説明

Fターム[3G384CA21]の内容

内燃機関の複合的制御 (199,785) | 機関の運転状態 (12,498) | 燃料カット時 (764)

Fターム[3G384CA21]の下位に属するFターム

復帰時 (181)

Fターム[3G384CA21]に分類される特許

61 - 80 / 583


【課題】空燃比センサの応答性に関わらず「気筒別空燃比の不均一性の程度を精度良く表す空燃比不均衡指標値」を空燃比センサの出力値に基いて取得することにより、インバランスを精度良く判定することができる空燃比気筒間インバランス判定装置を提供する。
【解決手段】判定装置は、空燃比センサの出力値の時間微分値に基いて、気筒別空燃比の不均一性の程度が大きいほど大きくなる補正前指標量を取得する。一方、判定装置は、フューエルカット運転中に空燃比センサの出力値が大きいほど大きくなる補正用出力値として求める。判定装置は、補正用出力値が大きいほど(即ち、空燃比センサの応答性が高いほど)、補正前指標量が小さくなるように、補正前指標量を補正して空燃比不均衡指標値を取得する。判定装置は、空燃比不均衡指標値がインバランス判定用閾値以上であるとき、空燃比気筒間インバランス状態が発生したと判定する。 (もっと読む)


【課題】運転診断装置において、惰力走行を行っている自動車が加速と減速とを連続して実行する状況下での停止所要時間の計測精度を向上させること。
【解決手段】アクセルがオフ状態とされることにより、燃料カットが実行されて惰力走行による減速を開始すると(t11)、アクセルがオフ状態となってからの経過時間の計測を開始する。走行速度Vが停止前速度V1以下となると(t12)、当該経過時間の計測を継続しつつ、その時点(t12)での経過時間T1を記憶部に記憶する。下り坂を走行し終えて(t15)減速することで、走行速度Vが停止前速度V1以下となると(t16)、経過時間の計測を継続しつつ、その時点(t16)での経過時間T2を記憶部に記憶(更新)する。走行速度Vが停止速度V0となると(t17)、経過時間の計測を終了すると共に、記憶部に記憶されている経過時間T2を停止所要時間として決定する。 (もっと読む)


【課題】内燃機関の制御装置において、触媒温度を精度良く推定して、正確に排気系を保護することにある。
【解決手段】制御手段(31)は、回転数検出手段(32)により検出された機関回転数及び機関負荷検出手段(35)により検出された機関負荷に基づいて触媒温度を推定する触媒温度推定手段(31A)と、スロットルバルブ(13)のスロットル開度を制御するスロットル開度制御手段(31B)とを備え、触媒温度推定手段(31A)により推定された触媒温度が予め設定された設定値を超えた場合に、スロットル開度制御手段(31B)により内燃機関(1)がアイドリング運転状態になるようにスロットルバルブ(13)を開閉制御する。 (もっと読む)


【課題】回生発電中のポンプロスを低減しつつ、加速要求により出力を発生させる際のショックを防止できる車両の駆動制御装置を得る。
【解決手段】内燃機関20の吸気量を増加させることにより内燃機関20のポンプロスを低減するコントロールユニット10を備え、回生発電中は、内燃機関20の吸気量を要求吸気量よりも増加させるとともに、加速要求時は、要求トルクがモード判定トルクより高い場合には、内燃機関20の燃焼を再開してトルクを供給し、要求トルクがモード判定トルクより低い場合には、発電電動機30のみでトルクを供給する。 (もっと読む)


【課題】筒内の圧縮圧力の抜けが生じた場合にこれに対処可能な構成を備えた内燃機関の制御装置を提供する。
【解決手段】演算処理装置が、熱発生量相関パラメータPVκを算出するための、PVκ算出処理を記憶している。内燃機関のフューエルカット中に、吸気弁が閉じた直後の筒内圧センサ出力に基づき、筒内圧Pを算出する。当該吸気弁が閉じた直後の筒内容積Vを算出する。吸気弁が閉じた直後のPVκを、「PVκ」と称す。内燃機関のフューエルカット中に、吸気弁が閉じた直後から排気弁の開弁まで期間内における、所定クランク角θでの筒内圧センサ出力に基づき、筒内圧Pを算出する。当該所定クランク角θでの筒内容積Vを算出する。所定クランク角θでのPVκを、「PVκθ」と称す。PVκθ/PVκに基づいて、圧縮圧力低下率を算出する。 (もっと読む)


