説明

Fターム[4G077HA11]の内容

結晶、結晶のための後処理 (61,211) | 用途 (7,550) | 圧電材料、誘電材料 (220)

Fターム[4G077HA11]に分類される特許

41 - 60 / 220


【課題】複雑な断面形状を有する単結晶を製造する引下げ方法を提供する。
【解決手段】坩堝11下部の原材料融液9の漏出孔開口が形成される面を傾斜面とし、開口を傾斜面上部に配置する。単結晶の断面形状に対応するパターンを傾斜面に形成する。また、シード7は融液9との接触面に単結晶の断面形状に対応するパターンを形成し且つ接触面を坩堝11側の傾斜面と同じ傾斜を有した面とする。シードタッチではシード7最上部と坩堝11のパターン最下部とを接触させた後シード7を傾斜面に沿って平行移動させ、最終的に各々のパターンを相対するように配置させることでパターン全域のシードタッチを完了する。 (もっと読む)


【課題】高配向度及び高密度を兼ね備え、優れた圧電特性を発揮することができる結晶配向セラミックスの製造方法、及び該結晶配向セラミックスを製造するための異方形状粉末を提供すること。
【解決手段】前駆体1を酸処理し加熱して得られ、結晶面{100}面が配向する配向粒子からなる異方形状粉末、及びこの異方形状粉末を用いて得られる結晶配向セラミックスである。異方形状粉末は、次のようにして得られる。まず、所定の組成のビスマス層状ペロブスカイト型化合物を前駆体1の目的組成とし、この目的組成とは異なる配合割合で原料を混合して原料混合物を作製する。次いで、原料混合物を加熱することにより、前駆体1を合成する。前駆体1を3時間以上酸処理して酸処理体を得る酸処理体に、K源及び/又はNa源を添加し、フラックス中で加熱することにより、異方形状粉末を得る。 (もっと読む)


【課題】成形性に優れ鉛を含まない新規な強誘電体を提供すること。
【解決手段】BaアルコキシドとTiアルコキシドとKFとが混合された溶液を、ゾルゲル法によって、1000℃未満の温度で有機分を除去することにより、BaTiO結晶のBaの一部がKにOの一部がKと同量のFに置換された結晶粉末を得ることを特徴とするチタン酸バリウム系結晶の製造方法である。650℃という低温で仮焼きした場合でも元素置換されたナノ結晶を得ることができ、これを元に焼成してセラミックスを得ることができる。 (もっと読む)


【課題】 高温超伝導フィルタに適した高Qf値を有する電子デバイス用誘電体を提供する。
【解決手段】 組成式を(1-X)LaAlO3-XSrTiO3と表し、0<X≦0.2を満足し、誘電率が24以上、Qf値が300,000GHz以上の誘電体特性を有する複合酸化物の単結晶材料の(110)面を電界面としたことを特徴とする電子デバイス用誘電体。この電子デバイス用誘電体は、準ミリ波以上の高周波帯域で誘電体材料としてQf値が大幅に向上するとともに高温超伝導フィルタに適用できる。 (もっと読む)


【課題】リンをドープするための中性子を照射することなく結晶径方向の面内抵抗率のバラツキを低減することが可能なシリコン単結晶の育成方法を提供する。
【解決手段】シリコン単結晶の融点から1370℃までの温度勾配を中心部でGc、外周部でGeとしたとき、Gc/Ge≧1とし、るつぼ13内のシリコン融液に0.2T以上の水平磁場を印加しながら、前記るつぼ13の回転速度を1.5rpm以下、シリコン単結晶11の回転速度を7rpm以下として、n型ドーパント含有シリコン融液からシリコン単結晶11を育成する。これにより、シリコン単結晶11内の格子間酸素濃度が6.0×1017atoms/cm3以下、シリコン単結晶11の径方向の面内抵抗率のバラツキが5%以下となり、更にシリコン単結晶11内にサイズが100nm以下でかつ密度が3×106atoms/cm3以下であるCOPの発生領域を含むシリコン単結晶11が得られる。 (もっと読む)


【課題】高機能であるBST(チタン酸バリウムストロンチウム)系の誘電体単結晶薄膜などの単結晶薄膜を容易にかつ安価に製造することができるとともに、製造されるBST系の誘電体単結晶薄膜などの単結晶薄膜における組成の調整を容易に行うことができる、単結晶薄膜の製造方法を提供する。
【解決手段】たとえば、MgO(100)基板のMgO(100)面上に形成されたBaZrO3の薄膜上に、(BaxSryCaz)TiO3(ただし、x+y+z=1.0)の単結晶薄膜の原料となる化学溶液をスピンコートし、そのスピンコートされた化学溶液を配向が起こるような温度で熱処理することによって、(BaxSryCaz)TiO3の単結晶薄膜をエピタキシャル成長させる。 (もっと読む)


【課題】圧電特性が良好な圧電材料を提供する。
【解決手段】下記一般式(1)で表されるペロブスカイト型複合酸化物からなり、前記ペロブスカイト型複合酸化物の結晶系が少なくとも単斜晶構造を含んでいる圧電材料。前記ペロブスカイト型複合酸化物の結晶系が、単斜晶構造と菱面体晶構造を有する混在系、または単斜晶構造と正方晶構造を有する混在系であることが好ましい。


