説明

Fターム[4F072AD06]の内容

強化プラスチック材料 (49,419) | マトリックス (8,173) | 付加系樹脂 (1,465) | 塩化ビニル系(←塩化ビニリデン) (66)

Fターム[4F072AD06]に分類される特許

41 - 60 / 66


【課題】着炎しにくく、かつ自己消火性を有する膜材を提供する。
【解決手段】繊維基材の少なくとも片方の面に樹脂層を有する膜材において、該樹脂層を構成する樹脂に、該樹脂100重量部に対して30重量部以上200重量部以下の発泡剤を含有させる。 (もっと読む)


強化複合物品における繊維分散及び機械的性質を改良するコーティング組成物を提供する。上記コーティング組成物は、乳化剤、界面活性剤及び溶融粘度低下剤として作用する化学化合物を含む。少なくとも1つの典型的な実施態様においては、上記化学化合物は、エトキシ化脂肪酸又はエトキシ化脂肪族アルコール化合物である。上記コーティング組成物は、補強用繊維ストランドに、通常のサイズ剤組成物を補強用繊維に適用した後で熱可塑性樹脂による繊維のワイヤーコーティング前に適用し得る。コーティング処理/サイズ処理繊維ストランドは、細断してチョップトストランドセグメントを形成させ、次いで、濃密化又は圧縮して、ペレットのような濃密化補強用繊維製品を製造し得る。これらのペレットは、引続き、ポリマー強化複合物品を形成させるのに使用し得る。別の実施態様においては、上記コーティング組成物は、ブッシングの下の繊維形成直後の補強繊維に直接適用し得る。
(もっと読む)


【課題】成形不良を起こすことなしに厚肉の成形品を得ることのできる軽量のセルロース繊維強化成形体とそれを効率的に製造する方法を提供する。
【解決手段】上記製造法を、互いに絡み合ったセルロース繊維を単独で或いは粉末状の樹脂成分と共に溶媒中で攪拌してスラリーを形成させ、溶媒を凍結乾燥により除去して得られる、セルロース繊維からなる綿状体或いは樹脂成分を含有するセルロース繊維からなる綿状体とし、前者の綿状体には樹脂成分を含浸させた後、後者綿状体はそのまま、加熱下で成形するものとする。該セルロース繊維としては、その少なくとも一部をパルプの叩解または機械的解砕によってミクロフィブリル化したものとするのがよい。 (もっと読む)


【解決課題】連続した繊維束の開繊、熱可塑樹脂浸時の繊維の傷付きが少なく、品質の優れた樹脂含浸長繊維が得られる製造方法及び含浸用ダイスを提供する。
【解決手段】含浸用ダイスに溶融した熱可塑性樹脂を供給すると共に繊維束を導入して上記熱可塑性樹脂を上記繊維束に含浸しノズルから引く抜く樹脂含浸長繊維の製造方法において、溶融樹脂流路内に繊維束の進行方向に沿って互いに反対方向から延びた少なくとも2つの張り出し部を設け、上記張り出し部の少なくとも一つが、上記繊維束に対して垂直方向から挿入され、上記溶融樹脂流路内にその端部を張り出して位置調整された第1の可動式チョークバーであり、上記張り出し部の上面に走行する繊維束を当接することにより繊維束を開繊して熱可塑性樹脂を含浸することを特徴とする樹脂含浸長繊維の製造方法。 (もっと読む)


【課題】多孔質コア層を含む一実施形態の複合シート材料を提供すること。
【解決手段】この多孔質コア層は、多孔質コア層の総重量をベースとする約20重量パーセント〜約80重量パーセントの強化繊維の熱可塑性ポリマー、および有効量の難燃剤を含む。 (もっと読む)


【課題】ロフティング特性が増強された多孔性の繊維強化熱可塑性シートを製造するための方法を提供すること。
【解決手段】この方法は、分散混合物を形成するために、攪拌した水性泡に平均長さが約5mm〜50mmの強化繊維、および熱可塑性樹脂粉末粒子を添加するステップと、強化繊維および熱可塑性樹脂の粒子の分散混合物を支持構造上に置くステップと、ウェブを形成するために水を排出するステップと、強化繊維の一部をZ軸配向するステップと、ウェブを熱可塑性樹脂のガラス遷移温度より高い温度に加熱するステップと、約1パーセント〜約95パーセントの空隙含有量を有する多孔性の熱可塑性複合シートを形成するために、ウェブを所定の厚さに圧縮するステップとを含む。 (もっと読む)


