説明

Fターム[3G092FA24]の内容

機関出力の制御及び特殊形式機関の制御 (141,499) | 目的(一般) (12,669) | 燃費向上、CO2低減 (1,422)

Fターム[3G092FA24]の下位に属するFターム

Fターム[3G092FA24]に分類される特許

61 - 80 / 1,345


【課題】 マルチバルブエンジンは排気効率の改善を計るためのものであるが、円形のシリンダーに同じ円形の吸排気口を3個以上設ける。しかし吸排気口の数を増やすことにより吸排気口個々の面積が小さくなり数に限界が生ずる。更にバルブが増えるのに伴ってスプリング、バルブ、カム、カムシャフト等部品点数及び工賃がかさみ、おまけにこれ等を駆動するために必要な動力も増える。
【解決手段】そこで1個のバルブにより吸排気を行うことで部品点数が少なく非常にシンプルで安価に製造できる4サイクルエンジンを提供する。 (もっと読む)


【課題】エンジン性能を向上させる多数の装置が機能別に組み合わされることによってシナジー効果を最適化し、エンジンルームの効果的なレイアウトも計れるターボチャージャーに基づくエンジンシステムおよびそれを利用した燃費改善方法を提供する。
【解決手段】吸気系4と、排気系7と、ターボチャージャー10と、吸気系の外気流れ区間から分岐して別の外気流れを形成するスーパーチャージャー20と、排気ガス流れをターボチャージャーに送るようにターボチャージャーの圧縮機につながる排気ガス再循環ライン31を備えた排気ガス再循環システム30と、バルブ手段の開度量制御ECU60により、ターボチャージャーの前端において外気流れと別の外気流れおよび排気ガス流れを変化させることにより、ターボチャージャーを通じて過給される外気と排気ガスの混合比率を可変させるバルブ手段40と、を含んで構成されることを特徴とする。 (もっと読む)


【課題】内燃機関の機械圧縮比を変更可能とする可変圧縮比機構を備える内燃機関において、機関負荷が極低負荷領域にある場合においても、より簡易な構成で且つ確実に燃費の向上を図ることを可能とすること。
【解決手段】本発明の火花点火式内燃機関は、機械圧縮比を変更可能な可変圧縮比機構と、吸気弁の閉弁時期を制御可能な可変バルブタイミング機構とを具備し、機関低負荷運転時には機関中高負荷運転時に比べて機械圧縮比が高圧縮比化され、機関低負荷運転時であっても機関負荷が極低負荷領域内にあるときには機関低負荷運転時に比べて機械圧縮比が低圧縮比化される、ことを特徴とする。 (もっと読む)


【課題】内燃機関の低中速運転時において車両の駆動力を確保しつつ吸気管の振動による異音の発生を的確に抑制することができる。
【解決手段】車両1は内燃機関10と第2のモータジェネレータMG2とを駆動源としている。内燃機関10は、吸気バルブの開閉タイミングを変更する吸気側バルブタイミング変更機構と、排気バルブの開閉タイミングを変更する排気側バルブタイミング変更機構とを備えており、これら変更機構は吸気バルブ及び排気バルブのバルブオーバーラップ期間VOLを変更する。電子制御装置50は、内燃機関10の低中速運転時において機関負荷率KLが所定値KL1以下のときにはバルブオーバーラップ期間VOLを増大する増大制御の実行を禁止するとともに第2のモータジェネレータMG2により車両1の駆動を補助するように構成されている。 (もっと読む)


【課題】内燃機関が加速する過渡期におけるEGR量の不足を改善する。
【解決手段】排気ターボ過給機及び外部EGR装置を備える内燃機関にあって、平時にウェイストゲート弁を全閉せずに開いておき、加速する過渡期にEGR弁を開弁するとともに、ウェイストゲート弁の開度を絞る操作を行うことで背圧を高め、EGRガスの還流を促進するようにした。これにより、加速時のポンピングロスを軽減することができ、燃費の向上に寄与する。 (もっと読む)


