説明

Fターム[3G093FB04]の内容

Fターム[3G093FB04]に分類される特許

61 - 80 / 224


【課題】燃料カット制御が実施される車両において燃費及び排ガス性能を向上させることを目的としている。
【解決手段】エンジンEがクラッチ28を介して変速機35に接続された自動二輪車1であって、所定の燃料カット条件が成立したときに、エンジンEへの燃料供給を停止させる燃料カット制御部60を有するECU57と、クラッチ23の接続/遮断の状態を検出するためのクラッチスイッチ23とを備え、ECU57は、燃料カット条件が成立し、かつ、クラッチスイッチ23によりクラッチ23が遮断状態であることが検出された状態が発生した場合、その発生時から所定の遅延時間tにわたって燃料カット条件の成立とクラッチ23の遮断状態とが継続されると、エンジンEへの燃料供給を復帰させる。 (もっと読む)


【課題】電子式のシフト機構部を備えた構成において、シフトアウト操作時にシフト機構部にかかる負荷を軽減することが可能な舶用推進機を提供する。
【解決手段】この舶用推進機(船外機1)は、エンジン2の駆動力をプロペラ3に伝達する伝達状態と、エンジンの駆動力をプロペラ3から遮断する遮断状態とを切り替えるための前後進切換機構部4と、前後進切換機構部4のシフト駆動モータ4cを電気的に制御するECU5とを備えている。ECU5は、リモコンレバー103が第1シフト位置から第2シフト位置に操作された場合に、エンジン2の回転数を一時的に低下させるエンジン回転低下制御を開始するとともに、エンジン回転低下制御の開始後、所定の遅延時間経過後に、伝達状態から遮断状態への切り替えを開始するように前後進切換機構部4のシフト駆動モータ4cを制御するように構成されている。 (もっと読む)


【課題】車両の低コスト化および小型化を可能しつつエンジンのトルクを高精度で推定できるトルク推定システムおよびそのトルク推定システムを備えた車両を提供する。
【解決手段】変速制御システムは、CPUおよびRAMを含む。RAMには、エンジンで発生されるトルクの推定値(推定トルク)を算出するための第1式およびエンジンのクランクの慣性トルクを算出するための第2式が記憶される。CPUは、エンジンの回転速度から第1式に基づいてエンジンの推定トルクを算出する。また、CPUは、クラッチが切断されている際のエンジンの回転速度から第2式に基づいてクランクの慣性トルクを算出する。そして、CPUは、第1式に基づいて算出されるエンジンの推定トルクが第2式に基づいて算出される慣性トルクに近づくように第1式を補正する。 (もっと読む)


【課題】規定車速までに異常判定を完了させることが可能なアイドリングストップ車両の制御装置の提供。
【解決手段】本発明は、アイドリングストップ車両の制御装置1において、電源からブレーキ制御関連電子部品へ供給される電圧の安定化を行うように構成された電圧安定化手段0と、規定車速に達するまでに前記ブレーキ制御関連電子部品の異常判定を行うように構成された異常判定手段10と、前記エンジンの停止状態で車両が移動した場合に前記エンジンの始動を行うように構成されたエンジン始動制御手段20とを備え、前記電圧安定化手段は、前記異常判定手段による前記異常判定が可能となるように、少なくとも前記エンジン始動が行われている間、動作することを特徴とする。 (もっと読む)


【課題】エンジン停止後に燃料リークの発生を検出した場合でも、オペレータに対して適切に警報動作を行うことができるようにする。
【解決手段】機体コントローラ26bによりエンジン21内の燃料供給系で燃料リークが発生していると判断されると、バッテリリレー34をオン状態に維持し続けて、初期設定された電力遮断時間を所定の設定時間だけ遅延させる。さらに、再設定された電力遮断時間が経過するまでの間、警報装置35により警報動作が行われる。 (もっと読む)