【課題】本発明の目的は、エラストマー中に気相成長炭素繊維が均一に分散された炭素繊維複合材料であって、高い柔軟性及び高剛性を有する炭素繊維複合材料を提供することにある。
【解決手段】本発明にかかる炭素繊維複合材料は、エラストマーに、気相成長炭素繊維が分散した炭素繊維複合材料である。気相成長炭素繊維は、平均直径が20〜200nm、平均長さが5〜20μmであり、下記式(1)で定義される屈曲指数の平均値が5〜15の剛直な繊維である。炭素繊維複合材料は、150℃における動的弾性率(E’)が30MPa以上で、破断伸び(EB)が140%以上であることを特徴とする。
屈曲指数=Lx÷D (1)
Lx:気相成長炭素繊維の屈曲していない直線部分の長さ
D:気相成長炭素繊維の直径 (もっと読む)


一つ以上のプラスチック及び細断した繊維又は連続したフィラメント(4)を含む、スタンピング可能な強化複合材の半製品を生産する方法において、前記繊維又はフィラメント(4)の軟化温度が、前記材料の軟化温度の最高の温度より高く、前記繊維又はフィラメント(4)を特に重力によってコンベヤ(1)上に堆積させるステップと、総重量の5%と90%の間の割合で前記プラスチックの粉末の粒子(6)を前記繊維又は前記フィラメント(4)上に散布するステップと、前記粒子(6)を前記繊維又は前記フィラメント(4)と混和するステップと、混和物を前記材料の軟化温度より高い温度まで加熱するステップとを含み、混和ステップが、前記混和物(4、6)に、前記コンベヤ(1)の前進方向(15)にほぼ垂直な少なくとも1つの電界をかけるステップを含む方法。
(もっと読む)


本発明は、エアレイドセルロース繊維材料を含む繊維強化熱可塑性樹脂、ならびにその使用に関する。 (もっと読む)


【課題】カーボンナノファイバーが分散された熱可塑性樹脂組成物及びその製造方法を提供する。
【解決手段】熱可塑性樹脂組成物は、熱可塑性樹脂と、エラストマーと、を含むマトリクスと、マトリクス中に分散されたカーボンナノファイバーと、を含む。エラストマーは、カーボンナノファイバーに対して親和性を有する不飽和結合または基を有する。 (もっと読む)


【課題】天然繊維を強化繊維として用い、天然繊維の濃色化が抑制された、淡色の繊維強化樹脂ペレットの製造方法を提供することを目的とする。
【解決手段】本発明の製造方法は、天然繊維に溶融した熱可塑性樹脂を含浸させて繊維強化樹脂ペレットを製造する方法であって、含浸時において、溶融した熱可塑性樹脂との接触により天然繊維が150℃以上に加熱される時間を、30秒以下とすることを特徴とする。上記方法で製造された繊維強化樹脂ペレットは濃色化が抑制される。 (もっと読む)


【課題】カーボンナノファイバーが分散された炭素繊維複合材料であって、広い温度範囲において熱膨張が小さくかつ柔軟性もある炭素繊維複合材料及びその製造方法を提供する。
【解決手段】炭素繊維複合材料は、第1のエラストマーと、第1のエラストマーに分散されたカーボンナノファイバーと、を含む複合エラストマー50からなる連続相と、連続相中に分散された第2のエラストマー60と、を含む。第1のエラストマーは、カーボンナノファイバーに対して親和性を有する不飽和結合または基を有する。 (もっと読む)


【課題】平均繊維径が4〜200nmのセルロース繊維集合体にマトリクス材料を含浸させてなる高透明性の繊維強化複合材料であって、セルロース繊維に起因する吸湿性が改善されると共に、透明性がより一層高められた繊維強化複合材料を提供する。
【解決手段】セルロース繊維の集合体に、マトリクス材料を含浸させてなる繊維強化複合材料。セルロース繊維の水酸基は、酸、アルコール、ハロゲン化試薬、酸無水物、及びイソシアナートよりなる群から選ばれる1種又は2種以上よりなる化学修飾剤との反応で化学修飾されており、化学修飾による官能基の導入割合が、化学修飾前のセルロース繊維の水酸基に対して5〜40モル%である繊維強化複合材料。セルロース繊維の水酸基を化学修飾することにより、セルロース繊維の親水性を低減し、これにより繊維強化複合材料の吸湿性を低減すると共に、セルロース繊維とマトリクス材料との親和性を高めることにより、透明性をより一層高めることができる。 (もっと読む)