【課題】新気と不活性ガスとの接触面積が減少して混合が低減されるとともに、新気と不活性ガスとの成層化が促進される内燃機関および排気再循環装置を提供する。
【解決手段】ECU16は、エンジン本体11が吸気行程にあるとき、EGR弁15を開閉駆動する。これにより、吸気通路32から燃焼室27には、排気の濃度の高い高EGR層と新気を主成分とする低EGR層とが時期的にずれて流入する。そのため、燃焼室27に流入した吸気は、燃焼室27の軸方向へ成層化した高EGR層および低EGR層を形成する。その結果、高EGR層と低EGR層との接触面積は、燃焼室27の軸に垂直な断面積に近似する程度に減少する。また、高EGR層および低EGR層は、いずれも燃焼室27の軸方向の厚さが大きくなる。したがって、高EGR層と低EGR層との混合が低減され、高EGR層と低EGR層との成層化が促進される。 (もっと読む)


【課題】 簡易な構成で、エンジンの圧縮比を変更する可変圧縮比エンジンを提供する。
【解決手段】 可変圧縮比エンジン80は、低圧縮比側から高圧縮側に推移するとき、モータ17に通電すると、入力軸51の回転力は、ダイオード式クラッチ50によって出力軸52に伝達され(動力伝達状態)、減速機61によって減速かつトルクアップされる。そして、カム軸66A、66Bが回転し、長径r1側の外壁が収容部93の下内壁93bに当接することで、シリンダブロック83はロアケース84に近接するように下降する。
一方、高圧縮比側から低圧縮側に推移するとき、モータ17を非通電状態とすると、燃焼室89の燃焼圧およびスプリング96の付勢力は、シリンダブロック83をロアケース84から離間させるように作用する。このとき、ダイオード式クラッチ50は空転状態となる。 (もっと読む)


【課題】機関の始動性と排気エミッション性能の両方を満足させる可変動弁装置のコントローラを提供する。
【解決手段】ステップ1で、デフォルトタイミングEO1、EC1に予め保持し、ステップ3で燃焼自力始動であると判断した場合は、初回クランク回転を燃焼そのものにより行ってクランク回転を迅速に立ち上げる。ステップ4では、第1燃焼気筒を検出すると共に、クランク総回転角θを検出し、ステップ5で、クランク総回転角θが90°付近の所定範囲θ1内にあると判断したならば、ステップ6で、EC1/EO1(作動角D1)に制御する信号を出力すると共に、#2気筒への筒内燃料噴射と点火を行う。この#2気筒で、排気弁開時期遅角制御によるクランクシャフトの回転上昇を得ることができ、バルブオーバーラップO/Lが小さいことによる触媒の初期温度上昇促進効果が得られる。 (もっと読む)


【課題】燃料カットを伴う減速運転状態では、燃料カット後のエンジン再始動時の燃焼安定性を確保しつつ、エンジン回転速度に応じて目標圧縮比を低く抑制することで、圧縮圧力を抑えて燃費性能の向上を図る。
【解決手段】機関圧縮比を変更可能な可変圧縮比装置20と、吸気ポートへ燃料を噴射供給する燃料噴射弁10と、を備え、制御部11は、車両運転状態に応じて目標圧縮比を設定し、この目標圧縮比へ向けて機関圧縮比を駆動制御する。燃料噴射が行われる通常の運転状態と、燃料噴射を停止する燃料カット運転状態とで、目標圧縮比を切り換えており、燃料カット運転状態では、エンジン回転速度が高くなるほど、目標圧縮比を低く設定する。 (もっと読む)


【課題】スワール流の発生と吸気ポートの燃料付着抑制とを高い次元で両立することができる内燃機関の制御装置を提供する。
【解決手段】下流インジェクタ30の燃料噴射を停止しつつ、上流インジェクタ32に同期噴射による燃料噴射を行わせる。燃料噴射は、吸気ポート18bの吸気弁12は休止させられた状態で実行される。このようにすることで、リフト量に差異を設けたスワール流発生時には、上流インジェクタ32によって燃料供給が行われることになる。吸気ポート18bの吸気弁12が完全に休止させられることで(ゼロリフトとなることで)、燃焼室内のスワールを強力なものとすることができる。弁休止した吸気ポート18bに付着、滞留する燃料の量を低減することもできる。 (もっと読む)


