説明

Fターム[3J057AA03]の内容

油圧・電磁・流体クラッチ・流体継手 (17,432) | 作動種別 (2,123) | 流体圧作動 (1,538)

Fターム[3J057AA03]の下位に属するFターム

Fターム[3J057AA03]に分類される特許

81 - 100 / 628


【課題】アクセルペダルの急操作に対する加速の応答性が優れている惰行制御装置を提供する。
【解決手段】エンジンが外部に対して仕事をしないで運転されているときに、クラッチを断にすると共にエンジン回転数を目標エンジン回転数に低下させて惰行制御を開始する惰行制御実行部3と、惰行制御終了時のアクセルペダル操作加速度に応じたクラッチ接速度でクラッチを接に制御するクラッチ接制御部6とを備える。 (もっと読む)


【課題】 クラッチの動作方法を提供する。
【解決手段】 本発明はクラッチを動作させるための方法に関し、さらに詳しくはクラッチが作動流体圧力44によって作動され、この作動流体圧力が少なくとも1個の圧力センサによって検出され、この圧力センサが、圧力損失によって発生する圧力偏差を補償するために、少なくとも1個のレギュレータを備えた制御回路に組み込まれている、上記方法に関する。クラッチの始動特性および/または動作中の切換え特性をさらに改善する目的で、実際の作動流体圧力44と圧力センサで検出したセンサ圧力45との間の圧力差をより小さくするために、動的センサ圧力補正84および/または動的規定圧力補正80が行われる。 (もっと読む)


【課題】部品の寸法差や操作方法の差による影響を受けることなく、ペダル操作によるフィーリングの良い発進操作が常に安定して可能となる前後進クラッチ制御装置を提供する。
【解決手段】前後進クラッチ制御装置は、クラッチペダルOの操作角度検出結果に基づいて、前進クラッチ又は後進クラッチ35a,35bへの送油圧を制御可能に構成し、前記クラッチペダルOを踏み込んで前進クラッチと後進クラッチ35a,35bとを共に遮断した状態から、該クラッチペダルOの復帰操作の初期には、前記前進クラッチまたは後進クラッチ35a,35bのクラッチ板Sがミートする位置までクラッチピストンRをすばやく移動させるように所定の定圧で送油し、この送油中の圧力が設定圧力以上に達したときに、前記定圧での送油を中止して、クラッチペダルOの操作角度に応じて変更される圧力での送油に切り換えるように連繋するものである。 (もっと読む)


【課題】惰行制御中のアクセル開度の変化幅が大きい運転者に対してもアクセル開度の変化幅が小さい運転者と同等に惰行制御が実施できる惰行制御装置を提供する。
【解決手段】アクセル開度の変化幅を学習し、惰行制御可能領域CAの領域幅よりアクセル開度の変化幅が大きいときには惰行制御可能領域CAを拡大させ、惰行制御可能領域CAの領域幅よりアクセル開度の変化幅が小さいときには惰行制御可能領域CAを縮小させる惰行制御可能領域調節部4を備える。 (もっと読む)


【課題】高速走行時でのエンジンオーバーランが防止でき、しかも、車速低下時には迅速にシフトダウンができる惰行制御装置を提供する。
【解決手段】惰行制御開始条件成立のときクラッチを断しエンジン回転数を低下させ、惰行制御終了条件成立のときエンジン回転数を上昇させてクラッチを接する惰行制御実行部3と、変速マップ4から目標ギア段を設定し、クラッチを断し、目標ギア段へのシフト切替を行い、クラッチを接する変速制御部5と、惰行制御中に、クラッチ回転数が所定値を超えているときは、変速制御部5によるシフト切替を禁止し、クラッチ回転数が所定値以下のときは、変速制御部5によるシフト切替を許可する調停部6とを備える。 (もっと読む)


