説明

Fターム[4D028BC24]の内容

活性汚泥処理 (8,774) | 活性汚泥処理装置 (2,065) | 細部構造 (1,713) | 曝気部 (341)

Fターム[4D028BC24]に分類される特許

1 - 20 / 341


【課題】シクロヘキサノンオキシムを含む廃水から、好適に有機物を減少させることを可能とする廃水処理方法を提供することを目的とする。
【解決手段】シクロヘキサノンオキシムを含む廃水を、フェントン酸化処理した後に、生物学的処理を行う廃水処理方法。 (もっと読む)


【課題】ディッチにおける反応速度の向上を図ることができる排水処理装置を提供する。
【解決手段】排水処理装置は、原水流入経路18、循環液出口経路16、循環流発生手段12及び酸素供給手段(散気装置13)を備え、好気域14と無酸素域15とを形成した無終端水路(ディッチ11)と、循環液出口経路15から流出した循環液を固液分離する固液分離手段(最終沈殿池17)とを備え、循環液中に生物固定担体を投入し、循環流発生手段は、軸線を鉛直方向に向けた回転円筒体12aと、回転円筒体の外周に突設した撹拌羽根12bとを備え、酸素供給手段は、直径が50μm以下の微細気泡を発生する微細気泡発生器を備え、循環液出口経路は、生物固定担体の流出を防止するスクリーン16aを備えている。 (もっと読む)


【課題】被処理物から生じる臭気を効率的に除去でき、また、周囲に臭気を拡散することを防止でき、さらに、被処理物から生じる腐食成分による劣化を防止できる減圧発酵乾燥装置を提供すること。
【解決手段】減圧発酵乾燥装置1は、微生物が添加された有機性の被処理物が投入される処理室22を有する乾燥機2と、乾燥機2に設けられて被処理物を加熱する加熱ジャケット24と、乾燥機の処理室22内に回転可能に配置され、被処理物を加熱すると共に攪拌する加熱攪拌部25と、有機廃棄物から生成された水蒸気を凝縮して凝縮水を生成する凝縮部23と、凝縮部23の凝縮水と処理室22の空気の混合体が導かれ、導かれた混合体を凝縮水と空気とに分離する気液分離装置3と、気液分離装置3の下流側に接続され、凝縮部23の凝縮水と処理室22の空気を気液分離装置に向かって吸引する吸引ポンプ5を備える。 (もっと読む)


【課題】簡便で動力削減にも寄与可能な、汚泥と処理水の固液分離を行う膜の目詰まりを軽減する方法を提供する。
【解決手段】汚泥と処理水の固液分離を行う膜の目詰まり軽減方法であって、タンパク質分解酵素を分泌する微生物を前記汚泥中で維持する工程を含む、方法。 (もっと読む)


【課題】水処理プロセスでの処理水水質の維持と温室効果ガス低減を両立する制御を実施できる水処理プロセス制御装置を提供する。
【解決手段】水処理プロセスの好気槽1に設けた酸化還元電位計4の計測値から好気槽1の被処理水の硝化度を推定する推定部10と、好気槽1の被処理水の硝化度の目標値を設定する目標値設定部12と、好気槽1に空気を送り込むブロワ2と、推定部10で推定された硝化度の推定値が好気槽1の被処理水の硝化度の目標値となるように、ブロワ2の風量を制御する制御部11と、を備えた。そして、好気槽1の被処理水の硝化度の目標値が、第一目標値と前記第一目標値より大きい値の第二目標値の少なくとも二つであって、目標設定部12は、選択する制御モードに応じて、第一目標値あるいは第二目標値を硝化度の目標値とする。 (もっと読む)


