説明

Fターム[4G077DB08]の内容

結晶、結晶のための後処理 (61,211) | 気相成長−CVD (2,039) | 基板上に気相成長させるもの (1,635) | 反応原料の選択 (1,331) | 有機化合物 (666) | 有機金属化合物(MOCVD) (474)

Fターム[4G077DB08]に分類される特許

41 - 60 / 474


【課題】本発明は、エピタキシャル構造体及びその製造方法に関する。
【解決手段】本発明のエピタキシャル構造体の製造方法は、少なくとも一つの結晶面を有する基板を提供する第一ステップと、前記基板の結晶面に複数の空隙を含むカーボンナノチューブ層を配置する第二ステップと、前記基板の結晶面にエピタキシャル層を成長させる第三ステップと、を含む。 (もっと読む)


【課題】炭化シリコン基板上のIII族窒化物エピタキシャル層の提供。
【解決手段】半導体構造が開示され、この半導体構造は、少なくとも100mmの直径を有する炭化シリコンのウェハと、ウェハ上のIII族窒化物ヘテロ構造とを含んでおり、これは、多くの特性において、高い均一性を示す。これらは、ウェハ全面で3パーセント未満のシート抵抗率の標準偏差;ウェハ全面で1パーセント未満の電子移動度の標準偏差;ウェハ全面で約3.3パーセント以下のキャリア密度の標準偏差;およびウェハ全面で約2.5パーセントの導電性の標準偏差を含む。 (もっと読む)


【課題】支持基板と半導体層とを分離するために照射される光について、支持基板と半導体層との間に形成される中間層の光熱変換層で吸収されない光が半導体層に透過するのを防止する半導体デバイスの製造方法を提供する。
【解決手段】本半導体デバイスの製造方法は、光熱変換層21と第1の透明層23とを含む中間層20を有する積層支持基板1の作製工程と、積層貼り合わせ基板2の作製工程と、エピ成長用積層支持基板3の作製工程と、デバイス用積層支持基板4の作製工程と、デバイス用積層支持基板4の光熱変換層21で吸収され第1の透明層23で全反射されるように光照射することによるデバイス用積層ウエハ5の作製工程と、透明半導体積層ウエハ6を含む半導体デバイス7の作製工程と、を備える。 (もっと読む)


【目的】
p型ドーパント濃度の制御性に優れ、高品質なp型ZnO系結晶の成長方法を提供する。
【解決手段】
MOCVD法により、分子構造中に酸素原子を含まない有機金属化合物と極性酸素材料とを用いてZnO系結晶層を成長する単結晶成長工程を有し、上記単結晶成長工程は、TBP(ターシャリーブチルホスフィン)を供給する工程を有する。 (もっと読む)


【課題】石英製の反応炉の損傷を抑制することができ、副生成物の生成を抑制できるIII族窒化物結晶の製造方法、III族窒化物テンプレートの製造方法、III族窒化物結晶及びIII族窒化物テンプレートを提供する。
【解決手段】本発明に係るIII族窒化物結晶は、III族窒化物結晶中に1×1016cm−3以上1×1020cm−3未満の炭素を含み、前記炭素がV族サイトを置換しており、かつ、前記III族窒化物結晶内でアクセプタとして働く他の不純物を含まないものである。 (もっと読む)


【課題】シリコンおよび炭化ケイ素基板上に堆積されたGaNフィルムにおける応力の制御方法、およびこれによって生成されたGaNフィルムを提供する。
【解決手段】典型的な方法は、基板を供給すること、および供給の中断をまったく伴なわず、成長チャンバへの少なくとも1つの先駆物質の供給によって形成された、当初組成物から最終組成物までの実質的に連続したグレードの様々な組成物を有する基板上にグレーデッド窒化ガリウム層を堆積させることを含む。典型的な半導体フィルムは、基板と、供給の中断をまったく伴なわず、成長チャンバへの少なくとも1つの先駆物質の供給によって形成された、当初組成物から最終組成物までの実質的に連続したグレードの様々な組成物を有する基板上に堆積されたグレーデッド窒化ガリウム層とを含む。 (もっと読む)


【課題】主面の面積が大きく反りの小さいGaN系膜を製造することが可能なGaN系膜の製造方法を提供する。
【解決手段】本GaN系膜の製造方法は、主面11m内の熱膨張係数が、GaN結晶のa軸方向の熱膨脹係数に比べて、1.0倍より大きく1.2倍より小さい支持基板11と、支持基板11の主面11m側に配置されている単結晶膜13と、を含み、単結晶膜13が単結晶膜13の主面13mに垂直な軸に対して3回対称性を有するSiC膜である複合基板10を準備する工程と、複合基板10における単結晶膜13の主面13m上にGaN系膜20を成膜する工程と、を含む。 (もっと読む)