【課題】内燃機関の減速運転中、良好な減速性能および減速感を確保しながら、燃焼の安定性を確保することができる内燃機関の制御装置を提供する。
【解決手段】内燃機関3の制御装置1は、ECU2を備える。ECU2は、減速条件が成立しているときには、目標吸気閉弁タイミングIVC_CMDの保持制御処理およびリミット処理を実行することにより、排気還流率REGRが安定限界値REGR_STABを下回るように制御する(ステップ10〜25)とともに、要求トルクTRQが所定値TRQREFよりも小さく、所定の低負荷域にあるときには、可変動弁機構11の動作モードを休止モードに制御する(ステップ30〜37)。 (もっと読む)


【課題】自動的に停止された内燃機関を最適なタイミングで再始動させることができ、それにより、窓ガラスの曇りの発生を確実に防止できるとともに、燃費を向上させることができる内燃機関の停止制御装置を提供する。
【解決手段】エンジン3は、エアコン10のコンプレッサ11に連結されている。停止制御装置1によれば、アイドルストップ中に、窓ガラス温度TGを算出し、算出された窓ガラス温度TGに応じて、窓ガラスWに曇りが発生しないような限界湿度DPを設定する。そして、判定用の室内湿度RHJUDが限界湿度DP以上になったときに、アイドルストップを終了し、エンジン3を再始動させる。また、雨または雪のときには、判定用の室内湿度RHJUDを補正し、室内温度TRが第1所定温度TRH以上のときには、ガラス温度TGを補正する。 (もっと読む)


【課題】エンジンの制御装置に関し、ポート噴射式エンジンにおける排気性能及び燃費を向上させる。
【解決手段】エンジン10の吸気弁14及び排気弁15の開放期間の重複幅を検出する検出手段1と、エンジン10の吸気通路11内に燃料を噴射する燃料噴射手段18とを設ける。
また、検出手段1で検出された重複幅に応じて、燃料が噴射された気筒19内における吸気の流通方向に対向する一対の吸気弁14及び排気弁15の少なくとも何れか一方についてのバルブリフト量を減少させるバルブリフト量制御手段2を設ける。 (もっと読む)


【課題】上死点の燃焼室容積を変化させて機械圧縮比を可変とする可変圧縮比機構を備える内燃機関であって、燃焼室内の空燃比を理論空燃比よりリーンにして運転する場合にも、所望の燃焼空燃比を実現可能とする。
【解決手段】前回サイクルの燃焼室内新気量Q(k-1)と前回サイクルの排気行程における機械圧縮比E(k-1)と前回サイクルの燃焼空燃比AF(k-1)とに基づいて前回サイクルの燃焼後に排気上死点の燃焼室に残留する残留新気量QR(k)を算出し(ステップ104)、今回サイクルの吸気弁開弁から吸気弁閉弁までに燃焼室へ新たに供給される供給新気量QS(k)に残留新気量を加えて今回サイクルの燃焼室内新気量Q(k)とし(ステップ105)、今回サイクルの燃焼室内新気量に対して今回サイクルの燃焼空燃比AF(k)を実現するための必要燃料量F(k)を決定する(ステップ109)。 (もっと読む)


【課題】排気タービン発電機(排気APU)として用いられる電動アシスト過給機及びオルタネータの二つの発電装置を用いる場合において、燃費(SFC)の向上を図ることができる車両用エンジンを提供し、このような車両用エンジンに用いて好適な排気タービン発電機(排気APU)を提供する。
【解決手段】排気タービン発電機と、オルタネータ6と、軸出力からオルタネータ6への動力伝達を切断するクラッチと、クラッチを制御する制御手段4とを備え、排気タービン発電機の発電電圧が、オルタネータ6の発電電圧よりも高くなっており、制御手段4は、排気タービン発電機により供給される電力により負荷9の消費電力が賄える場合には、クラッチを切り離して、軸出力からオルタネータ6への動力伝達を切断する。 (もっと読む)


