説明

Fターム[4G075BB05]の内容

物理的、化学的プロセス及び装置 (50,066) | 処理操作−単位操作 (2,902) | 分離、混合 (1,097)

Fターム[4G075BB05]に分類される特許

141 - 160 / 1,097


【課題】マイクロチップなどの反応容器と蓋材が適正なシール温度で熱溶着されたかどうかをシール直後に判定し、シール異常時には直ちにシール動作を停止するシール装置を提供する。
【解決手段】反応容器/蓋材の表面温度を計測する温度計測手段と、シールの良否を検査するための検査条件設定手段と、温度計測手段により計測された温度計測データを取り込む計測データ取り込み手段と、計測データ取り込み手段によって取り込まれた計測値と検査条件設定手段により設定された良否判定閾値を比較する判定処理手段と、を備えたシール検査機能を有し、かつ、前記検査条件設定手段により設定された検査条件を記録する記録する情報記録手段と、前記判定処理手段によってシール不良と判定された場合にシール動作の停止指令を出力する制御手段と、を備えたことを特徴とするシール装置。 (もっと読む)


【課題】微小粒子の生成を可能とすると共に、工業的な量産にも対応でき、また、生成した微小粒子の形状を崩さずに微小粒子を生成した直後に微小粒子を硬化させ、微小粒子を媒体から分離することができる微小流路構造体及び微小流路構造体による溶媒抽出方法を提供する。
【解決の手段】分散相を導入するための導入口及び導入流路と、連続相を導入するための導入口及び導入流路と、分散相及び連続相により生成された微小粒子を排出させるための排出流路及び排出口とを備えた微小流路からなることを特徴とする微小流路構造体であって、分散相を導入するための導入流路と連続相を導入するための導入流路とが任意の角度で交わると共に、2つの導入流路が任意の角度で排出流路へと繋がる構造である微小流路構造体及び微小流路構造体による溶媒抽出方法を用いる。 (もっと読む)


【課題】熱移動及び物質移動に対する抵抗が少なく、プロセス設備容積を劇的に減少させるチャンスを創り出す化学反応器及び反応チャンバ及び気相反応物質を有する触媒化学反応を行う方法を提供する。
【解決手段】反応チャンバである反応器マイクロチャネル内に多孔性触媒物質106を配設してその間にバルク流路102、104を形成し、多孔性触媒物質は多孔性触媒物質内で分子拡散を行わせるために十分大きい孔径を有し、反応器マイクロチャネルに熱移動用マイクロチャネル400を隣接させる。 (もっと読む)


【課題】サイズおよび形状が制御された微粒子を高効率で製造できる微粒子の製造方法およびその方法により製造されたサイズおよび形状が制御された微粒子を提供する。
【解決手段】インプリントプロセスにより基材表面に形成した凹凸パターンの突起部を微粒子として単離することを特徴とする、サイズおよび形状の制御された微粒子の製造方法、およびその方法により製造された微粒子。 (もっと読む)


たとえばラボオンチップシステム(200)において液体流を制御するための動電学的流体システム(100、100’、100’’)であって、第1および第2の電極(10、10’)を具備し、前記第1および第2の電極は、ポリマーをベースにしたまたは酸化物をベースにした、導電性の電気化学的に活性な電極材料を含み、前記電極材料は前記動電学的流体システム(100)において使用されている際に電気化学的反応を受けるように適応されている動電学的流体システム(100、100’、100’’)。 (もっと読む)


【課題】 本発明の目的は、マイクロ流路デバイスの流路内へ気泡の混入を防ぐことが可能となるマイクロ流路デバイスを提供することである。
【解決手段】 本発明のマイクロ流路デバイスは、マイクロ流路デバイスの流路内への液体の供給部にあって、脱気装置として、筒状若しくは箱状の液体貯留部からなり、本体への液体導入路に液体を導入する導入管と、下部に液体を導出する導出管とを有する液体導入部を持ち、導入管を通す液体中に混在する気泡を捕捉し、導入部よりも下流のマイクロデバイス流路内に該気泡が流入することを防ぐことを特徴とする。 (もっと読む)