【課題】 本発明は、植物繊維のより一層の高強度化技術の確立を目指し、植物繊維の撚糸、および撚糸と樹脂からなる中間素材ワイヤーにそれぞれ連続的に繰返し引張荷重を負荷し、ナノオーダー・セルロース集合体(ミクロフィブリルセルロース)の配向制御を行うことにより、未処理状態の1.5倍程度の強度を得ることが出来る植物繊維、及びそのような植物繊維の機械的性質の改質方法を提供する。
【解決手段】 ラミー繊維により生分解性樹脂を強化したグリーンコンポジットに応力−ひずみ関係の非線形領域に相当する荷重を繊維軸方向に繰返し負荷することにより強度・剛性改善を図り、植物繊維の機械的性質を改善した。 (もっと読む)


【課題】微細ポリアミドイミド繊維および/または微細ポリイミド繊維を各種の熱可塑性樹脂または未硬化の熱硬化性樹脂に分散混合した樹脂であって、各種樹脂との親和性に優れ、繊維の分散状態が均一であり、少量の含有量であるにも関わらず、靭性、可とう性、強度等の機械特性に優れ、成形性が良好で、成形後の外観が良好な成形体を与え得る繊維強化樹脂組成物を提供する。
【解決手段】各種樹脂の繊維強化材において、その主体構成繊維として著しく微細なるポリアミドイミド繊維および/またはポリイミド繊維を混練することにより、少量であるにも関わらず機械特性及び成形性を著しく向上させることができる。 (もっと読む)


成形品に使用した場合、改善された表面抵抗率および/または衝撃強さが得られる導電性長繊維複合材である。この複合材は、熱可塑性樹脂、炭素長繊維、およびガラス長繊維を含み、前記炭素長繊維および前記ガラス長繊維が、約2mmを超えるかまたはそれと等しい長さを有し、前記導電性長繊維複合材が、製品に成形した場合、約108Ω/cm2未満またはそれと等しい表面抵抗率、および約10kJ/m2を超えるかまたはそれと等しいノッチ付アイゾッド衝撃強さを示す。 (もっと読む)


【課題】 CO2冷媒の漏洩を著しく低減でき、柔軟性があり、機器類等から生じる振動を吸収し、その接合部分の緩み亀裂等の発生を防止することができる改善された空調装置用エラストマ製ホースを提供する。
【解決手段】 ホース1は、その最内層にCO2透過率が40℃において、8.75×10-14で、70℃において、3.75×10-13(cc・cm/cm2・sec・cmHg)以下の性能を有する樹脂バリア層2が設けられている。樹脂バリア層は、基材樹脂、例えばPET,PA、に結晶化度が高い材料、例えばポリアクリル酸、の薄膜を施した高機能材料を使用する。樹脂バリア層の外周には中間ゴム層3、補強層4、外面ゴム層5が順に従来同様に設けられる。 (もっと読む)


本発明は、補強材料の70wt%超および水分の少なくとも0.1%を有するワイヤの少なくとも1つの束を加熱し成形して後、棒状物に切断される、凝縮された補強材棒状物の製造方法に関する。また、本発明は、この方法を実施するための装置および得られた製品に関する。 (もっと読む)


PVCのようなハロゲン化ビニルポリマーの組成物がオルガノチタネート又はジルコネート及び有機錫の分解促進性システムにより配合土化可能とされる。PVCシート及び複合体は埋め土に配合土化可能である。 (もっと読む)


【課題】
機械特性、難燃性、射出成形時の流動性に優れた成形用繊維強化難燃樹脂混合物および射出成形品を提供することを目的とする。
【解決手段】
次の構成要素(A)〜(C)を含む成形用繊維強化難燃樹脂混合物。
(A)ペレットと実質的に同一長さの強化繊維を含む長繊維強化熱可塑性樹脂ペレット
(B)重量平均繊維長が0.1〜0.5mmの強化繊維を含む短繊維強化熱可塑性樹脂ペレット
(C)難燃剤 (もっと読む)


41 - 60 / 66