【課題】N2Oが低濃度の場合でもガスを全量処理するため、処理効率が低下する恐れがあるため、N2O濃度の高い排ガスを選択的に回収することで、N2O処理効率を向上できる下水処理方法を提供する。
【解決手段】活性汚泥により廃水を処理する生物反応槽1に設置された溶存酸素計8と、生物反応槽1にエアレーションされたガスを回収するための排ガス回収手段5と、排ガス回収手段5に設けられた制御弁6を開閉制御する制御手段7を備え、制御手段7は溶存酸素計8の計測値の少なくとも6時間以上の平均値を、溶存酸素計8の計測値の現状値が超えた場合に、制御弁6を開閉制御してエアレーションされたガスを回収するものであり、生物反応槽の溶存酸素からN2O発生量を予測し、排ガス中のN2O濃度が高い場合に排ガスを処理する。 (もっと読む)


【課題】周辺に強い臭気を放散することなく、且つ含窒素有機物および/または含硫黄有機物を含有する廃水等を大量に処理できる沈殿槽を提供する。
【解決手段】廃水導入口11及び上澄み液排出口12を備え、略円筒形状で上面開口の槽本体1と、槽本体1の上面開口を覆う蓋部材2と、槽本体1の中心軸に沿って設けられ、蓋部材2から上部が突出した回転軸3と、回転軸2の下部に設けられた撹拌翼4と、槽本体1の外周壁の上端面を自走するローラ51と、ローラ51と回転軸3とを繋ぐアーム5とを設ける。そして、ローラ51を槽本体1の外周壁の上端面を自走させることにより、アーム5を旋回させて回転軸3を回転させ、回転軸3に設けられた撹拌翼4を回転させる。 (もっと読む)


【課題】小型で効率よく生ごみ粉砕処理廃液のバイオガス化が行える排水処理装置を提供すること。
【解決手段】固液分離槽2にて沈殿分離された沈殿物を受け入れてバイオガス化する嫌気発酵槽3を備え、固液分離槽2から嫌気発酵槽3に沈殿物を移流させる移流部を設けてなり、移流部に、固液分離槽2と嫌気発酵槽3との間を沈殿物により閉塞して、固形成分の嫌気発酵槽3から固液分離槽2への逆流を防止可能にする絞部を設けるとともに、沈殿物を絞部を介して嫌気発酵槽3に移流させ、嫌気発酵槽3の余剰の液相を絞部を介して固液分離槽2に返送可能にする沈殿物移流機構を嫌気発酵槽3に設け、嫌気発酵槽3には、生成したバイオガスを外部に取り出すバイオガス取出路を設けた。 (もっと読む)


【課題】有機物濃度に応じて被処理液に対する散気量を制御することで分離膜のファウリングを防止でき、安定的に高い膜透過流束を維持可能な膜分離活性汚泥処理装置の運転方法を提供する。
【解決手段】被処理液に散気する散気手段6が浸漬配置された曝気槽3と、前記被処理液から透過液を得る膜分離装置4が浸漬配置された膜分離槽5を備えた膜分離活性汚泥処理装置1の運転方法であって、前記被処理液の上澄み液中の有機物濃度に基づいて前記散気手段6の単位時間当たりの散気量を調整することを特徴とする。 (もっと読む)


【課題】維持管理性および運転効率性に優れた回分式汚水処理システムおよび回分式汚水処理方法を提供する。
【解決手段】回分式汚水処理システムは、汚水SWおよび活性汚泥SLを収容する回分槽11,12と、昇降型のインペラ21を有する縦軸型の曝気装置20と、流入工程における回分槽11,12への汚水SWの流入および排出工程における回分槽11,12からの浄水CWの流出を調整する流出入調整装置31,32と、流入工程において、回分槽11,12内の水位上昇に従ってインペラ21を気液界面付近まで上昇させながら汚水SWを曝気攪拌させ、排出工程において、次の流入工程に備えてインペラ21を事前に下降させるように、曝気装置20を制御する制御装置40とを備える。 (もっと読む)