本発明は、プラズマ粒子を発生させ、液体にプラズマ粒子を当てるための方法及び装置を提供する。液体供給原料(例えば、バイオマスで混合される水及び/または炭化水素)は、パイプラインを通り、吸い上げられる。単一相水流は、その後、二相の液体及び気体水流にチャンバ内で変換される。変換は、高圧域から低圧域まで水流を遷移することにより成し遂げられる。液体の噴霧のために水流がさらに装置を通過する際に、圧力低下が発生する。チャンバ内では、電界が、プラズマ状態の発生を導く二相媒体の分解電圧の閾値を超える強度レベルで発生する。さらに、本発明は、エネルギーの効率の適応性が高く、多目的に使用できる、水を汚染する生物学的因子を不活性化するためにプラズマ粒子を用いて、水を衛生化する方法及び装置を提供する。
(もっと読む)


【課題】 短時間で効率的な液体の混合をなし得、小型集積化が可能な液体混合装置を提供すること。
【解決手段】 液体を搬送するための流路と、該流路内に設けられた導電性部材と該導電性部材に電界を与える電極とを備え前記電界により前記流路内に前記液体の渦流を生じさせる渦流発生手段と、前記流路の端部に接続され前記流路に沿った方向の前記液体の流れを発生させる方向性流れ発生手段と、前記渦流と前記方向性流れとを切り替える切り替え手段と、を有する液体混合装置。 (もっと読む)


切替可能な添加物を用いて、初期イオン強度と増大イオン強度との間で水を可逆的に転換するための方法および系が記載される。開示される方法および系は、例えば、溶媒、溶質または溶液からの水の蒸留を伴わない除去に用いられ得る。それを水に溶解することにより媒質から溶質を抽出後、溶質は、次に、水を増大イオン強度を有する溶液に転換することにより、水溶液から単離されるかまたは「塩析」され得る。次いで、溶質は、別個の相として増大イオン強度溶液から分離する。例えば一旦溶質がデカントされると、増大イオン強度の水溶液は、その元のイオン強度を有する水に転換し戻されて、再利用される。低イオン強度から高意オン強度への切替は、低エネルギー法を用いて、例えばCO、CSまたはCOSを通気させることにより、容易に達成される。高イオン強度から低イオン強度への切替は、低エネルギー法を用いて、例えば空気を通気させて、加熱して、撹拌して、真空または部分真空を導入して、あるいはその任意の組合せにより、容易に達成される。 (もっと読む)


環状に配置された送達装置および取出し装置を有する化学反応器、ならびに関連するシステムおよび方法であって、特定の実施形態による反応器は、反応領域の近くに光透過性面を有する反応容器と、反応容器内に配置された可動の反応体送達システムとを備え、この反応器は、反応容器内に配置され、送達システムの内側または外側に環状に配置された生成物を取り出すシステムをさらに備え、光透過性面を通して反応領域に太陽放射を導くように、太陽エネルギー集中装置が配置されている。
(もっと読む)


少なくとも1つの流体媒質入口、少なくとも1つの流体媒質出口、及び、化学的変換が実施される少なくとも1つの閉込部を有する流れ分配器と、装置を回転、揺動、揺振、又は振動する手段とを備えた、流体中で化学的変換を実施する装置を提供する。少なくとも1つの閉込部は、熱、冷却、音、光、又は他のタイプの放射を提供する、作動機の軸を介して外部源に接触された提供源を備えていてもよい。流れ分配器には、中央に配置された流体媒質入口と定められた周辺流体媒質出口とに接続する区域が設けられていてもよい。装置を回転、揺動、揺振、又は振動させる手段は、磁界を作り出す要素や、外部作動装置に機械的に連結された軸であってもよい。
(もっと読む)


【課題】活物質の利用率を高め得る装置を提供する。
【解決手段】超音波発生手段(15、16)を備え、この超音波発生手段(15、16)の発生する超音波を活物質の一次粒子及び不純物粒子を含んだ凝集粒子に作用させる。 (もっと読む)


【課題】 COを吸収した藻類を捕集・隔離してCOを確実に削減する。
【解決手段】 反応槽2に藻類3を貯留し、該藻類3に火力発電所1からのCOを供給するとともに太陽光を照射して光合成を行わせる。この光合成によりCOを吸収した藻類3を地中の空洞部6に隔離し、COを隔離する。 (もっと読む)