【課題】燃料カットからの復帰直後に、排気浄化触媒の酸素ストレージ量を適正量にまで低下させるためのリッチ化を過不足なく行わせ、復帰直後における排気エミッションを低減する。
【解決手段】燃料カット中の吸入空気量の積算値から、燃料カット中の酸素ストレージ量OS2を求め、該酸素ストレージ量OS2に応じてリッチスパイク量RSを設定する。そして、燃料噴射を再開させるときに、前記リッチシフト量RSに応じて空燃比をリッチ化させ、かつ、前記リッチシフト量RSを吸入空気量Qに応じた速度ΔRSで0にまで変化させる。 (もっと読む)


【課題】 出荷前の車両に対して精度良く酸素センサの大気学習を実行することができる酸素センサの大気学習方法を提供する。
【解決手段】 車両のエンジンの排気通路に装着されると共に、排気通路を流れる排気ガス中の酸素濃度に応じた出力値を出力する酸素センサの大気学習方法であって、燃料供給を停止した状態でエンジンのクランキング動作を行い、排気通路内の酸素センサ周囲に大気を導入することにより、酸素センサの出力値と酸素濃度との関係を補正するための補正係数を算出する大気学習を実施するにあたり、一度も運転を行っていないエンジン、または、前回の運転から所定時間放置して排気通路の内外の雰囲気を平衡化させたエンジンに対し、上記クランキング動作を複数回間欠的に行うことで上記大気学習を実施する。 (もっと読む)


【課題】運転者の停車意思を正確に判定しその停車意思に即して燃料カットを可及的に早期に実行することが可能な車両用エンジン制御装置を提供する。
【解決手段】燃料供給遮断許可手段96は、停車意思推定手段94によって前記停車意思があると判定された場合には、エンジン12への燃料供給を遮断することである燃料カットを、停車中だけでなく車両10の減速走行中にもエンジン始動停止制御手段98に対して許可する。従って、車速Vの履歴は運転者の車両走行に対する意思が反映された結果であると考えられるので、その車速Vの履歴から運転者の停車意思が正確に推定され、その停車意思がある場合にはその停車意思の有無を正確に判定することができる。そのため、正確に判定された上記停車意思に基づき燃料カットが車両10の減速走行中に許可されることとなるので、運転者の停車意思に即して燃料カットを可及的に早期に実行することが可能である。 (もっと読む)


【課題】運転者の要求に応じて減速度を調整できる車両制御システムを提供すること。
【解決手段】エンジンと、フューエルカット制御中に車両の減速度を変化させることができる減速度調節手段と、制御装置とを備え、制御装置は、エンジンの運転時に、アクセル開度と加減速度に関する目標値との対応関係に基づいて決定されるエンジンの目標トルクに基づきエンジンを制御する。制御装置は、アクセル開度が所定開度以下(S11−Y)である条件を含むフューエルカット実行条件が成立した場合にフューエルカット制御の実行を許可し、かつ、フューエルカット制御の実行中(S12−Y)に、所定開度以下の領域においてアクセル開度に応じて減速度調節手段を制御して車両に作用する減速度を調整する(S14,S17)。所定開度は、車両の車速に応じて変化し、かつ、車速の少なくとも一部の領域における所定開度は、全閉に対応する開度よりも大きい。 (もっと読む)


【課題】触媒下流センサの出力信号の初動遅れ時間の適正値に対するずれを抑制し、且つ同初動遅れ時間を短時間で求めることのできる診断装置を提供する。
【解決手段】排気中の酸素濃度の変化に対する酸素センサ18の出力信号VOの初動タイミングの遅れに関係する同センサ18の異常の有無は、初動遅れ時間Tを用いて判断される。初動遅れ時間Tを求めるために用いられる酸素吸蔵量C1max及び吸入空気量Ga1と酸素吸蔵量C2max及び吸入空気量Ga2とは、アクティブ空燃比制御を実行可能なエンジン運転領域と燃料カット制御が実行されるエンジン運転領域といった互いに大きく異なる二つのエンジン運転領域でそれぞれ取得される。上記燃料カット制御での燃料噴射の停止は、アクティブ空燃比制御の実行条件の成立に伴う同制御の実行と比較して、高い頻度で実行される。 (もっと読む)


