号の変動や、再循環流量制御自動信号のオン/オフ切り替えに伴う変動を抑制することで、系統に対する影響を抑制できる、圧力設定点変更回路を備えたタービン制御装置を提供する。
【解決手段】入力信号に一次遅れ要素を持つインパルス応答特性を与え、再循環流量制御自動信号が”オフ”の場合にはその出力を”0“に切り替えて出力する前段関数演算部2と、再循環流量制御自動信号が”オン“の場合は前段関数演算部2の出力に、”オフ“の場合は”0“に切り替えて出力する切替回路3と、入力信号に一次遅れ要素を持つインディシャル応答特性を与えて出力する後段関数演算部4とを直列に構成する圧力設定点変更回路1をタービン制御装置10に備える。 (もっと読む)


【課題】 蒸気タービンからの抽気蒸気を他の設備に供給する場合に、タービン翼前後差圧によってタービン翼に加わる応力が許容値を超えて上昇することを防止するとともに、他の設備への抽気蒸気供給をできるだけ停止しないようにする。
【解決手段】 蒸気タービン3により発電機を駆動するとともに、前記蒸気タービン3から抽気流量調節弁4を介して抽気する蒸気タービン発電プラントにおいて、発電量に対応して抽気段前後の圧力差の許容範囲を予め設定し、抽気段前後の圧力差とそのときの発電量を測定し、コントローラ7で前記圧力差の測定値と前記測定された発電量に対応して設定された圧力差の許容範囲を対比し、圧力差の測定値が圧力差の許容範囲を超えたとき、コントローラ7で抽気流量調節弁4の開度を低減させる。 (もっと読む)


【課題】内燃機関が低回転でかつ低負荷となる領域での燃費の向上とドライバビリティの向上とを両立させることができる可変容量型ターボチャージャの制御装置を提供する。
【解決手段】エンジンが低回転でかつ低負荷となる低回転低負荷領域においてアクセル開度センサによりアクセルペダルの踏み込み量が検出されて加速状態に移行したとき、目標タービンホイール前圧力に対し実タービンホイール前圧力が近付くように、ノズルベーンの開度を一旦閉じ側にフィードバック制御してから開き側にフィードバック制御している。 (もっと読む)


【課題】本発明は、直接の操作量を変数としてタービンロータの熱応力を予測し、この予測熱応力から最適化計算を行なって、タービンの最適起動制御の精度を向上させ、精度と信頼性の高い操作量を得ることができるタービン起動制御装置およびその起動制御方法を提供する。
【解決手段】本発明に係るタービン起動制御装置は、タービンへ流入する蒸気量またはガス量を制御弁で調節制御するものである。タービン起動制御装置10は、直接の操作量であるタービン昇速率・負荷上昇率を変数として、現在時刻から未来に亘る予測区間のタービンロータに発生する熱応力を予測し、この予測熱応力を規定値以下に抑えながらタービン起動時間が最短となる予測区間における操作量最適推移パターンを所定制御周期毎に計算し、前記操作量最適推移パターンの現在時刻における値を、実際の最適操作量として決定する最適起動制御手段と、この最適起動制御手段からの最適操作量を入力して前記制御弁を駆動制御する回転数・負荷制御手段とを備えたものである。 (もっと読む)


【課題】 ランキンサイクル装置において蒸発器から膨張機に供給される蒸気の圧力を目標圧力に応答性良く制御する。
【解決手段】 目標圧力設定手段M5が膨張機12に供給される蒸気の実流量および温度に基づいて該蒸気の目標圧力を設定し、予測流量演算手段M1がエンジンのスロットル開度THおよび回転数Neに基づいて膨張機12に供給される蒸気の予測流量Qsを演算し、目標回転数演算手段M6が前記予測流量Qsおよび目標圧力に基づいて膨張機12の目標回転数を演算するので、膨張機12に供給される蒸気の実流量の応答遅れの影響を受けることなく、スロットル開度THの変化に即座に応答する蒸気の予測流量Qsを用いて蒸気の圧力を目標圧力に応答性良く制御することができる。 (もっと読む)


【課題】 ランキンサイクル装置を備えた車両において、アクセル開度の急増時に蒸発器から膨張機に供給される気相作動媒体の圧力の過剰な増加を抑制する。
【解決手段】 アクセル開度APが急激に増加したときに、蒸発器への給水量を増加させて膨張機に供給される蒸気の温度や圧力を目標温度や目標圧力に制御しようとしても、蒸気の温度や圧力が目標温度や目標圧力をオーバーシュートする懸念があるが、ドライブ・バイ・ワイヤ装置がスロットル開度を制御して排気ガスの熱エネルギーの立ち上がりを抑制することで、蒸気の温度や圧力が目標温度や目標圧力をオーバーシュートするのを抑制し、膨張機の効率低下や耐久性の低下を防止することができる。スロットル開度の抑制によるエンジンの出力の不足分は、ランキンサイクル装置により駆動されるモータ・ジェネレータの出力により補償される。 (もっと読む)