【課題】ハイブリッド車両において、クラッチスリップを利用した始動制御の時に、トルク衝撃の発生を防止する。
【解決手段】本発明は、ハイブリッド車両の情報を分析して、クラッチスリップを利用した始動条件であるかを判断する過程と、クラッチスリップを利用した始動条件であれば、変速段が特定変速段以上であるかを判断する過程と、変速段が特定変速段以下であれば、特定変速段以上にアップシフト変速させる過程と、クラッチに油圧を印加してクラッチをスリップ制御し、クラッチスリップによってエンジンが設定速度以上であれば、燃料噴射及び点火制御でエンジンを始動させる過程とを含む。 (もっと読む)


【課題】新たにセンサを追加することなく、また、複雑な演算処理を必要としないでクラッチの断接状態を正確に検出することができる自動変速機制御装置及びクラッチの断接状態の検出方法を提供する。
【解決手段】電磁液圧制御弁の電磁ソレノイドへの通電量の制御によって自動変速機のクラッチシリンダに供給する作動液圧を調節する自動変速機制御装置において、クラッチシリンダに供給される作動液圧の値を検出するための圧力センサと、検出される作動液圧が指示圧力となるように電磁ソレノイドの通電制御を行う液圧制御弁制御手段と、電磁ソレノイドの通電制御に用いられるパラメータの急激な変化に基づいてクラッチの断接状態を判定するクラッチ断接判定手段と、を備える。 (もっと読む)


【課題】アイドルストップ機能によって内燃機関の運転が停止している場合においてもクラッチのスタンバイ位置を取得できる動力伝達制御装置を提供すること。
【解決手段】車両が停止中、且つ、変速機がニュートラル状態にあり、且つ、クラッチが分断状態(クラッチストローク=0)にあり、且つ、内燃機関の運転がアイドルストップ機能によって停止している場合において、内燃機関に燃料を噴射することなくスタータモータを駆動することにより、内燃機関の出力軸が回転する状態が確保される。即ち、内燃機関の出力軸が回転する一方で、変速機の入力軸が回転していない状態が得られる。この状態においてクラッチストロークが調整されて、変速機の入力軸の回転速度の推移に基づいて、クラッチのスタンバイ位置が取得される。 (もっと読む)


【課題】流量制御弁の制御装置に関し、簡素な構成で、流量制御弁の中立位置を学習するとともに、学習値を補正する。
【解決手段】作動流体によって作動するアクチュエータ12と、作動流体を供給する作動流体供給源11と、アクチュエータ12のストローク量を検出するストロークセンサ14と、弁体19を有するとともに、弁体19の移動によってアクチュエータ12と連通もしくは遮断される流量制御弁15と、ストロークセンサ14の検出値に応じて弁体19を制御する制御部20とを備え、制御部20は、中立位置を学習する学習部22と、中立位置におけるストロークセンサ14の検出値と中立位置における目標ストローク量とのずれ量に応じて予め作成したマップに基づいて、学習部22による学習値を補正する学習値補正部23とを有するようにした。 (もっと読む)


【課題】発進クラッチが遮断されたモータ駆動走行モードから充電制動走行モードへ移行した場合でも、効率良くバッテリーを充電できるとともに大きな制動力が得られるようにする。
【解決手段】発進クラッチ26が遮断されたモータ駆動走行モードでの走行中にブレーキペダルが踏込み操作された場合に、前輪側要求制動力に対応する必要発電トルクTyoukyuが第2モータジェネレータMG2の最大発電トルクTMG2max を超える時には、その発進クラッチ26を締結し、第1モータジェネレータMG1および第2モータジェネレータMG2を何れも発電制御して上記前輪側要求制動力を発生させるとともに、得られた電気エネルギーでバッテリー46を充電する。これにより、2つのモータジェネレータMG1およびMG2を有効に用いてバッテリー46を効率よく充電できるとともに、大きな制動力が得られるようになり、エネルギー効率が向上する。 (もっと読む)


