説明

Fターム[4D050CA06]の内容

酸化・還元による水処理 (19,692) | 酸化、還元前後に併用する水処理単位操作 (3,293) | 吸着(活性炭等) (356)

Fターム[4D050CA06]に分類される特許

161 - 180 / 356


【課題】生理活性を有し、健康増進機能が顕著な健康飲料水を提供する。
【解決手段】ケイ酸塩鉱物を0.1〜0.5ppm含有する水をオゾン処理することにより記憶用ベース水を調製し、次いで、調製した記憶用ベース水に、交流の電圧を印加する振動発信器により特定振動波を抱かせて水の記憶力と特定付加活力を保有した水とすることを特徴とする健康飲用水の製造方法。 (もっと読む)


【課題】消費するエネルギー量が小さい水処理技術を提供する
【解決手段】被処理水を貯める液体処理水槽1と、液体処理水槽1内の該被処理水中に、ナノバブルまたはマイクロナノバブルを発生させる、ナノバブル発生機47、マイクロバブル発生機78、および水中ポンプ型マイクロナノバブル発生機52と、液体処理水槽1に流入する該被処理水の水質を測定するための流体処理前測定槽72と、液体処理水槽1から流出する該被処理水の水質を測定するための流体処理後測定槽57とを備えており、流体処理前測定槽72が測定した水質と、流体処理後測定槽57が測定した水質とに基づいて、ナノバブル発生機47、マイクロバブル発生機78、および水中ポンプ型マイクロナノバブル発生機52のそれぞれを稼働または停止させるようになっている水処理装置100を用いる。 (もっと読む)


【課題】COD量等が多くてもより確実に処理を行うことができる水処理システムを提供しようとするもの。
【解決手段】汚れ評価指標の指数が略0となった最終処理水1によって原水2を“被酸化物質低減処理を行うことによりその汚れ評価指標の指数を略0まで低減可能な所定濃度”に希釈する帰還流路3と、“被酸化物質低減処理を行うことによりその汚れ評価指標の指数を略0まで低減可能な所定濃度”に希釈された希釈原水4について被酸化物質低減処理を行ってその汚れ評価指標の指数を略0とする被酸化物質低減処理流路5とを具備することとした。 (もっと読む)


【課題】有機フッ素化合物を含有する被処理水をより合理的に処理でき、かつ処理効率を格段に向上できる水処理装置および水処理方法を提供する。
【解決手段】この水処理装置は、シーケンサ3は、流入水泡レベル感知部9が被処理水の水面40に生じた泡の高さにより検出した被処理水の有機フッ素化合物濃度に応じて、4台のナノバブル発生機31〜34のうちの運転させるナノバブル発生機の台数を制御する。よって、ナノバブルが有する強力な酸化分解力を充分に利用してナノバブル発生分解部10内の被処理水が含有する有機フッ素化合物を分解処理できる。pH計75が測定した上記被処理水のpHに基づいてpH調整計76で被処理水のpHを調整するので、処理水のpHを中性域(pH5.8〜8.6)にすることが可能である。 (もっと読む)


【課題】オゾン処理と生物処理を用いて有機物を除去する水処理方式において、オゾン処理の効率を向上することにより、高い有機物除去性能を有する経済性の高い水処理システムを提供する。
【解決手段】マイクロバブル生成装置1Aで被処理水中に生成したオゾンマイクロバブルを、オゾン反応槽11Aに注入する。この被処理水を、生物反応槽21Aの生物活性炭層23に形成した生物膜で処理し、有機物をさらに分解、吸着処理する。オゾンマイクロバブルは酸化力と反応性が高いため、効率良く有機物を分解するとともに、生物難分解性有機物を生物易分解性有機物に変性させることができる。また、反応性が高いため処理後の溶存オゾン濃度が低減され、生物・活性炭処理槽21Aの微生物の健全性を維持できる。これによって、被処理水中の有機物除去効率と維持管理性が向上し、水処理の経済性が向上する。 (もっと読む)


【課題】従来のようには汚泥が発生しない水処理システムを提供しようとするもの。
【解決手段】塩素ガスを混合して次亜塩素酸を生成せしめる気液混合機構6と、有隔膜電解槽5とを具備し、前記気液混合機構6で生成した次亜塩素酸を含有する水を被処理水に及ぼしてそのCODを低減すると共に、前記被処理水の少なくとも一部を有隔膜電解槽5に供給しその陽極側でガス化した塩素ガスを気液混合機構6に供給するようにした。生物処理ではなく次亜塩素酸によって化学的にCODを低減することができる。気液混合機構(塩素ガスの次亜塩素酸への変換)⇒被処理水のCODの低減(次亜塩素酸の酸化作用の発現)⇒有隔膜電解槽(塩素ガスのガス化の促進)⇒気液混合機構(塩素ガスの次亜塩素酸への変換)のように気液混合機構を介して塩素を循環し有効利用することができる。 (もっと読む)