(式中、AはBi元素であり、MはFe、Al、Sc、Mn、Y、Ga、Ybのうちの少なくとも1種の元素である。xは0.4≦x≦0.6の数値を表す。yは0.17≦y≦0.60の数値を表す。) (もっと読む)


【課題】Pbを含む配向性の高い結晶膜の形成方法およびこの結晶膜を用いた膜型素子の製造方法を提供する。
【解決手段】アルカリ領域においてPbを溶液化する溶液化剤によりPbを含むアルカリ溶液を調製し、調製したアルカリ溶液を用いて水熱合成することによりTiを含有する基体上にPbを含む結晶膜を形成する。この溶液化剤としては、キレート化剤としてもよい。このキレート化剤としてはエチレンジアミン四酢酸(EDTA)が好ましい。 (もっと読む)


【課題】焦電性を抑制したタンタル酸リチウム結晶の製造方法及びタンタル酸リチウム結晶からなるウェハを提供する。
【解決手段】少なくとも、タンタル酸リチウム結晶素材と還元剤を準備しA、C、前記素材を金属のハロゲン化物を含有する溶液に浸漬B後、キュリー温度以下の温度でかつ還元雰囲気下で、前記還元剤と前記タンタル酸リチウム結晶素材を重ね合わせて熱処理Dし、該熱処理による反応が平衡状態になるまで熱処理を行う製造方法であって、前記準備する還元剤の還元力を調整することにより前記熱処理後に得られるタンタル酸リチウム結晶の導電率が1×10−13Ω−1・cm−1以上、9.99×10−12Ω−1・cm−1以下、かつ導電性の結晶面内分布を均一となるように制御する。 (もっと読む)


【課題】導電率が1×10−13Ω−1・cm−1以上、9.99×10−12Ω−1・cm−1以下であり、焦電性が抑制されたタンタル酸リチウム結晶の製造方法、及びタンタル酸リチウム結晶を提供する。
【解決手段】タンタル酸リチウム結晶素材を還元剤と共に還元雰囲気下で熱処理することによってタンタル酸リチウム結晶を製造する製造方法において、前記タンタル酸リチウム結晶素材と前記還元剤を準備しA、C、前記素材を金属のハロゲン化物を含有する溶液に浸漬B後、キュリー温度以下の温度で前記還元剤と前記タンタル酸リチウム結晶素材とを重ね合わせて熱処理Dすることにより、熱処理後のタンタル酸リチウム結晶の導電率を1×10−13Ω−1・cm−1以上、9.99×10−12Ω−1・cm−1以下とする。 (もっと読む)


【課題】高抵抗材料として有用なMnドープGaN結晶のMnドープ量を制御したGaN結晶の製造方法を提供する。
【解決手段】MnドープGaN結晶の製造方法は、(a)粉末状のMnが添加されたNaとGaとの混合融液にGaN種結晶基板52が浸漬された育成容器50を用意する工程と、(b)該育成容器50を密閉して真空引きしたあと窒素ガスを導入して該育成容器内50を加圧窒素ガスの雰囲気にすると共に、育成容器50の内容物を所定の結晶成長温度に加熱しつつ攪拌することにより、GaN種結晶基板上にMnドープGaN結晶を成長させる工程と、を含むものである。この製造方法では、育成容器50を密閉して真空引きするとき、育成容器50内の粉末状のMnはNaとGaとの混合融液に添加されているため飛散することなく育成容器50内にとどまる。 (もっと読む)


【課題】ナノクリスタルが集合したナノクリスタル集合体、及びその製造方法を提供する。
【解決手段】1種以上の金属イオンを含む混合溶液やコロイド分散溶液において超音波を照射することにより、粒径が1ナノメートルから20ナノメートルの単結晶粒子の、ナノクリスタルが特定の結晶方位を向いて整列・集合し、集合体の粒径が100ナノメートル〜50マイクロメートルの範囲で揃っているナノクリスタルの集合体を製造する。 (もっと読む)


【課題】大形で均一組成、歪みの小さな分解溶融型あるいは非調和組成物質の単結晶を高い歩留まりで成長させる方法を提供する。
【解決手段】成長結晶3の形状を規定する容器1内に種子結晶2と成長結晶3の大部分または一部となる組成の初期原料を収納し、るつぼ1を加熱して初期原料の全てと種子結晶2の一部を加熱融解して初期融液4とし、その後未融解種子結晶部2を種子として結晶成長を開始(種子付け)し、融液4を徐々に一方向から凝固させて所望の組成および形状の単結晶3を成長させる結晶成長方法において、初期融液4の組成と異なる組成の追加融液9を結晶成長工程で連続的にまたは間欠的にあるいは一時的に追加する方法と手段を適用して、初期原料融解と種子付け工程、結晶本体成長工程、結晶成長終了工程全ての結晶成長工程で必要かつ最適な融液組成を実現し一方向凝固結晶成長を実現する。 (もっと読む)