【課題】クラッチ室からのダストがモータ室へ入り込むことによる一次被害を防止できると共に、クラッチ室内にダストが堆積することによる二次被害を防止できる駆動力伝達装置を提供すること。
【解決手段】ハイブリッド駆動力伝達装置は、モータ/ジェネレータ9と、多板乾式クラッチ7と、ハウジングカバー60と、ダストシール部材62と、ダスト収集構造63と、を備えている。多板乾式クラッチ7は、モータ/ジェネレータ9の内側位置に配置される。ハウジングカバー60は、モータ/ジェネレータ9と多板乾式クラッチ7を覆って設けられ、内部空間をクラッチ室64とモータ室65に分ける。ダストシール部材62は、クラッチ室開放面66より径方向外側位置に配置され、ロータ92とハウジングカバー60の内壁60aとの間をシールする。ダスト収集構造63は、ダストシール部材62によるシール面68とクラッチ室開放面66の間の径方向領域にダスト収集空間69を形成する。 (もっと読む)


【課題】ハイブリッド車両において、モータ走行からエンジン走行に切り替える際、電動モータ17にトルクアップする十分な余裕がない場合でも、当該切替時のトルクショックを抑制できるようにする。
【解決手段】走行モードの切替においては、停止したエンジン11の膨張行程にある気筒に供給された燃料を点火・燃焼させることによって該エンジン11を始動させる。電動モータ17が現在出力可能な最大トルクと現在の発生トルクと差である余裕トルクを演算する。断続手段121を作動させて車輪14からエンジン11にアシストトルクを付与する際に、電動モータ17の余裕トルク量に応じてエンジン回転数上昇手段18によるエンジン回転数の上昇を実行するとともに、電動モータ17のトルクアップを実行する。 (もっと読む)


【課題】計算負荷を抑制しつつ精度よく指示圧に対するモデル油圧を算出することができる車両用油圧制御装置を提供する。
【解決手段】モデル油圧算出手段162は、指示圧Pinと内圧Pcとの差分ΔPおよび油圧のガード変化量ΔPcから構成される予め求められた関係マップに基づいて油圧のガード変化量ΔPcを決定し、前回算出されたモデル油圧Pmdli-1に決定された油圧のガード変化量ΔPcを加算または減算することで、今回のモデル油圧Pmdliを算出する。このようにすれば、クラッチCを構成する油圧アクチュエータACTやアキュムレータACM等の各種諸元に基づいて構成される流量等の方程式を解いて、精緻にモデル油圧Pmdlを算出する場合と略変わらない算出結果を得ることができる。 (もっと読む)


【課題】貯留液量が良好に視認可能となるリザーバの提供。
【解決手段】ブレーキリザーバ室105とクラッチリザーバ室93,94とを画成する第1の隔壁81,82を各側壁26,27に沿うように車両前後方向に延ばしてそれぞれ立設し、第1の隔壁81,82と第1の隔壁81,82に隣接する側壁26,27とを繋ぐ第2の隔壁85,86を各側壁26,27の車両前後方向の中間位置にそれぞれ立設して各側壁26,27にブレーキリザーバ室105とクラッチリザーバ室93,94とが臨むように形成した。 (もっと読む)


【課題】駆動力増大時に変速機のトルク容量が不足して滑りを生じることが無いように油圧を適切に制御できるようにする。
【解決手段】パワーモードON時(実線)には、エンジン回転速度NEに基づいてライン圧PLが高くされるため、第2モータジェネレータMG2の力行トルクTMG2が高くなる前に自動変速機22のトルク容量が増大させられ、油圧変化の応答遅れに拘らず自動変速機22の滑りが適切に防止される。パワーモードOFF時(破線)には、力行トルクTMG2に基づいてライン圧PLが高くされるが、力行トルクTMG2は自動変速機22の伝達トルクに対応するとともにパワーモードON時に比較して変化率が小さいため、自動変速機22の滑りを適切に防止しつつライン圧PLをできるだけ低圧に維持することが可能で、燃費の悪化が抑制される。 (もっと読む)


