説明

Fターム[4G077DB08]の内容

結晶、結晶のための後処理 (61,211) | 気相成長−CVD (2,039) | 基板上に気相成長させるもの (1,635) | 反応原料の選択 (1,331) | 有機化合物 (666) | 有機金属化合物(MOCVD) (474)

Fターム[4G077DB08]に分類される特許

121 - 140 / 474


【課題】アンモニアを窒化源として用いることができ、かつ、大量のアンモニアを用いることなく、既存のMOCVD(MOVPE)装置に簡単な改良を施すだけで高品質のIn系III族元素の窒化物を製造することができるIn系III族元素窒化物の製造方法を提供する。
【解決手段】アンモニアを分解してIn系III族元素に供給し、In系III族元素窒化物を製造するIn系III族元素窒化物の製造方法において、前記アンモニア4を触媒6によって分解する。前記触媒とともに又は前記触媒として、水素吸収性を有する材料を用いてもよい。In系III族元素窒化物がInNである場合には、InNの成長温度を500℃〜600℃とするとよい。 (もっと読む)


【課題】表層に到達する転位の密度を、簡便かつ効果的に低減することができるGaN系化合物半導体基板とその製造方法を提供する。
【解決手段】基板10と、基板10の主面上に形成される緩衝層20と、緩衝層20上に形成されるGaN系半導体単結晶の活性層30とを備え、基板10の主面に平行な任意の方向に屈曲する屈曲転位が活性層30内における緩衝層20と活性層30との界面近傍に存在することを特徴とするGaN系半導体基板。 (もっと読む)


【課題】 基板を保持するためのサセプタ、サセプタの対面、基板を加熱するためのヒータ、サセプタの中心部に設けられた原料ガス導入部、サセプタとサセプタの対面の間隙からなる反応炉等を有するIII族窒化物半導体の気相成長装置であって、大きな直径を有するサセプタに保持された、大口径、多数枚の基板の表面に、結晶成長する場合であっても、基板を1000℃以上の温度で加熱して結晶成長する場合であっても、効率よく高品質の結晶成長が可能なIII族窒化物半導体の気相成長装置を提供する。
【解決手段】 設置される基板とサセプタの対面との距離が非常に狭く、かつサセプタの対面に冷媒を流通する構成を備えてなる気相成長装置とする。さらに、サセプタの対面に、不活性ガスを反応炉内に向かって噴出するための微多孔部、及び不活性ガスを微多孔部に供給するための構成を備えてなる気相成長装置とする。 (もっと読む)


【課題】転位が抑制されて特性に優れ、製造が容易で安価なIII族窒化物基板を提供する。
【解決手段】基板2上に多層膜層3を形成するIII族窒化物基板1であって、多層膜層3は、III族窒化物からなる膜層を複数重ねる複数膜層5と、この複数膜層5の表面に形成するIII族窒化物層6を備え、複数膜層5は、表面に凹凸を有する膜を複数積層してなる第1の層5aと、この第1の層5aの表面に形成し、表面が平坦な膜を複数積層してなる第2の層5bを備える。 (もっと読む)


【課題】高品位で大面積の非極性面を有するIII−V族化合物窒化物半導体結晶を得るために有利な製造方法を提供する。
【解決手段】III族窒化物半導体結晶の製造方法は非極性面を有する種結晶を準備し、前記非極性面からIII族窒化物半導体を気相中で成長させる成長工程を具備し、前記成長工程は、前記種結晶の+C軸方向に伸びるようにIII族窒化物半導体を成長させることを含む。 (もっと読む)


【課題】高品位で大面積の非極性面を有するIII−V族化合物窒化物半導体結晶を得るために有利な製造方法を提供する。
【解決手段】III族窒化物半導体結晶の製造方法は非極性面を有する種結晶を準備し、前記非極性面からIII族窒化物半導体を気相中で成長させる成長工程を具備し、前記成長工程は、前記種結晶の+C軸方向に伸びるようにIII族窒化物半導体を成長させることを含む。 (もっと読む)


【課題】ストッパ層を形成することなく、低コストかつ短時間でSiC単結晶基板の再利用基板を形成し、また、再利用する。
【解決手段】まず、第1過程では、基板面11aに、順次エピタキシャル成長したAlN層13及びGaN層15を具えるシリコンカーバイド単結晶基板11を用意する。次に、第2過程では、シリコンカーバイド単結晶基板を、水素雰囲気中においてアニール処理することによって、GaN層を除去する。 (もっと読む)