【課題】縦軸型の曝気撹拌機を有するオキシデーションディッチ槽において、オキシデーションディッチ槽内全体に効率よく循環流を形成できると共に、曝気を良好に行う。
【解決手段】直線水路23に配置されたインペラ11より上流側にバッフル板13を配置し、インペラ11の回転により上流側へ向かう撹拌流C2をバッフル板13によって下流側に誘導する。また、バッフル板13の上部に通過部14を設け、インペラ11の回転により飛散し上流側へ向かう水C3を通過部14を通して通過させる。また、通過部14と対向するようにバッフル板13に整流板15Aを設け、通過部14を通過した水C3を整流板15Aと衝突させながらバッフル板13の外周面に沿うと共にインペラ11の回転方向に沿うように整流する。そして、水C3が通過部14を通過し整流板15Aにより整流される間、水C3に充分な空気を取り込ませる。 (もっと読む)


【課題】散気管の散気孔を閉塞させることなく活性汚泥に対する酸素供給効率と膜モジュールの膜洗浄効率とを高める。
【解決手段】散気装置1は膜モジュール2の真下に配置される散気管11と当該真下でない位置にて散気管11と並列に配置される散気管12とを備える。前記真下の位置における散気管11の下面において開口部が管11の軸方向に沿って複数形成される一方で当該開口部よりも小径の複数の散気孔が当該真下でない位置であって当該開口部よりも高位であり且つ管11の軸よりも低位の位置にて前記軸方向に沿って配置されるように当該方向の断面を挟んで形成されている。散気管12の下面には複数の開口部が管12の軸方向に沿って形成される一方で当該開口部よりも小径の複数の散気孔が当該開口部よりも高位であり且つ管12の軸よりも低位の位置にて当該軸方向に沿って配置されるように当該方向の断面を挟んで形成されている。 (もっと読む)


【課題】 本発明は、濾過膜の濾過抵抗を小さくし、濾過圧力を低下させた改良型曝気装置を備えた浸漬型膜分離汚水処理装置と、それを有利に実施する方法を提供することを目的とする。
【解決手段】 貫通孔を有するポリエチレンテレフタレートフィルムの両面に、微細孔な貫通孔を有するPTFEフィルムを重ねた分離膜を有する濾過ユニットと、散気管とで構成される固液分離モジュールは、目詰まりが少なく濾過抵抗が小さいので、濾過圧力が小さく、膜分離装置の稼働コストを節減でき、しかも耐用寿命が長い。 (もっと読む)


【課題】消泡剤等を用いずに残存気泡による問題を解決でき、酸素供給量の把握・調整が簡便且つ正確で、過剰な酸素供給及びエネルギー消費を防止可能な曝気技術を提供することを課題とする。
【解決手段】細胞等を含有する液中に供給される酸素気泡が液中を上昇して液面に達する前に消泡するよう供給速度を調節して供給を継続し、消泡点が液面へ向かって上昇し始めたら、酸素気泡の供給を停止する。或いは、液の深度による溶存酸素濃度曲線を調べながら酸素を含有するガスの気泡を液中に供給して、溶存酸素濃度曲線が液面より下D3に極大値C3を示すように供給速度を調節して供給を継続し、極大値を示さなくなったらガスの供給を停止する。 (もっと読む)


【課題】微小動物の捕食作用を利用した多段活性汚泥法において、凝集体捕食型の微小動物の増殖を抑制し、濾過捕食型の微小動物を優占化させて、汚泥を減量すると共に良好な処理水質を得る。
【解決手段】二段以上の多段に設けられた好気性生物処理槽の第一生物処理槽1に有機性排水を導入して細菌により生物処理し、第一生物処理槽1からの分散状態の細菌を含む第一生物処理水を後段の生物処理槽2に通水して生物処理し、最後段の生物処理槽2の生物処理水を汚泥と処理水とに固液分離する有機性排水の生物処理方法において、後段の生物処理槽2に微小動物を保持する流動床担体2Aを設けると共に、この生物処理槽2の曝気量を50m−air/m−槽底面積/h以下とする。 (もっと読む)