【課題】トルク容量の不足を補うことができる電磁係合装置を提供する。
【解決手段】電磁係合装置5は、共通の軸線Axの回りに相対回転可能に組み合わされ、その相対回転に伴って軸線Ax方向に関する間隔Xが拡大するように構成された一対のカム部材8、9と、可動カム部材9を間隔Xが狭まる方向に付勢するリターンスプリング15と、一対のカム部材8、9の相対回転を促す電磁駆動部7と、一対のカム部材8、9の間に形成された空間Sにオイルを供給するための分岐路22とを備え、解放状態の時に分岐路22を閉鎖し、かつ解放状態から係合状態に移行する過程で分岐路22を開通させて閉空間Sにオイルを供給する。 (もっと読む)


【課題】フライホイールを必要とせずに、内燃機関の自立運転時に生じる振動及びノイズを低減すること。
【解決手段】クラッチ装置20は、摩擦材21と、プレート22と、係合機構と、第2クラッチ装置とを備える。摩擦材21は、内燃機関11と連結される。プレート22は、トルクコンバータ13と連結される。係合機構は、摩擦材21とプレート22とを係合させる。第2クラッチ装置は、トルクコンバータ13と車輪との間に設けられて、内燃機関11の自立運転時に、トルクコンバータ13と車輪との間における回転力の伝達を遮断する。そして、係合機構は、内燃機関11の自立運転時に、摩擦材21とプレート22とを係合させる。 (もっと読む)


【課題】変速比が最Lowの状態で車両が牽引されても、前後進切替機構における焼付の発生を防止することができる無段変速機を提供する。
【解決手段】プライマリプーリ4Aと、セカンダリプーリと、前記両プーリに巻き掛けられたベルト4Cと、を含み、ベルト4Cのプーリに対する掛かり径をオイルポンプ7から供給される油圧によって変化させることにより変速比を無段階に設定する無段式変速機構4と、オイルポンプ7から供給される油圧によってプライマリプーリ4Aに入力する動力を前進方向動力又は後進方向動力に切換える前後進切換機構3と、を備え、オイルポンプ7が油圧の供給を停止しているとき、前後進切換機構3から駆動輪に亘って形成される動力伝達経路をキャリヤ25の出力軸部25aとプライマリプーリ4Aの固定シーブ4A1との間で遮断する動力遮断機構を備える。 (もっと読む)


【課題】エンジン始動の応答遅れを抑制できる車両制御システムを提供すること。
【解決手段】エンジンと駆動輪との動力の伝達経路に配置され、作動流体の圧力で係合することでエンジンと駆動輪との動力の伝達を可能とするクラッチと、伝達経路におけるクラッチよりも駆動輪側に連結された電動機とを備える。クラッチを解放し、かつエンジンを停止して電動機の動力で走行する電動機走行から、少なくともエンジンの動力を利用して走行するエンジン走行に移行する場合、クラッチを係合させて電動機の動力によりエンジンを始動させる。移行するためのエンジンの始動要求がなされる前に予めクラッチに作動流体を充填する事前充填(S30)を実行可能であり、かつ、エンジンの始動要求がなされたときの事前充填の進捗の度合いに基づいて、エンジンの始動時にクラッチに供給する作動流体の圧力を決定する(S60,S70)。 (もっと読む)


【課題】エンジン始動の応答遅れを抑制できる車両制御システムを提供すること。
【解決手段】エンジンと駆動輪との動力の伝達経路に配置され、作動流体の圧力で係合可能であり、かつ係合することでエンジンと駆動輪との動力の伝達を可能とするクラッチと、伝達経路におけるクラッチよりも駆動輪側に連結された電動機とを備え、クラッチを解放し、かつエンジンを停止して電動機の動力で走行する電動機走行、及びエンジンの動力を利用して走行するエンジン走行を実行可能である。電動機走行からエンジン走行に移行する場合、クラッチを係合させて電動機の動力によりエンジンを始動させる。移行するときのエンジンの始動の応答性を高める必要がある(S30肯定)場合、移行のためのエンジンの始動要求がなされる前に予めクラッチに作動流体の圧力を供給する(S40,S50)。予め供給される圧力は、エンジン始動の開始時にクラッチに供給される圧力よりも低い。 (もっと読む)


81 - 100 / 628