【課題】出力設定補正量33に対して周波数補償量31と協調がとれた適切な上下限制限を掛けることにより、負荷運転状態に係わらず、プラント安定性の維持と許容される最大限の周波数変動抑制効果の発揮を両立させること。
【解決手段】周波数偏差に応じて負荷要求信号(MWD)22を補正する周波数補償回路とは別に、周波数偏差に応じて出力設定補正信号33を生成し、MWD22に加算して発電量制御の制御目標値とする出力設定補正機能を持ち、出力設定補正信号33に上下限制限値を掛ける手段を含む制御回路により構成した火力発電プラントの周波数変動を抑制する装置である。 (もっと読む)


【課題】発電機ロータの周方向停止位置を自動的にかつ的確に位置決めできる発電機ロータの回転停止位置自動決定装置を提供する。
【解決手段】タービン発電機ロータ上に設けられその回転方向の位置を示すマークの位置を検出するセンサと、ロータを回転させるターニング装置への電力の供給と遮断とを行う遮断器と、マークの検出信号に基づいてターニング装置への電力を遮断しロータに設けられた指定点を目標停止位置に停止させるロータ停止位置制御装置と、予め設定された定格角速度と定格角速度で回転するロータのターニング装置への電力遮断後の慣性回転による停止までの時間との関係に基づいて定格角速度で回転するロータのマーク検出時点からのターニング装置への電力の遮断時期までのディレイ時間を求め、定格角速度で回転するロータの前記マークを検出した瞬間から時間計測を開始し、計測時間がディレイ時間経過後にターニング装置への電力を遮断する。 (もっと読む)


【課題】関数発生器の弁開度/流量特性と蒸気加減弁の弁開度/流量特性とのずれにより、速度信号もしくは負荷設定値の変化にタービン出力が比例して変化しない領域が存在する。
【解決手段】蒸気加減弁の弁開度/流量特性に対応した関数発生器により弁開度指令を出力し、タービンの速度・負荷を制御するタービン制御装置において、蒸気加減弁2の流入蒸気の圧力および温度を圧力・温度検出器15で検出し、タービン出力を出力検出器16(20)で検出し、この出力検出器により検出されたタービン出力の値を圧力・温度補正器17により補正し、蒸気流量指令と補正されたタービン出力の特性とを特性出力部18によりプロットし、出力装置により運転員に呈示するようにした。 (もっと読む)


【課題】 プロセス蒸気圧力の変動を極力防止する。
【解決手段】 蒸気供給管1に蒸気制御弁2を取り付けてプロセス蒸気管3と接続する。蒸気供給管1を分岐して分岐管4を接続する。分岐管4には蒸気流量計14と緊急遮断弁15を取り付ける。分岐管4の端部は蒸気タービン5の入口17と接続する。蒸気タービン5の出口18は連通管6によってプロセス蒸気管3と接続する。分岐管4を更に分岐して第2分岐管7を設け、緊急開閉弁19を介してプロセス蒸気管3と接続する。
蒸気タービン5入口側の緊急遮断弁15が閉弁すると、第2分岐管7の緊急開閉弁19が瞬時に開弁することによって、プロセス蒸気管3から蒸気使用箇所へ供給される蒸気の圧力が変動することはない。 (もっと読む)


【課題】 装置の初期立ち上がりを短時間で行うことのできる、蒸気タービンを利用したプロセス蒸気の制御装置を得ること。
【解決手段】 蒸気供給管1に蒸気流量計8と蒸気制御弁2を取り付けてプロセス蒸気管3と接続する。蒸気供給管1を分岐して分岐管4を接続する。分岐管4には蒸気流量計14と緊急遮断弁15を取り付ける。分岐管4の端部は蒸気タービン5の入口17と接続する。蒸気タービン5の出口18は連通管6によってプロセス蒸気管3と接続する。
蒸気供給管1を通過する蒸気量が流量計8で、また、蒸気タービン5を通過する蒸気量が流量計14でそれぞれ検出され、タービン効率を最良に維持すると共に、蒸気使用箇所での必要蒸気量が供給できるように制御弁2,13が制御される。 (もっと読む)


1 - 18 / 18