説明

Fターム[4G077TC06]の内容

結晶、結晶のための後処理 (61,211) | 製造工程 (1,363) | 成長(反応)条件の特定 (350) | 基板温度 (177)

Fターム[4G077TC06]に分類される特許

1 - 20 / 177


【課題】基板の周方向における温度分布を均一にすることのできる成膜装置および成膜方法を提供する。
【解決手段】成膜装置100は、反応ガス4が供給されて成膜処理が行われるチャンバ1と、チャンバ1に配置されて基板7が載置されるサセプタ8と、サセプタ8を下方から加熱するヒータ9とを有する。サセプタ8は、リング状の第1のサセプタ部8aと、第1のサセプタ部8aに接して設けられ、第1のサセプタ部8aの開口部分を遮蔽する第2のサセプタ部8bとを有し、第2のサセプタ部8bの加熱部に対向する面は水平面から傾斜している。また、第1のサセプタ部8aは、第2のサセプタ部8bの厚みに対応した周方向に異なる形状を有する。 (もっと読む)


【課題】Ga基板上の窒化物半導体層の上面の転位密度が低い結晶積層構造体、及びその製造方法を提供する。
【解決手段】一実施の形態において、Ga基板2と、Ga基板2上のAlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶からなるバッファ層3と、バッファ層3上の、酸素を不純物として含むAlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶からなる窒化物半導体層4と、を含む結晶積層構造体1を提供する。窒化物半導体層4のGa基板2側の200nm以上の厚さの領域4aの酸素濃度は、1.0×1018/cm以上である。 (もっと読む)


【課題】Ga基板と窒化物半導体層の間の電気抵抗が低い結晶積層構造体の製造方法を提供する。
【解決手段】一実施の形態において、酸素が六角格子配置された面を主面とするGa基板2上に、AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶を温度T1で成長させてバッファ層3を形成する工程と、バッファ層3上にAlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶を成長させて窒化物半導体層4を形成する工程と、を含む結晶積層構造体1の製造方法を提供する。この製造方法は、バッファ層3を形成するより前に、温度T1よりも高い温度でGa基板2の表面を窒化する工程を含まない。 (もっと読む)


【課題】大型で良質なIII族窒化物半導体結晶を製造することができる方法を提供する。
【解決手段】V族原料およびIII族原料の存在下でC面以外を主面とするIII族窒化物シード1上にIII族窒化物半導体結晶層3を成長させる際に、成長温度を1020℃未満にして行う低温成長工程2を実施する。 (もっと読む)


【課題】積層欠陥の面密度が低減されたSiCエピタキシャルウェハ及びその製造方法を提供する。
【解決手段】本発明のSiCエピタキシャルウェハの製造方法は、オフ角を有するSiC単結晶基板の成長面に存在する基底面転位(BPD)のうち、SiC単結晶基板上に形成された、所定膜厚のSiCエピタキシャル膜において積層欠陥になる比率を決定する工程と、比率に基づいて、使用するSiC単結晶基板の成長面におけるBPDの面密度の上限を決定する工程と、上限以下のSiC単結晶基板を用いて、比率を決定する工程において用いたエピタキシャル膜の成長条件と同じ条件で、SiC単結晶基板上にSiCエピタキシャル膜を形成する工程と、を有することを特徴とする。 (もっと読む)


【課題】得られるコーティングが0.5マイクロ秒〜1000マイクロ秒のキャリアライフタイムを有するように、シリコンカーバイドコーティングを基板上に堆積させる方法を提供する。
【解決手段】a.ジクロロシランガス、メチルハイドロジェンジクロロシランガス、ジメチルジクロロシランガス、及びそれらの混合物から選択されるクロロシランガスと、炭素含有ガスと、水素ガスとを含む混合ガスを、単結晶シリコンカーバイド基板を含有する反応チャンバ内に導入すること、及びb.1200℃より高いが1800℃より低い温度に基板を加熱すること、を含むが、但し、反応チャンバ内の圧力は10torr〜250torrの範囲に維持されるものとする。 (もっと読む)


【課題】ドーパントを添加した結晶性の高い導電性α‐Ga薄膜およびその生成方法を提供する。
【解決手段】(a)水、塩酸及び過酸化水素を含む溶液と、ガリウム化合物と、錫(II)化合物とを混合して原料溶液を調製する工程と、(b)前記原料溶液をミスト化し、ミスト状原料を調製する工程と、(c)前記ミスト状原料を、キャリアガスによって基板の成膜面に供給する工程と、(d)前記基板を加熱することにより、前記ミスト状原料を熱分解させ、前記基板上に、4価の錫が添加された導電性α‐Ga薄膜を形成する工程と、を備える結晶性の高い導電性α‐Ga薄膜の生成方法とする。 (もっと読む)


【課題】触媒金属の混入を抑えることの可能な窒化ガリウム柱状構造の形成方法、及び該方法を用いる窒化ガリウム柱状構造の形成装置を提供する。
【解決手段】
窒化ガリウム柱状構造を下地層上に反応性スパッタによって形成する。このとき、真空槽11内に供給されるアルゴンガス及び窒素ガスの総流量に占める窒素ガスの流量の割合である窒素濃度を窒化ガリウム膜の成長速度が窒素供給によって律速され、且つ、窒化ガリウムの成長速度における極大値の91%以上100%以下の窒化ガリウムの成長速度となるような窒素濃度とする。また、基板Sの温度T、ガリウムのターゲット14に供給される周波数が13.56MHzであるバイアス電力Pが、600≦T≦1200、0<P≦4.63、P<0.0088T−6.60、P≧0.0116T−11.37を満たす条件にて窒化ガリウム柱状構造を形成する。 (もっと読む)