【課題】有機汚染物質で汚染された土壌および/または地下水を、原位置で好気微生物を利用して浄化する際、硝化細菌の存在を迅速に検出して、効果的に亜硝酸性窒素および硝酸性窒素の生成を抑制して、効率よく浄化を行う。
【解決手段】
供給路L1から酸素含有ガスを送り、ガス供給路L3から注入井戸4a、4b、4cに分散して混合ガスGを土壌1および地下水2中に注入し、注入井戸4aから、地下水を含むサンプルを汲み上げて、採取容器10に採取する。このサンプルについてリアルタイムPCRによりアンモニア酸化細菌の菌数を測定する。測定値が所定値を超過した段階で、ガスボンベ6からガス状硝化抑制物質(アセチレン)を送り、供給路L3から注入井戸4a、4b、4cに分散して混合ガスGを土壌1および地下水2中に注入し、土壌中に存在する好気微生物の作用により有機汚染物質を分解し、硝化細菌による亜硝酸性窒素や硝酸性窒素の生成を抑制する。 (もっと読む)


【課題】下水流入量が計画最大流入量を超過する場合であっても下水を効率的に処理すること。
【解決手段】本発明の一実施形態である下水処理方法では、下水流入量が計画最大流入量を超過する場合、制御装置4が、流路L5に設けられた開閉バルブBの開度を調整することによって、生物反応槽1内の活性汚泥混合液を活性汚泥濃縮装置3に供給することにより、生物反応槽1及び最終沈殿池2内の活性汚泥混合液の水位を所定値以下に低下させる。これにより、下水流入量が計画最大流入量を超過する場合であっても下水を効率的に処理することができる。 (もっと読む)


【課題】大型の施設や特殊な設備を必要とせず、現行の活性汚泥処理施設を利用することができ、薬剤コストや運転コストが低く、且つ、効率的にPVAを微生物により分解してCOD負荷を低減することのできる廃水処理方法及び廃水処理装置を提供する。
【解決手段】
ポリビニルアルコールを含有する廃水にポリビニルアルコール分解能を有する微生物を加えて、当該廃水を好気性雰囲気下に維持することにより、前記微生物を好気的に増殖させ、且つ、当該廃水中のポリビニルアルコールを好気的に分解する。この微生物は、Pseudomonadaceae属に属するPseudomonas sp.W‐4(FERM P−21573)又は/及びChryseobacterium属に属するChryseobacterium sp.W‐6(FERM P−21572)である。 (もっと読む)


【課題】フロック粒径を加味して溶存酸素の目標値を変更することで、好気槽で硝化反応と脱窒反応を並行的に進行させるための曝気量制御を適切なものとする。
【解決手段】本発明に関わる水処理装置は、廃水を処理するための活性汚泥が投入される生物反応槽1と、該生物反応槽1に送られた廃水中の溶存酸素の量を測定する溶存酸素測定手段6と、生物反応槽1内の廃水にエアレーションするための散気手段4と、該散気手段4の風量を制御する風量制御手段3、5と、記溶存酸素測定手段6の計測値を基に,当該計測値が溶存酸素の量の目標値になるように風量制御手段3、5を制御する制御手段7とを備えた水処理装置S1であって、活性汚泥の粒径を計測または予測するための粒径計測・予測手段8を備え、制御手段7は、粒径計測・予測手段8の計測値または予測値に応じて溶存酸素の目標値を変更している。 (もっと読む)


【課題】円弧流路に整流壁を有するオシキデーションディッチ(OD)であっても、縦軸型曝気撹拌装置によって槽内に効率良く循環撹拌流を形成可能とする。
【解決手段】水槽1内を仕切る仕切壁2により無端状の循環流路が形成されこの循環流路を主要流路5及びこの主要流路5,5の端部同士を接続する平面視略半円状の円弧流路6により構成しこの円弧流路6に平面視円弧状の整流壁7を備えたODにあって、縦軸型曝気撹拌装置3を、そのインペラ9が、円弧流路6の整流壁7の下流側の端部7aよりさらに下流側の主要流路5に位置するように設置し、このインペラ9の回転によって、当該インペラ9より上流側で円弧流路6の整流壁7より内周側流路8a又は外周側流路8bの何れか一方へ向かう噴出流を、インペラ9の側方に位置する逆流防止板13により遮り当該インペラ9より上流側へ向かうことを阻止し、下流側に向かう良好な循環撹拌流を形成する。 (もっと読む)


1 - 20 / 341