【課題】本発明は、基板の反りを抑制し、界面反射の影響を低減して高光取り出し効率と高内部発光効率とを実現できる半導体素子、半導体装置、半導体ウェーハ及び半導体結晶の成長方法を提供する。
【解決手段】c面からなる主面106を有し、主面に凹部110aが設けられたサファイア基板105と、サファイア基板の主面の上に設けられ、結晶性のAlNからなる第1バッファ層110と、第1バッファ層の上に設けられ、窒化物半導体からなる半導体層190と、を備えた半導体素子が提供される。第1バッファ層は、サファイア基板の凹部の上に設けられた空洞110aを有し、第1バッファ層は、第1領域110eと、第1領域とサファイア基板との間に設けられ第1領域よりも炭素濃度が高い第2領域110fと、を有する。 (もっと読む)


【課題】大面積で均一な低転位密度窒化ガリウムおよびその製造プロセスを提供する。
【解決手段】15cmを超える大面積と、少なくとも1mmの厚さと、5E5cm−2を超えない平均転位密度と、25%未満の転位密度標準偏差比率と、を有する大面積で均一な低転位密度単結晶III−V族窒化物材料、たとえば窒化ガリウム。かかる材料は、(I)たとえばIII−V族窒化物材料の成長表面の少なくとも50%にわたってピットを形成するピット化成長条件下で、III−V族窒化物材料を基板上に成長させる第1段階であって、成長表面上のピット密度が、成長表面において少なくとも10ピット/cmである段階と、(II)ピット充填条件下でIII−V族窒化物材料を成長させる第2段階と、を含むプロセスによって基板上に形成することができる。 (もっと読む)


【課題】平坦性のよい高品質な窒化物単結晶半導体層を第2の基板の表面に接合した半導体複合装置の製造方法を提供する。
【解決手段】半導体複合装置の製造方法において、母材基板101の表面に窒化インジウム層を含む第1の窒化物単結晶半導体層102を形成する第1工程と、第1の窒化物単結晶半導体層の表面に第2の窒化物単結晶半導体層103を形成する第2工程と、第2の窒化物単結晶半導体層をパターン形成する第3工程と、パターン形成された第2の窒化物単結晶半導体層113を被覆する保護膜を形成する第4工程と、第1の窒化物単結晶半導体層を活性水素に曝露して窒化インジウム層を金属インジウム層に改質させる第5工程と、金属インジウム層をエッチングして第2の窒化物単結晶半導体層を第1の基板から剥離する第6工程と、剥離した第2の窒化物単結晶半導体層を第2の基板の表面に接合する第7工程とを含む。 (もっと読む)


【課題】従来よりも結晶品質の優れたIII族窒化物結晶およびその形成方法を提供する。
【解決手段】III族窒化物結晶の形成方法が、所定の基材の上に全III族元素におけるAlの割合が80モル%以上である第1のIII族窒化物からなる下地層2をエピタキシャル形成する下地層形成工程と、下地層2を基材ともども下地層2の形成温度よりも高くかつ1250℃以上の加熱温度で加熱する熱処理により下地層2の表面形状を変換する表面形状変換工程と、表面形状変換工程を経た下地層2の上に第2のIII族窒化物からなる結晶層4をエピタキシャル形成する結晶層形成工程と、を備える。このような界面構造のもとでは、成長下地層2に元から存在する転位、あるいは界面で新たに発生した転位dが内部を貫通し、島状結晶2Iの側面2Sにまで達していたとしても、空隙5の存在ために該転位dはその場所が終端tとなり、結晶層4へは伝搬しない。 (もっと読む)


【課題】圧電特性が良好な圧電材料を提供する。
【解決手段】下記一般式(1)で表されるペロブスカイト型複合酸化物からなり、前記ペロブスカイト型複合酸化物の結晶系が少なくとも単斜晶構造を含んでいる圧電材料。前記ペロブスカイト型複合酸化物の結晶系が、単斜晶構造と菱面体晶構造を有する混在系、または単斜晶構造と正方晶構造を有する混在系であることが好ましい。


(式中、AはBi元素であり、MはFe、Al、Sc、Mn、Y、Ga、Ybのうちの少なくとも1種の元素である。xは0.4≦x≦0.6の数値を表す。yは0.17≦y≦0.60の数値を表す。) (もっと読む)


【課題】結晶成長層にダメージを与えることなくサファイア基板から結晶成長層を容易に分離することが可能なGaN系化合物半導体の成長方法及び当該成長層付き基板を提供する。
【解決手段】サファイア基板10上にコラム状結晶層11を成長する工程と、コラム状結晶層11上にバッファ層12を成長する工程と、バッファ層12上にGaN系化合物結晶13を成長する工程と、を有する。結晶成長後に降温すると、サファイア基板10とナノコラム状態のZrB2層11の界面に大きな歪みが生じ、サファイア基板10から結晶成長層18が容易に分離する。 (もっと読む)