【課題】Inを含む窒化物化合物半導体結晶で、より容易にp型の電気的特性が得られるようにする。
【解決手段】まず、基板101を加熱する。次に、少なくともIn原料、アンモニア、窒素以外のV族の原料、およびp型ドーパントの原料を基板101の上に供給する。ただし、窒素以外のV族は、As,P,およびSbの中より選択したものである。なお、In原料の他に、Ga原料、Al原料などを加えるようにしてもよい。これにより、基板101の上に、Inを含むp型窒化物化合物半導体結晶の層102が形成できる。 (もっと読む)


【課題】転位発生の防止と基板の反り低減を、中間層を構成する窒化物半導体層の積層数を少なくして実現できる窒化ガリウム系化合物半導体基板を提供する。
【解決手段】Si単結晶からなる基板1と、前記基板上に形成された窒化物半導体からなる中間層2と、前記中間層上に形成された窒化ガリウム系化合物半導体3からなる活性層で構成される窒化ガリウム系化合物半導体基板であって、前記中間層は、前記基板上に第一層21と第二層22がこの順で積層された初期バッファ層200と、前記初期バッファ層上に第三層23と第四層24をこの順で複数回繰り返し積層し最後に第五層25を積層してなる複合層202を複数積層した周期堆積層203からなる。 (もっと読む)


【課題】より良質な窒化物半導体結晶層を製造する方法を提供する。
【解決手段】実施形態によれば、窒化物半導体結晶層の製造方法は、基体の上に設けられたシリコン結晶層の上に、第1の厚さを有する窒化物半導体結晶層を形成する工程を備える。前記シリコン結晶層は、前記窒化物半導体結晶層の形成の前には、前記第1の厚さよりも薄い第2の厚さを有している。前記窒化物半導体結晶層の形成は、前記シリコン結晶層の少なくとも一部を前記窒化物半導体結晶層に取り込ませ、前記シリコン結晶層の厚さを前記第2の厚さから減少せることを含む。 (もっと読む)


【課題】結晶層の結晶性や均一性を向上させることができるIII族窒化物半導体素子製造用基板の製造方法を提供する。
【解決手段】成長用下地基板10上に、クロム層20を形成する成膜工程と、該クロム層20を、所定の条件で窒化することによりクロム窒化物層30とする窒化工程と、該クロム窒化物層30上に、バッファ層40を介して、少なくとも1層のIII族窒化物半導体層50をエピタキシャル成長させる結晶層成長工程とを具えるIII族窒化物半導体素子製造用基板90の製造方法であって、前記クロム層20は、スパッタリング法により、スパッタリング粒子飛程領域における成膜速度が7〜65Å/秒の範囲で、厚さが50〜300Åの範囲となるよう成膜され、前記クロム窒化物層30は、炉内圧力6.666kPa以上66.66kPa以下の、温度1000℃以上のMOCVD成長炉内において、アンモニアガスを含むガス雰囲気中で形成される。 (もっと読む)


【課題】基板の温度分布を任意に調整することのできる成膜装置を提供する。また、基板を均一に加熱して、所望の厚さの膜を形成することのできる成膜方法を提供する。
【解決手段】成膜装置100は、チャンバ103と、チャンバ103内に設けられてシリコンウェハ101が載置されるサセプタ102と、サセプタ102を回転させる回転部104と、サセプタ102の下方に位置するインヒータ120およびアウトヒータ121と、これらのヒータの下方に位置するリフレクタ集合部105とを有する。リフレクタ集合部105は、環状のリフレクタと円盤状のリフレクタとが組み合わされてなる。 (もっと読む)


【課題】非常に優れた形態的特徴を有し、例えばマイクロエレクトロニクスおよび/またはオプトエレクトロニクスデバイスおよびデバイス前駆体構造体を製作するための基板として使用される(Al、Ga、In)N物品の製造方法を提供する。
【解決手段】エピタキシャルに適合できる犠牲型板12を設けるステップと、単結晶(Al、Ga、In)N材料16を型板12上に堆積して、犠牲型板12と(Al、Ga、In)N材料16との間の界面14を含む複合犠牲型板/(Al、Ga、In)N物品10を形成するステップと、複合犠牲型板/(Al、Ga、In)N物品10を界面修正して、犠牲型板12を(Al、Ga、In)N材料16から分割し、独立(Al、Ga、In)N物品10を生じるステップにより、独立(Al、Ga、In)N物品を製造する。 (もっと読む)


【課題】半導体デバイス用の基板として好ましく用いられ得るように結晶を破壊することなく直接かつ確実に評価された結晶表面層を有する窒化物結晶およびエピ層付窒化物結晶基板の製造方法を提供する。
【解決手段】窒化物結晶1の機械加工後の化学機械的研磨により、機械加工により悪化した窒化物結晶の表面層1aの結晶性を化学機械的研磨により向上させる窒化物結晶の製造方法であって、化学機械的研磨においてpHが6以下または8以上のスラリーを用いて、窒化物結晶1の表面層1aの結晶性の向上は、結晶の任意の特定結晶格子面のX線回折条件を満たしながら結晶の表面からのX線侵入深さを変化させるX線回折測定から得られる結晶の表面層の均一歪みが2.1×10-3以下である。 (もっと読む)