【課題】多結晶材料から容易に単結晶が育成できるとともに、単結晶製造のコストを低下させて、単結晶の利用範囲を広げることが可能な単結晶の成長方法を提供する。
【解決手段】長尺状の多結晶材料と加熱源を、多結晶材料の長手方向に相対的に移動させることによって多結晶材料を局所加熱で半溶融状態にして多結晶材料の長手方向に単結晶を成長させる方法において、映像観察装置によって多結晶材料の局所加熱部の映像を連続的に観察し、半溶融部の状態をリアルタイムで観察して局所加熱部の加熱温度及び移動速度を制御することにより単結晶を成長させる。 (もっと読む)


【課題】抗電界Ecが小さく残留分極Prが大きいビスマス層状構造強誘電体結晶の製造方法を提供する。
【解決手段】本発明の製造方法は、ビスマスおよびビスマス化合物から選ばれる少なくとも1つのビスマス供給用材料を含む材料を用いてビスマスを含む層状構造強誘電体の結晶(A)を形成する工程と、結晶(A)を、酸素分圧が1気圧以上の雰囲気下において熱処理する熱処理工程とを含む。ビスマス供給用材料に含まれるビスマスの純度は、99.999モル%以上である。 (もっと読む)


【課題】垂直ブリッジマン法においても、結晶を成長させる第1容器に、第2容器が保持している融液を供給することができ、かつ融液供給時に第1容器内の融液に振動が生じることを抑制できる結晶成長装置及び結晶成長方法を提供する
【解決手段】第1容器100は、種結晶50及び結晶成長用の融液52を保持する。第2容器200は、補充用の融液54を保持する。融液供給部は、第2溶液200内に保持されている補充用の融液54を第1容器100に供給する。融液供給部は、開口部220と、案内部を備える。開口部220は、第2容器200の側壁または上面に設けられ、第1容器100内における融液52の液面より高く位置する。案内部は、開口部220からオーバーフローした補充用の融液54を伝わせることにより、融液54を第1容器100内の融液52の液面に案内する。 (もっと読む)


【課題】外形形状に優れ高品位のファイバー状単結晶を製造可能な引下げ装置を提供する。
【解決手段】単結晶の原材料融液9を保持する坩堝11において、円筒部11bの開口端面に対して、該円筒部11bの軸に対して垂直な平面において端面外径を拡大させた所謂鍔状のフランジ部11cが配置されている。挙動抑制部材である当該フランジ部11cの存在によって該円筒部11bを這い登る原材料融液の量は抑制され、これに伴って結晶外表面に影響し得る不安定に開口端近傍に存在する原材料融液が減少し、外表面の状態のよりファイバー状単結晶9aが得られる。 (もっと読む)


【課題】圧電体の単結晶基材が再利用可能になり、圧電体の単結晶基材の配置方向に応じた結晶軸の配向方向の均質な厚みの単結晶薄膜を得られ、効率的にマイクロキャビティを形成できる圧電性複合基板の製造方法の提供を図る。
【解決手段】圧電体の単結晶薄膜を備える圧電性複合基板の製造方法であって、イオン注入工程(S1)と剥離工程(S2)とを含む。イオン注入工程(S1)では、圧電体の単結晶基材1へHe+イオンを注入する。これにより、単結晶基材1の表面から内部に離れた剥離層3に、マイクロキャビティを集積して形成する。そして、剥離工程(S2)では、イオン注入工程(S1)で形成したマイクロキャビティに熱応力を作用させる。これにより、単結晶基材1を剥離層3で分断して単結晶薄膜4を剥離する。 (もっと読む)


【課題】基板上に結晶欠陥の少ない、単結晶性及び平坦性に優れた酸化亜鉛を成長する方法を提供する。
【解決手段】MOCVD法により酸素を含まない有機金属化合物と水蒸気を用い、成長温度が250℃から450℃の範囲内で、かつ、成長圧力が1kPaから30kPaの範囲内であって、酸素原子を含まない有機亜鉛化合物材料と水蒸気とを少なくとも含む材料ガスを基板10に吹き付けて酸化亜鉛の単結晶層11を成長させる。ZnO結晶層11の成長後、ZnO結晶層11の結晶性および平坦性の向上を目的として、ZnO結晶層11を1kPaから30kPaの圧力下で、700℃から1100℃の温度範囲内で熱処理を行う。熱処理は水蒸気雰囲気下で行うことが好ましい。 (もっと読む)


【課題】Li濃度が極低濃度で、抵抗率の高い各種デバイス用酸化亜鉛単結晶の製造方法を提供する。
【解決手段】実質的にLiを含まない原料26および鉱化材溶液を用いるとともに、過酸化物の存在化で酸素分圧を高めて水熱合成することにより、所望の酸化亜鉛単結晶を得る。過酸化物は、過酸化水素に代表される過酸化物を少なくても1種以上、分解で生じる酸素換算で鉱化材溶液に対し0.02〜0.5モル/リットルの範囲の濃度で加える。 (もっと読む)


41 - 60 / 220