【課題】有機フッ素化合物を含有する被処理水をより合理的に処理でき、かつ処理効率を格段に向上できる水処理装置および水処理方法を提供する。
【解決手段】この水処理装置では、シーケンサ3は、流入水泡レベル感知部9が被処理水の水面40に生じた泡の高さにより検出した被処理水の有機フッ素化合物濃度に応じて、4台のナノバブル発生機31〜34のうちの運転させるナノバブル発生機の台数を制御する。よって、ナノバブルが有する強力な酸化分解力を充分に利用してナノバブル発生分解部10内の被処理水が含有する有機フッ素化合物を分解処理できる。 (もっと読む)


【課題】より簡単なクラゲ処理工程で、低コストかつCOD処理効率を向上させたクラゲ処理装置及びクラゲ処理方法を提供する。
【解決手段】クラゲ処理装置10A−1は、海水11中のクラゲを保管し、クラゲを破砕するクラゲ保管槽12と、分解酵素供給部14より供給される分解酵素13により分解を行うクラゲ分解槽15と、酸化性物質供給部16より供給される酸化性物質17により前記分解されたクラゲ分解液18中のCOD成分を酸化処理するCOD処理槽19とを有するクラゲ処理装置であって、該COD処理槽19内に供給される前記クラゲ分解液18を加温する加熱部20及びクラゲ分解液18を冷却する冷却部22を有してなるものである。 (もっと読む)


【課題】活性炭の破過を抑制し得る水処理技術を提供する。
【解決手段】処理水に活性炭を接触させる活性炭吸着手段を備えている水処理装置において、該処理水中にナノバブルまたはマイクロナノバブルを発生させるバブル発生手段をさらに備える。 (もっと読む)


【課題】処理水中に含まれる混入物を効果的に除去し得る水処理装置および水処理方法を提供する。
【解決手段】処理水を浄化するための水処理装置において、ポリビニルアルコールからなり、細孔を有し、微生物を固定化している担体を備えており、処理水を貯める、第1樹脂槽および第2樹脂槽と、活性炭を備えている活性炭吸着塔と、第1樹脂槽において浄化された該処理水を第2樹脂槽に輸送する第1経路と、第2樹脂槽において浄化された該処理水を該活性炭吸着塔に輸送する第2経路とを備える。 (もっと読む)


【課題】FT法において液化炭化水素の副産物として生じる副生成水を浄化して各種用途に利用可能な水とする際の設備コスト、ランニングコストの低減を図る。
【解決手段】合成ガスを用いた炭化水素の製造により得られた反応物から分離された副生成水に対して湿式酸化処理(1)を行うことにより1次処理水を得る。次いで、この1次処理水に対してクロスフロー方式で半透膜分離処理(2)を行い浄化水を得る。この浄化水は、河川や海等に排水するものとしてもよいが、好ましくは、工業用水、灌漑用水、飲用水等として使用される。また、半透膜分離処理(2)で発生する濃縮水に対して、生物処理を行うとともに固液分離を行うことにより濃縮水を浄化する。また、この生物処理された水は、例えば、半透膜分離処理(2)に返送されて、再び処理される。 (もっと読む)


【課題】FT法において液化炭化水素の副産物として生じる副生成水を浄化して各種用途に利用可能な水とする際の設備コスト、ランニングコストの低減を図る。
【解決手段】合成ガスを用いた炭化水素の製造により得られた反応物から分離された副生成水に対して湿式酸化処理(1)を行うことにより1次処理水を得る。次いで、この1次処理水に対してクロスフロー方式で半透膜分離処理(2)を行い、浄化水を得る。この浄化水は、河川や海等に排水するものとしてもよいが、好ましくは、工業用水、灌漑用水、飲用水等として使用される。また、半透膜分離処理(2)で発生する濃縮水の一部を副生成水に返送して再び湿式酸化処理を行なう。濃縮水の残りに対して、生物処理を行うとともに固液分離を行うことにより濃縮水を浄化する。また、この生物処理された水は、例えば、半透膜分離処理(2)に返送されて、再び処理される。 (もっと読む)


【課題】凝集剤の注入量を抑制しつつ膜ファウリングの抑制と処理水質の向上を安定的に達成することができる凝集−膜ろ過方法を提供する。
【解決手段】急速撹拌槽1において原水に凝集剤を添加して強撹拌し、マイクロフロックを形成する。次に反応槽2においてエアレーション撹拌を行ってフロックを粗大化させたうえ、沈殿槽3において粗大フロックを沈降分離する。小型フロックを含む上澄水を槽外設置された分離膜4に送水し、クロスフローろ過を行って処理水を取り出す。沈殿槽3の槽底水は反応槽2に返送され、また分離膜4からの膜返送水は反応槽2に返送される。反応槽2に凝集剤が滞留するので、凝集剤の添加量を削減できる。 (もっと読む)