連動する熱化学反応装置およびエンジンならびに関連するシステムおよび方法。特定の一実施形態によるシステムは、反応領域を有する反応容器と、この反応領域と流体連通状態で接続する水素供与体供給源と、燃焼領域を有するエンジンとを含む。このシステムは、燃焼領域と反応領域との間を接続して反応領域に反応物および/または放射エネルギーを移送する移送流路をさらに含むことができる。このシステムは、反応領域とエンジンの燃焼領域との間を接続して反応領域から取り除かれた成分の少なくとも一部を燃焼領域に送出する生成物流路をさらに含むことができる。
(もっと読む)


【課題】マイクロ化学プラント中に発生する気液混合体のプラグフローは、収率の低下につながるので、気液分離が必要である。しかし、従来の知られている分岐管の内壁の濡性を変えたり、気液分離タンクを用いる方法では、気体のプラグフローを精度よく分離し排出することはできなかった。また、導電性の液体ばかりでなく、非導電性の液体でも気液分離が必要であった。
【解決手段】流路中の気体の存在を電気抵抗、静電容量(誘電率)の測定からいずれか1つでも変化した場合は気体が流れていると判断し、分岐路に配置された排気バルブを開く。 (もっと読む)


【課題】 分散性に優れた液滴を生成することができるマイクロリアクターを提供する。
【解決手段】第1流路3と当該第1流路3に合流する第2流路4とを内部に有するマイクロリアクター本体2を備え、第1流路3は、第2流路4が合流するように流路面に開口する合流口9と、合流口9から第1流路3の下流に延びる分離部8とを備えており、分離部8は、第1流路3の凹凸状基部13の表面に皮膜16がコーティングされることにより凹凸状に形成されているマイクロリアクターである。 (もっと読む)


【課題】プラズマ成膜を行う際、成膜用原材料を効率よく使用して材料コストの低廉化及び省資源化を図る。
【解決手段】プラズマ用ノズル16と、基材10の成膜部位12との間に、整流用治具14を配置する。この整流用治具14には、プラズマ供給路20と、原材料供給路22と、これらプラズマ供給路20と原材料供給路22が合流した成膜用合流路24と、成膜部位12を通過したプラズマ放電ガス及び未反応の原材料を排出するための排出路26と、排出路26中の未反応の原材料をプラズマ供給路20に戻すための回収路28とが形成される。プラズマ放電ガスとともに排出路26の立ち上がり通路34に流通した未反応の原材料は、冷却管38を流通する冷却媒体によって冷却されることで凝縮し、液相となって回収路28から成膜用合流路24の鉛直通路30に導入される。その後、プラズマ放電ガスによって揮発・再活性化された原材料は、成膜部位12に再供給される。 (もっと読む)


本発明は、微粒子を調製するための乳剤及び二重乳剤基調プロセスに関する。本発明は、2つ以上の流体を混合するのに利用され得る、インライン貫通式混合装置用のワークヘッド構造体にも関する。ワークヘッド構造体は、微粒子を調製するプロセスで利用され得る。
(もっと読む)


本発明は、化学反応器を形成するための第1の回路であって、前記第1の回路が、少なくとも2つの化学物質が中を循環することにより相互に反応する複数のチャネル(10)を備え、前記チャネル(10)が、流体の方向転換を課する屈折部および連接部を含む3次元構造を有する、第1の回路と、反応が中で生ずるチャネル(10)の可能な限り近くで伝熱流体が中を循環する複数のチャネル(36)を備える第2の熱交換回路とを備える、化学反応器を形成するデバイスに関する。
(もっと読む)


分離又は反応ユニット(1;1’;81;81’;101)、及び、そのようなユニットを無菌的に接続するための方法。この分離又は反応ユニット(1;1’;81;81’;101)は、1以上の流体入口(3a、3b、5a、5b;3a’、3b’、5a’、5b’;85a、85b;103a、103b)及び1以上の流体出口(3a、3b、5a、5b;3a’、3b’、5a’、5b’;85a、85b;103a、103b)を有する。入口又は出口の1以上は1以上のフィルム((7、9;11;87a、87b;107a、107b)で封止され、フィルムと分離又は反応ユニットとの間の接触表面が無菌状態となる。これらのフィルムは、別の分離又は反応ユニット上或いは分離又は反応ユニットが接続される流体分配ユニット(20;57;61)上の、対応するフィルムと対合するように適合され、上記の対合するフィルムが、対合後に2つずつ共に引き出されるように適合され、その結果、2つの接続されたユニットの対応する流体入口/出口が無菌的に接続される。 (もっと読む)


141 - 160 / 1,097