【課題】低コストでしかも高品質の窒化物系の半導体エピタキシャルウェハ及びその製造方法、並びに電界効果トランジスタを提供する。
【解決手段】化合物半導体を結晶成長させるための基板(1)と、基板(1)上に形成されるバッファ層(2)と、バッファ層(2)上に位置する第1の窒化物半導体層(3)と、第1の窒化物半導体層(3)上に位置する第2の窒化物半導体層(5)と、第2の窒化物半導体層(5)上に位置し第2の窒化物半導体層(5)よりも電子親和力の小さい第3の窒化物半導体層(6)とを備えた半導体エピタキシャルウェハにおいて、第1の窒化物半導体層(3)にはFeがドープされ、第1の窒化物半導体層(3)と第2の窒化物半導体層(5)との間には、第1の窒化物半導体層(3)及び第2の窒化物半導体層(5)よりも電子親和力の小さい窒化物半導体挿入層(4)が設けられている。 (もっと読む)


【課題】(0001)ジャストでなくて(0001)からずれた結晶方位を有するオフ角のGaN単結晶自立基板を低コストで作製する方法を提供する。
【解決手段】オフ角の(111)GaAsウエハを下地基板として、その上にGaNを気相成長させると下地基板と同じオフ角で同じ方向に傾斜しているGaN結晶が成長する。また、オフ角度を有する(111)GaAs基板を下地基板として用い、その上に複数の窓を有するマスクを形成し、その上からGaN単結晶層を成長した後、下地基板を除去して、オフ角度を有するGaN自立基板を作製してもよい。0.1゜〜25゜のオフ角をもつGaN結晶を製造することができる。 (もっと読む)


【課題】本発明の目的は、上述した問題を解決し、成長温度が1050℃以下のAlGaNやGaNやGaInNだけでなく、成長温度が高い高Al組成のAlxGa1-xNにおいても結晶性の良いIII族窒化物半導体エピタキシャル基板、III族窒化物半導体素子、III族窒化物半導体自立基板およびこれらを製造するためのIII族窒化物半導体成長用基板、ならびに、これらを効率よく製造する方法を提供する。
【解決手段】少なくとも表面部分がAlを含むIII族窒化物半導体からなる結晶成長基板と、前記表面部分上に形成されたZrまたはHfからなる単一金属層とを具えることを特徴とする。 (もっと読む)


【課題】結晶性、表面平坦性に優れた非極性面や半極性面を主面とするIII 族窒化物半導体を製造すること。
【解決手段】a面サファイア基板10の表面10aに、ICPエッチングで長手方向がサファイア基板10のm軸方向に平行なストライプ状に凹部11を形成する(図1(a))。次に、サファイア基板10を、反応性マグネトロンスパッタに導入し、厚さ75〜125ÅのAlN膜12を形成する(図1(b))。次に、サファイア基板10をMOCVD装置に搬入し、水素とアンモニアを含む雰囲気中で、1020〜1060℃まで昇温する。続いて、凹部11の側面11aにGaN結晶13をエピタキシャル成長させる(図1(c))。成長が進むと、サファイア基板10の表面10aはGaN結晶13に覆われていき、平坦なGaN結晶13が形成される(図1(d))。このGaN結晶13の主面はm面である。 (もっと読む)


【課題】
光学的特性に優れたZnO系結晶を提供する。
【解決手段】
(0001)(+C面)を主面とするZnO単結晶基板を準備し、熱処理する工程と、 加熱した前記主面上にII−VI族半導体結晶をII族原子の極性面で成長する工程と、を含み、前記熱処理する温度は、前記II−VI族の半導体結晶の成長工程における結晶成長温度よりも高い温度である半導体結晶の成長方法。 (もっと読む)


【課題】窒化物半導体層のエピタキシャル成長に用いるサファイア基板において、効率良く基板の反り形状及び/又は反り量を精密に制御することができ、且つ、成膜中に生じる基板の反りを抑制、それを用いて作製される窒化物半導体層成膜体、窒化物半導体デバイス、窒化物半導体バルク基板及びそれらの製造方法を提供する。
【解決手段】サファイア基板の内部に、前記サファイア基板の研磨面側を通してパルスレーザを集光し、走査し、前記パルスレーザによる多光子吸収を利用して改質領域パターンを形成し、サファイア基板の反り形状及び/又は反り量を制御する。本発明により得られたサファイア基板を用いて窒化物半導体層を形成すると、成膜中の基板の反りを抑制し、基板の反り挙動を小さくすることができるため、膜の品質及び均一性が向上し、窒化物半導体デバイスの品質及び歩留まりを向上させることができる。 (もっと読む)


【課題】エピタキシャル層と基板との界面における電気抵抗の低減が図られた化合物半導体基板、半導体デバイス及びその製造方法を提供する。
【解決手段】化合物半導体基板10は、III族窒化物で構成され、Cl換算で200×1010個/cm以上12000×1010個/cm以下の塩化物及びO換算で3.0at%以上15.0at%以下の酸化物を含む表面層12を表面に有する。これにより、化合物半導体基板10とその上に形成されるエピタキシャル層14との間の界面のSiが低減され、その結果界面における電気抵抗が低減される。 (もっと読む)


121 - 140 / 474