【課題】 パルプの蒸解工程から排出される硫化物を含有しない黒液から、水処理技術により、リグニンを凝集・分取すると共に、濾液に残存する有機物を除去し、水と酸と苛性ソーダとを回収する。
【解決手段】 黒液に鉱酸及び必要に応じて希釈水を加えてpHを1−7に調整し、凝集剤を加えて凝集するリグニンを濾別する。更に、濾液にオゾンを接触させて液中の有機物を酸化分解し、活性炭で残存有機物を吸着除去する。 (もっと読む)


【課題】 廃液中の2価フェノール及び/又はその酸化体を含むこれらの有機成分を除去する。
【解決手段】 ヒドロキノン及び/又はベンゾキノン等の2価フェノール及び/又はその酸化体を含有する廃液をpH7〜13に調整した後に、ペルオキソ二硫酸塩を添加し、次いでpH調整剤を添加しpHを1〜4とする。これにより前記ヒドロキノン及び/又はベンゾキノンの少なくとも一部が重合しかつ重合体が凝析・沈降して除去される。ペルオキソ二硫酸塩はヒドロキノン等の有効な重合開始剤であり、廃液中のヒドロキノン等を重合させ高分子化して濾過による除去が容易になる。 (もっと読む)


【課題】簡易かつ低コストでもって所望の水質を有する生産水の生成を可能とする。
【解決手段】本発明の水質改質装置は、第1〜第4の膜モジュール21〜24が4段に直列接続されている。本実施の形態では、第1〜第3の膜モジュール21〜23には、第1〜第3の逆浸透膜21a〜23aが内蔵され、第4の膜モジュール24には、ナノろ過膜24aが内蔵されている。また、各逆浸透膜21a〜23aは、TDSの除去率が90%以上、かつSiOの除去率が90%以上に設定されたろ過膜が使用され、ナノろ過膜24aは、TDSの除去率が40〜60%、かつSiOの除去率が1〜10%に設定されたろ過膜が使用される。各膜モジュールで膜ろ過分離される濃縮水は次段の膜モジュールに原水として供給され、或いは循環系に回収される。一方、膜ろ過分離された各透過水は混合されて生産水となる。 (もっと読む)


【課題】LV値が低い場合でも良好な残留オキシダント除去効果を得、かつこの効果を低い価格で実現する。
【解決手段】電気分解またはオゾン接触による殺菌処理によって発生した残留オキシダントを含有する養殖水を活性炭槽31に注入し、この養殖水を、破砕状の活性炭から形成された下側流動層35と、球状の活性炭から形成された上側流動層36とに順次通し、これにより養殖水から残留オキシダントを除去する。 (もっと読む)


【課題】大量生産に適し、水素の溶存量のばらつきが少なく、水素濃度の高い飲料用水素含有水の製造方法を提供すること。
【解決手段】原料水を、疎水性材料からなるガス透過膜により原料水流通部と水素ガス流通部とに区画された水素ガス溶解モジュールの前記原料水流通部に供給すると共に、前記水素ガス溶解モジュールの前記水素ガス流通部に加圧した水素ガスを供給して、前記原料水に水素を溶解させ、その後、前記水素ガス溶解モジュールの前記原料水流通部から吐出される水素ガスが溶解した原料水を容器に充填して密封し、殺菌処理する。 (もっと読む)


【課題】前処理制御系と給水処理制御系とを各々別個独立にシステム設計し、両者を連携させることにより、低コスト化で種々のバリエーションに対応可能であり、利便性の優れた付加価値の高い機能を備えた水処理システムを実現する。
【解決手段】制御ブロック8が、前処理ブロック4の各構成要素(原水ポンプ1、除鉄・除マンガンろ過装置2、軟水装置3、次亜注入装置11、残留塩素濃度監視装置12)の制御を司る第1の制御部29と、給水処理ブロック7の各構成要素(RO装置5、処理水タンク6、還元剤注入装置17、原水硬度監視装置18、流量計19、次亜注入装置20)の制御を司る第2の制御部31とに分別されている。第1の制御部29は前記第2の制御部31に対し運転許可信号33及び異常検知信号34を送信し、第2の制御部31は第1の制御部29に対し給水要求信号32を送信する。 (もっと読む)


【課題】安価な鉄を主たる構成素材とし、汚染水からヒ素、セレン、カドミウム、鉛およびクロムの重金属類を除去する性能が高い鉄粉処理剤、およびこうした処理剤を用いた有用な処理方法を提供する。
【解決手段】本発明の処理剤は、ヒ素、セレン、カドミウム、鉛およびクロムの重金属類の少なくとも1種を含有する汚染水から前記重金属類を除去するための処理剤であって、リンを0.6〜5質量%の量で含有する鉄粉である。 (もっと読む)


161 - 180 / 356