【課題】Si単結晶基板を用いた化合物半導体基板において、化合物半導体基板の機械強度低下と熱伝導率低下を、Si単結晶基板のドーパント濃度制御で低減する。
【解決手段】Si単結晶基板上に中間層とデバイス活性層を備えた化合物半導体基板で、Si単結晶基板は、中間層側の一主面の表面から厚さ方向に向かってドーパント濃度が1×1019atoms/cm以上1×1021atoms/cm以下である領域1と、ドーパント濃度が連続的に減少する遷移領域1と、ドーパント濃度が1×1012atoms/cm以上5×1017atoms/cm以下である領域2と、ドーパント濃度が連続的に増加する遷移領域2と、ドーパント濃度が1×1019atoms/cm以上1×1021atoms/cm以下である領域3とからなる。 (もっと読む)


【課題】窒化物半導体膜の気相成長において、一度に処理する基板の枚数を増大させ、生産性を向上させることができる膜の形成方法および基板処理装置を提供する。
【解決手段】縦型バッチ処理室201内の基板処理領域2062に複数の基板が搬入される工程と、前記処理室内の前記基板処理領域が加熱維持され、前記処理室内の前記基板処理領域外に設けられた第一ガス供給口931から窒素含有ガスが供給され、前記第一ガス供給口931よりも前記基板処理領域側に設けられた第二,第三,第四,第五ガス供給口935,936,937,938から金属含有ガスが供給され、前記複数の基板に窒素及び金属からなる窒化物半導体膜が形成される工程と、を有する。 (もっと読む)


【課題】ダイヤモンド基板上に、クラックが抑制され、かつ膜厚が厚い単結晶窒化物層を有する半導体積層構造を提供すること。
【解決手段】ダイヤモンド基板上に直接成長した窒化物層が多結晶となる上記課題を解決するため、本発明に係る半導体積層構造は、ダイヤモンド基板と、ダイヤモンド基板上の、Siを含む第1の層と、第1の層上の、単結晶窒化物で構成される第2の層とを備える。Siを含む第1の層をダイヤモンド基板と第2の層との間に設けることにより、第2の層の膜厚を大きくしても、第2の層を構成する窒化物を、クラックの抑制された単結晶とすることができる。したがって、当該半導体積層構造を利用することで、高いドレイン電流および出力電力密度を有する電界効果トランジスターを実現することが可能である。 (もっと読む)


【課題】従来よりも原子レベルで平坦な表面を有する窒化物半導体薄膜及びその成長方法を提供すること。
【解決手段】ミスカットを有するGaN基板101のステップフロー成長(第1の成長工程)により制限領域102内に形成されたテラス202に、第1の成長工程よりも低い基板温度である第2の設定値T2でTMG又はTEGを供給する。これにより、テラス202の上にGaNの2次元核301が発生するが(図3(a)参照)、発生する2次元核301の個数が1個以上100個以下発生するだけの時間だけこの第2の成長工程を行う。次に、基板温度をT2よりも高い第3の設定値T3にする(第3の成長工程)。これにより、複数の2次元核301が横方向成長して1分子層の厚さの連続的なGaN薄膜302となる(図3(b)参照)。第2と第3の工程を交互に繰り返すことにより、2分子層以上の厚さのGaN薄膜303を成長可能である(図3(c)参照)。 (もっと読む)


【課題】大面積化が可能な非極性基板およびその製造方法を提供する。
【解決手段】この半導体基板の製造方法は、サファイア基板10上に、GaN層11と、AlGa(1−X)N(0<X≦1)層12とが交互に積層された半導体成長層20を形成する工程と、半導体成長層20を、半導体成長層20の成長面と交差する方向に沿って分割することにより、GaN層11からなる第1領域11aとAlGa(1−X)N(0<X≦1)層12からなる第2領域12aとが縞状に配置された非極性面からなる主表面(切り出し面100a)を有する半導体基板100を形成する工程とを備える。 (もっと読む)


【課題】結晶構造が劣化していない、低抵抗の六方晶窒化ホウ素構造とその熱処理方法を提供する。
【解決手段】絶縁性基板11と、該絶縁性基板上に形成された単結晶六方晶窒化ホウ素12とを有する六方晶窒化ホウ素構造であって、不純物としてシリコン、マグネシウム、ベリリウム、またはイオウを含み、そのドーピング濃度は、1×1016から1×1020cm-3の範囲であることを特徴とする。単結晶六方晶窒化ホウ素は、基板温度900℃以上で熱処理してもよい。 (もっと読む)


41 - 60 / 474