【課題】運転者の操作に応答して継合、切断されるクラッチ3を介して手動変速機2が接続された内燃機関1の制御装置4において、フューエルカットの許可条件成立時にシフト操作の有無に応じて適正なタイミングでフューエルカットを実行開始させるようにしたうえで、シフト操作の有無を考慮して前記各フューエルカットをそれぞれ適正なタイミングで終了可能とする
【解決手段】制御装置4は、シフト操作に伴うフューエルカットを実行する他、シフト操作の無いアクセルオフに伴うフューエルカットを実行するフューエルカット実施手段(図4のS1〜S5)と、フューエルカット実行中において、機関回転速度が終了判定値Y未満になった場合に実行中のフューエルカットを終了させる終了監視手段(図6のS21,S22)と、前記終了監視手段における終了判定値Yを、シフト操作有り時とシフト操作無し時とで異ならせる設定手段(図7のS31〜S33)とを含む。 (もっと読む)


【課題】制動操作フィーリングの低下を抑制することができる車両用制御装置を提供する。
【解決手段】内燃機関10が発生させた動力を流体を介して伝達可能である流体伝達手段2が搭載された車両1の車両用制御装置100において、内燃機関10の冷間時に、車両1の車速が予め設定される所定速度範囲内であり、かつ、車両1に対する制動操作がなされた場合に、当該内燃機関10の温間時の目標アイドル回転速度で出力可能な出力トルクと同等の出力トルクを出力可能なトルクダウン要求時の目標アイドル回転速度に基づいて、内燃機関10を制御して内燃機関10の吸気通路の開度を低減することで内燃機関10の出力トルクを低下させる第1トルクダウン制御を実行する第1トルクダウン制御手段101を備える。 (もっと読む)


本発明は内燃機関と少なくとも1つのさらなる機械を有し、前記内燃機関とさらなる機械の間に分離クラッチが配設され、前記内燃機関の目下のクランク軸角度を検出するクランク角センサが設けられている、ハイブリッドドライブトレーンの内燃機関を始動するための方法及び装置に関している。ここでは高圧バッテリー(208)が設けられ、前記高圧バッテリーが実質的に放電している場合に内燃機関を始動する以下の方法ステップ、a)前記分離クラッチ(102)を開放するか若しくは既に開放されているステップと、b)前記さらなる機械(103)を加速するステップと、c)前記さらなる機械の加速過程の終了後に前記分離クラッチを閉成し、それと共に前記内燃機関を加速するステップと、d)クランク角センサ系が適切なクランク軸角度を供給すると直ちに内燃機関をダイレクトスタート方式を用いて始動するステップが実施される手段が設けられる。
(もっと読む)


【課題】車両の電源が瞬断される等で、クラッチの制御状態が初期化状態となる場合でも、車両の状態に応じたクラッチ制御を実行できるクラッチ制御装置を提供する。
【解決手段】クラッチ制御部130は、クラッチを不動とする初期化制御状態Aと、クラッチが切断状態でかつエンジンの始動を可能とする第1制御状態Bと、クラッチが接続状態でかつエンジンの始動を不能とする第2制御状態Cと、クラッチが接続状態でかつエンジンの始動を可能とする第3制御状態Dとを有する。クラッチ制御部130は、クラッチの制御状態が初期化制御状態Aにあるときに、クラッチが切断状態であると第1制御状態Bへ遷移させ、また、クラッチが接続状態でかつ車両が停車中であると第2制御状態Cへ遷移させ、さらに、クラッチが接続状態でかつ車両が走行中であると第3制御状態Dへ遷移させる。また、変速機1のニュートラルが検知されるとクラッチを切断する。 (もっと読む)


【課題】急激な加速・減速を繰り返す走行において、EV走行モード遷移制御中にHEV走行モードへの遷移要求があった場合、再加速時のレスポンス(応答性)が悪化する可能性があり、緩やかに加速・減速を繰り返す走行においては、EV走行に遷移する機会が減少し、その結果、燃費が悪化する可能性がある。
【解決手段】HEV走行モードにて、減速度がエンジン停止判定値以下になり、予め設定したディレイ時間を経過した場合に、HEV走行モードからEV走行モードに遷移させ、減速度が小さくなるのに応じて、ディレイ時間を短く設定する。 (もっと読む)