【課題】酸素センサの出力のリッチ反転及びリーン反転のいずれか一方に応答遅れが生じている場合にこれを的確に把握することができる。
【解決手段】内燃機関1の排気浄化装置は、排気通路13に排気上流側から順に酸素吸蔵触媒15、酸素センサ24を備える。電子制御装置2は、触媒15に吸蔵されている酸素量が最大であると推定されるときに強制リッチ化制御を実行し、同制御の開始から酸素センサ24の出力がリッチ反転するまでの期間に最大酸素放出量を同期間に基づき推定する。触媒15に吸蔵されている酸素量が最小であると推定されるときに強制リーン化制御を実行し、同制御の開始から酸素センサ24の出力がリーン反転するまでの期間に最大酸素吸蔵量を同期間に基づき推定する。そして、最大酸素放出量と最大酸素吸蔵量との偏差の絶対値が所定値以上である場合に上記応答遅れが生じていると判定する。 (もっと読む)


【課題】酸素濃度を検出可能な検出手段の状態を判定する判定処理の機会を確保した車両の制御装置を提供することを課題とする。
【解決手段】本実施例の車両の制御装置は、エンジン10と、車両が走行するためのモータ70と、エンジン10の動力をモータ70へ供給される電力に変換すると共にエンジン10をモータリング可能な発電機60と、エンジン10の排気系に設けられ酸素濃度を検出可能な空燃比センサ34と、エンジン10へ燃料が供給されていない間にエンジン10をモータリングさせモータリング中の空燃比センサ34の検出結果に基づいて空燃比センサ34の状態を判定する判定処理を実行するECU50と、を備えている。 (もっと読む)


【課題】内燃機関の気筒休止運転時に触媒ヒータの消費電力を抑制する内燃機関の触媒ヒータ制御装置を提供することを課題とする。
【解決手段】気筒を休止させる気筒休止運転も行う内燃機関において、内燃機関の排気通路に配設される触媒装置を加熱する触媒ヒータ22を制御する触媒ヒータ制御装置1であって、気筒休止運転から通常運転に復帰する復帰タイミングを予測する復帰タイミング予測手段31dと、触媒装置の触媒温度を検出する触媒温度検出手段17と、気筒休止運転中に低下した触媒温度を少なくとも活性化温度まで触媒ヒータ22によって昇温させるために必要な加熱時間を演算する加熱時間演算手段31eと、復帰タイミングよりも加熱時間だけ早い通電開始タイミングを設定する通電開始タイミング設定手段31eを備え、通電開始タイミングからの一期間だけ触媒ヒータ22への通電を行うことを特徴とする。 (もっと読む)


【課題】気筒内空気量の気筒間バラツキに伴うトルク変動を抑制することができる内燃機関の制御装置を提供する。
【解決手段】内燃機関(10)の制御装置(70)は、少なくとも2以上の気筒(11)への燃料供給を中断させかつ吸気弁(14)および排気弁(15)を閉弁状態にさせる燃料カット閉弁制御処理を行った後に、気筒内空気量の気筒間バラツキが基準値以上の場合には、燃料カット閉弁制御処理において閉弁状態にされた吸気弁および排気弁のうち少なくとも一方を開弁状態にさせる開弁制御処理を行う制御手段(71)を備えている。 (もっと読む)


【課題】触媒の劣化の有無の判断及び触媒下流センサの異常の有無の判断を行うに当たり、その触媒下流センサの異常の有無を正確に判断しつつ、それらの判断を完了するために多大な時間がかかるようになることを抑制する。
【解決手段】酸素センサ18の応答性は、アクティブ空燃比制御中に求められた三元触媒の酸素吸蔵量C1max、燃料カット制御中に求められた三元触媒の酸素吸蔵量C2max、及び、アクティブ空燃比制御中と燃料カット制御中とでの酸素センサ18の応答性の相関に基づいて求められる。このため、三元触媒の劣化の有無の判断及び酸素センサ18の異常の有無の判断を行うに当たり、その酸素センサ18の異常の有無を正確に判断しようとする場合に、それらの判断のために取得すべきパラメータを酸素吸蔵量C1maxと酸素吸蔵量C2maxとの二つに抑えることができる。このため、それらパラメータの取得に時間がかかることはない。 (もっと読む)