【課題】 内燃機関の自動停止に伴い、エアコンの冷房運転中および暖房運転中のいずれにおいても、車室内の快適性を確保するとともに、燃費を向上させることができる内燃機関の停止制御装置を提供する。
【解決手段】 本発明の内燃機関3の停止制御装置1では、内燃機関3が自動的に停止したときに、エアコン10から車両の車室R内に吹き出される空気の温度の目標値である目標吹出し温度TAOを設定する(図5)とともに、エアコン10のファン18の風量を表すファン電圧VFANを取得する。また、目標吹出し温度TAOおよびファン電圧VFANに基づいて、停止許容時間TADMSTPを算出するとともに、内燃機関3の停止時間(停止タイマ値TMSTP)が停止許容時間TADMSTPに達したときに、内燃機関3を再始動させる(図4のステップ14〜16)。 (もっと読む)


【課題】ハイブリッド車両において、エンジンを始動させる際の消費電力量を低減する。
【解決手段】エンジン始動装置(100)は、可変動弁機構(116)を有するエンジン(11)と、該エンジンに連結された回転電機(12)と、エンジンを始動する際に、エンジンをクランキングするように回転電機を制御し、更に、エンジンが完爆した後もエンジンのクランキングを継続するように回転電機を制御する制御手段(20)と、を備えるハイブリッド車両(1)に搭載される。エンジン始動装置は、エンジンの始動中に制御手段が、エンジンの吸入空気量を変更するように可変動弁機構を制御する場合、可変動弁機構に起因するエンジンの吸気弁の進角量に応じて、回転電機に係るクランキングトルクを減量するトルク減量手段(20)を備える。 (もっと読む)


【課題】熱効率をより高めることができるガソリンエンジンを提供する。
【解決手段】気筒2の幾何学的圧縮比を14以上に設定するとともに、燃焼室6の天井面60を、その径方向中央を頂部として径方向外側に向かうに従ってピストン5の冠面側に傾斜する円錐面形状とし、ピストン5の冠面を、その中央部分に形成されて前記燃焼室6の天井面60から離間する方向に凹みこの凹み方向に湾曲する内周面40bを有するキャビティ40と、キャビティ40の開口縁40aから径方向外側に向かうに従って燃焼室6の天井面60から離間する方向に傾斜して燃焼室6の天井面60と平行に延びる基準面41とし、インジェクタ21を各噴口21aを通じて噴射された燃料が燃焼室6の天井面60の頂部からピストン5の冠面に近づくほど径方向外側に拡がるように、その先端部を燃焼室6の天井面60の頂部近傍に位置する状態で燃焼室6内に臨ませる。 (もっと読む)


【課題】エンジン始動時における気体燃料噴射制御を適切に行い、以って燃焼の不安定化やエミッションの悪化、燃料消費量の悪化等を回避する。
【解決手段】液体燃料噴射弁の通電制御を行う第1制御装置と、前記第1制御装置から入力される前記液体燃料噴射弁の通電用パルス信号に応じて気体燃料噴射弁の通電制御を行う第2制御装置とを備えた燃料噴射制御システムであって、前記第2制御装置は、エンジン始動時に始動時気体燃料噴射量及び始動時気体燃料噴射タイミングを算出し、その算出結果に応じて前記気体燃料噴射弁の通電制御を行う。 (もっと読む)


【課題】キックパイロット構造の遮断弁を用いた場合において、遮断弁通電後の燃料噴射開始時期を適切に制御し、以って燃料供給不足の発生を回避可能な燃料供給システムを提供する。
【解決手段】気体燃料タンクからレギュレータに至る燃料供給経路に配置され、通電時に先行して開弁する第1の弁体及びその開弁後に上流下流間の差圧低下によって開弁する第2の弁体を有する遮断弁を備える燃料供給システムであって、前記遮断弁の上流側の燃料圧力を第1燃料圧力として検出する第1圧力センサと、前記遮断弁の下流側の燃料圧力を第2燃料圧力として検出する第2圧力センサと、前記第1燃料圧力及び前記第2燃料圧力がそれぞれ閾値未満の場合、前記遮断弁の通電開始から予め設定された遅延時間の経過後に気体燃料噴射を開始する燃料噴射制御装置とを備える、というシステム構成を採用する。 (もっと読む)


61 - 80 / 1,345