【課題】運転者のアクセル操作に基づく目標駆動力に対する実駆動力の応答性を改良して、ドライバビリティを向上させることができる車両の制御装置を提供する。
【解決手段】動力源と、該動力源の出力トルクを変速して駆動輪へ伝達する自動変速機構とを備え、運転者のアクセル操作量に関連させて目標駆動力を算出し、その目標駆動力を達成するように動力源および自動変速機構を制御する車両の制御装置において、車両の実駆動力を求める実駆動力検出手段(ステップS12)と、目標駆動力を、少なくともアクセル操作量と実駆動力検出手段により求めた実駆動力とに基づいて算出して設定する目標駆動力算出手段(ステップS13)とを設ける。 (もっと読む)


【課題】燃料カット後におけるエンジン回転数の上昇を防止するエンジン制御装置を提供する。
【解決手段】エンジン制御装置20を、所定の燃料カット条件が成立しているか否かを判定する燃料カット判定手段と、所定の燃料復帰条件が成立しているか否かを判定する燃料復帰判定手段と、燃料カット条件が成立した場合に燃料の供給を停止し、その後、燃料復帰条件が成立した場合に燃料の供給を再開させる燃料供給制御手段と、エンジンに設けられた燃料点火手段の点火時期を制御する点火時期制御手段とを備え、点火時期制御手段は、燃料供給制御手段により燃料カットが実行された後、所定の点火復帰条件が成立するまでの間、エンジンにおける燃料点火手段の点火時期を制限してエンジンの出力を抑制する構成とする。 (もっと読む)


【課題】例えば、エンジン等の内燃機関がアイドル状態にある際に、当該内燃機関の回転数を目標回転数に収束させる収束性を高めることができ、燃費向上、ドライバが感じる違和感の低減、内燃機関の動作の安定性を向上させる。
【解決手段】制御装置100は、各種補正値に基づくエンジン200制御と並行して、エンジン200の実回転数N1が目標回転数N2に近付くように、タイミングt2からISCV301を制御し、エンジン200に供給される空気の供給量を制御する。これにより、目標回転数N2に実回転数N1を収束させる収束性を高めることが可能であり、燃費を向上させることが可能である。加えて、エンジン200の実回転数の上昇を最小限に抑えることが可能であるため、アイドル状態にあるエンジン200における実回転数の増大に連動してドライバが感じる違和感を低減することが可能である。 (もっと読む)


【課題】 弾性率が変更可能に制御されるサスペンションを有する車両に於いて車輪トルク制御によりピッチ・バウンス振動を抑制するための制振制御に於いて、車高制御の実行時の制振制御の精度の悪化の影響を抑制すること。
【解決手段】 本発明の駆動制御装置は、車体振動モデルを用いて予測される車体の振動変位を低減するよう車輪トルクを補償するための補償成分を算出する補償成分決定部と、車両の車高を表す値を取得する車高値取得部とを含み、補償成分決定部の構成がサスペンションの弾性率又は車高を表す値の変化に基づいて変更されることを特徴とする。補償成分決定部の構成の変更は、モデルパラメータの更新又は補償成分の出力の遮断又は低減により達成される。 (もっと読む)


【課題】本発明は、突入電流等によるグランド電位の上昇に影響を受けず、バッテリ電源の昇圧を確実に行うことができ、エンジン停止時から再始動する際に確実に電気負荷に電力を供給することができる車両用電源装置を提供することを目的とする。
【解決手段】停止したエンジン70を再始動するときに、前記エンジンのスタータ80に電力を供給するバッテリ10と、
前記スタータの作動時に、前記バッテリの電圧を昇圧し、第1の電気負荷45へ電力を供給する昇圧コンバータ30と、
前記バッテリに接続され、電源スイッチ26がオンとされたときに、突入電流が流れる第2の電気負荷25の作動を遅延させる作動遅延制御を行う作動遅延制御手段60とを有し、
該作動遅延制御手段は、前記昇圧コンバータが動作中のときに、前記作動遅延制御を実行することを特徴とする。 (もっと読む)