【課題】フューエルカット制御からの復帰時に筒内の酸素が過剰となることを抑制できる車両制御システムを提供すること。
【解決手段】車両の動力源としてのエンジンと、エンジンの排気通路と吸気通路とを連通する連通路と、連通路を開閉する開閉弁とを備え、車両の走行中にエンジンへの燃料の供給を停止するフューエルカット制御を実行可能なものであって、フューエルカット制御の実行中(S1−Y)に閉弁状態の開閉弁を開弁して連通路を開放することで排気通路の気体が連通路を介して吸気通路に流れることを許容する開放制御(S6)を実行可能であり、かつ、開放制御の実行中に吸気行程でエンジンの筒内に供給される酸素量と対応する物理量が予め定められた所定量以上(S7−Y)となると、開閉弁を閉弁する(S8)。 (もっと読む)


【課題】エンジンの高圧燃料供給システムの異常の有無を精度良く判定できると共に、高圧燃料供給システムの異常を早期に検出できるようにする。
【解決手段】ECU31は、エンジン運転状態に応じて目標燃圧を算出し、燃圧センサ24で検出した高圧燃料通路内の実燃圧を目標燃圧に一致させるようにPI制御等により高圧ポンプ14の吐出量をF/B(フィードバック)制御する燃圧F/B制御を実行する。そして、高圧燃料供給システムが正常であれば、燃料カット中の燃圧F/B制御の実行中に燃圧F/B制御のI項(積分項)が所定の正常範囲内に収まることに着目して、燃料カット中の燃圧F/B制御の実行中に燃圧F/B制御のI項が正常範囲内であるか否かを判定し、燃圧F/B制御のI項が正常範囲外であると判定された場合には、高圧燃料供給システムの異常(例えば定残圧機構26の燃料漏れ異常等)有りと判定する。 (もっと読む)


【課題】 適切なタイミングでアイドリング運転時間を削減し、燃費を向上させる。
【解決手段】 停止開始条件が成立した時において、過去の走行経路パターン毎の経路確率及び第1停止効果係数に基づいて、過去の走行経路パターン全体としてのエンジン停止効果の度合いを示す第2停止効果係数が求められ、この第2停止効果係数が所定の閾値以上の場合にエンジンを停止すると判定される。このため、通勤経路等の走行頻度の高い走行経路においては、現在の走行経路パターンとほぼ同一の走行経路パターンが過去の走行経路パターンとして燃料損得と共に記憶されている可能性が極めて高いことから、過去の走行経路パターン毎の経路確率及び第1停止効果係数に基づく第2停止効果係数によりエンジンを停止するか否かが判定されるので、GPS装置等の高価な装置を用いることなく、適切なタイミングでアイドリング運転時間を削減し、燃費を向上させることができる。 (もっと読む)


【課題】 フュエルカット解除時に極力HCCI運転を実行するようにした内燃機関の制御装置を提供する。
【解決手段】 開弁制御部47は、SI運転時(サイクル1)にフュエルカットが開始されると、吸気バルブ22を全閉とする一方で排気バルブ23を小リフトで駆動してEGRガスを気筒内にとどめる(サイクル2)。次に、開弁制御部47は、吸排気バルブ22,23をともに全閉してEGRガスを気筒内に残留させる(サイクル3〜5)、フュエルカット解除後に吸気バルブ22を小リフトで駆動して新気を導入させる(サイクル6)。これにより、EGRガスの熱によって気筒の温度低下が抑制されるとともに、フュエルカット解除後に不要となったEGRガスが排出される。しかる後、開弁制御部47は、HCCI運転を開始すべく開始吸排気バルブ22,23を小リフトで駆動する(サイクル7,8)。 (もっと読む)


【課題】内燃機関の制御装置において、フューエルカット状態を維持したまま、車両速度を調節可能とする(その時の内燃機関のポンピングロスを調節可能とする)こと、その際の燃料消費量を抑制すること、排ガス浄化性能を確保することにある。
【解決手段】制御手段67は、変速制御装置76の勾配検知手段76aにより検知された下り勾配が所定値以上であり且つフューエルカット実施条件の成立中である場合に、内燃機関1の内部EGR(シリンダ内に残留する燃焼ガス)を増加するように可変動弁装置49を制御する。 (もっと読む)


61 - 80 / 583