【課題】車両停止中にエンジンを一時的に停止する制御を行う際に、窓ガラスが曇ることを防止した上で、燃料消費の低減を図ることができるエンジンの制御装置を提供する。
【解決手段】車両が置かれた状況を検出する車両状況検出手段41と、車両状況検出手段41により検出された状況の下で、車両の窓ガラスに曇りが生じない湿度である曇り判定湿度を推定する曇り判定湿度推定手段42と、車室内の湿度を検出する湿度検出手段30と、エンジン2の停止直前における湿度検出手段30の検出湿度と曇り判定湿度との湿度差に応じて、該湿度差が大きいほどエンジン停止時間を長い時間に決定するエンジン停止時間決定手段43とを備え、エンジン制御手段44は、始動条件が成立してエンジン2を停止した後、エンジン停止時間が経過した時に、エンジン2を始動すると共に冷凍サイクル装置Aとブロアファン121を起動する。 (もっと読む)


【課題】一時切換スイッチを操作して制御モードをパワーモードへ一時的に切換えた場合であっても、運転者に戻し忘れを生じさせることなく、元の制御モードへ復帰させることができるようにする。
【解決手段】エンジン制御モードMとしてノーマルモードM2とセーブモードM2とパワーモードM3とを有し、ノーマルモードM2或いはセーブモードM2で走行中に、一時切換スイッチ11を操作すると、エンジン制御モードがパワーモードに切換えられる(S71)。すると減算タイマのカウント値Tが初期設定時間Toでセットされ(S72)、その後経過時間の計時が開始される(S73)。そして経過時間に達すると(S75)、一時切換制御が終了し、エンジン制御モードMが一時切換制御前の制御モードM(n-1)に自動的に復帰される。 (もっと読む)


【課題】シリーズ式ハイブリッド電気自動車のエンジンから大気中に放出されるNOxの量を低減可能なハイブリッド電気自動車の排気浄化装置を提供する。
【解決手段】シリーズ式ハイブリッド電気自動車1に搭載されたエンジン2の排気通路にアンモニア選択還元型NOx触媒48を介装し、その上流側の排気中に尿素水を供給する尿素水インジェクタ62を設ける。バッテリ8の充電状態に応じてエンジン2を始動後、排気温度が所定温度Taに達するまでは尿素水供給を停止すると共に、比較的大きなEGR率として燃料噴射時期を遅角させた第1運転モードでエンジン2を運転することによりエンジン本体30からのNOxの排出を抑制し、排気温度が所定温度Taに達するとエンジン2をEGR率及び燃料噴射時期の遅角量が低減された第2運転モードで運転すると共に、尿素水を供給してアンモニア選択還元型NOx触媒48でNOxの選択還元を行う。 (もっと読む)


【課題】車両の走行停止過程で機関運転がアイドル運転に移行したときの内燃機関のストールを抑制しつつ、車両の走行停止を可能な限り速やかに実現することのできる車載内燃機関の制御装置を提供する。
【解決手段】自動車の走行停止過程でエンジン1がアイドル運転となったとき、自動車の走行路面が低摩擦係数路面であれば、補機の駆動要求を低下開始した時点で、その駆動要求の低下に相当する分の目標回転速度の低下が行われ、エンジン1をストールさせることなく自動車が速やかに走行停止される。このときにストールが生じないのは、低摩擦係数路面では、駆動輪6に対し路面側からの外力が回転方向と逆方向に働くなど、同駆動輪6への回転停止方向についての外乱の作用が少なくなり、その外乱によるエンジン回転速度の低下がほとんど生じることがないためである。 (もっと読む)


【課題】エンジン1の自動停止装置において、バッテリ80の劣化状態の解消をできるだけ早期にかつ正確に判定する。
【解決手段】制御手段2は、イグニッション操作に基づいてエンジン1を始動させた後には、第2バッテリ80bと発電機28とを接続状態にすることで、発電機28の発電電力により第2バッテリ80bを充電させる一方、バッテリ劣化判定手段2によって第1バッテリ80aが劣化していると判断されているときには、エンジン1の始動後において、第2バッテリ80bと発電機28との接続を一時的に禁止して第2バッテリ80bの充電開始を遅延させると共に、発電機28の発電電圧を低下させる判定期間を設ける。その判定期間内において検出した電気負荷82の作動に伴う第1バッテリ80aの電圧低下度合いに基づき、第1バッテリ80aの劣化状態が解消されたか否かを判定する。 (もっと読む)


61 - 80 / 224