【課題】クラックが入り難い高抵抗な窒化物半導体基板を提供する。
【解決手段】下地基板の表面に、第1の層Bと第2の層Fからなる窒化物半導体層1を形成し、その窒化物半導体層1を下地基板から分離して得られる直径40mm以上、厚さ200μm以上の自立した窒化物半導体基板10であって、第2の層Fは、その表面の面内の平均転位密度が1×103cm-2以上、1×108cm-2未満であると共に、電気抵抗率が0.02Ωcmより大きくなるように形成されており、第1の層Bは、第2の層Fよりも電気抵抗率が低くなるように形成されているものである。 (もっと読む)


【課題】加工変質層の除去処理にかかる時間を減少させつつも、加工変質層に由来するエピタキシャル膜の欠陥の発生を抑制できる炭化珪素単結晶エピタキシャルウエハの製造方法を提供する。
【解決手段】炭化珪素単結晶エピタキシャルウエハの製造において、炭化珪素単結晶基板100を1600℃以上に加熱し、C/Si比が1.0以下となるように、原料ガスを供給し、エピタキシャル膜の成長速度を2.0μm/h以下にする。このとき、キャリアガスの流量を50slm以上にし、原料ガスとしてモノシランの流量を20sccm以下にし、成長装置の前記炭化珪素単結晶基板100が配置された空間の圧力を100mbar以上にすることにより、エピタキシャル膜の成長速度を2.0μm/h以下にすることができる。 (もっと読む)


【課題】従来よりも原子レベルで平坦な表面を有する窒化物半導体薄膜及びその成長方法を提供する。
【解決手段】ミスカットを有するGaN基板101のステップフロー成長(工程1)により制限領域内に形成されたテラス202に、工程1よりもキャリアガスに含まれる水素の組成を少なくして、トリメチルガリウム(TMG)又はトリエチルガリウム(TEG)を供給し、テラス202の上にGaNの2次元核301を1個以上100個以下発生させる(工程2)。次に、工程2よりもキャリアガスに含まれる水素の組成を多くする(工程3)。これにより、複数の2次元核301が横方向成長して1分子層の厚さの連続的なGaN薄膜302となる。工程2と工程3を交互に繰り返すことにより、2分子層以上の厚さのGaN薄膜303を成長させる。 (もっと読む)


【課題】結晶欠陥の少ない高品質な3C−SiC層を形成することが可能な立方晶炭化珪素半導体基板の製造方法を提供する。
【解決手段】シリコン基板11の上面11aに炭化層12を形成する第1の工程と、シリコン基板11の温度を第2の温度範囲の温度まで下降させる第2の工程と、シリコン基板11の温度が第2の温度範囲の温度となったところで、シリコン原料ガスを導入し、シリコン基板11と炭化層12の間の界面に形成された空孔11hにシリコンをエピタキシャル成長させて空孔11hを埋める第3の工程と、シリコン原料ガスの導入を止め、炭素原料ガスを導入しつつシリコン基板11の温度を第3の温度範囲の温度まで上昇させる第4の工程と、シリコン基板11の温度が第3の温度範囲の温度となったところで、シリコン原料ガス及び炭素原料ガスを導入し、炭化層12上に立方晶炭化珪素をエピタキシャル成長させる第5の工程と、を有する。 (もっと読む)


【課題】厚いGaN膜を成長中に剥離して、高品質のGaN自立基板を歩留まり良く製造することができる方法を提供することを目的とする。
【解決手段】GaN自立基板を製造する方法であって、サファイア基板上にZnO膜を形成する工程と、850℃以下の温度で前記ZnO膜上にGaN膜を剥離しないように形成する低温成長工程と、その後、昇温して950℃以上の温度で、GaN膜を追加形成するとともに該GaN膜を基板から剥離させて、GaN自立基板を得る高温成長工程とを含むことを特徴とするGaN自立基板の製造方法。 (もっと読む)


【目的】
p型ドーパント濃度の制御性に優れ、高品質なp型ZnO系結晶の成長方法を提供する。
【解決手段】
MOCVD法により、分子構造中に酸素原子を含まない有機金属化合物と極性酸素材料とを用いてZnO系結晶層を成長する単結晶成長工程を有し、上記単結晶成長工程は、TBP(ターシャリーブチルホスフィン)を供給する工程を有する。 (もっと読む)


【課題】 高品質なシリコン膜を高速で結晶成長させる技術を提供する。
【解決手段】 1200℃〜1400℃に加熱されているとともに1500rpm〜3500rpmで回転している基板6に向けて、基板の表面に直交する方向から、塩化シランガス18を供給する。このときの塩化シランガス18の供給量を、基板6の表面1cm当たり200μmol/分以上とする。 (もっと読む)


【課題】種原子層が成膜されていない基板上に、種原子を含まないウィスカ集合体を直接成長させることを可能としたウィスカ集合体の製造方法を提供する。
【解決手段】被形成基板の対面に種基板を配置し、シリコンを含むガスを導入し減圧化学気相成長を行う。被形成基板は、減圧化学気相成長を行う時の温度に耐えられる物であれば、種類を問わない。種原子を含まないシリコンウィスカ集合体を、被形成基板上に接して、直接成長させることができる。更に、形成されたウィスカ集合体の表面形状特性を利用することで、ウィスカ集合体が形成された基板を太陽電池や、リチウムイオン二次電池等へ応用することができる。 (もっと読む)


【課題】結晶性に優れたIII族窒化物半導体基板を製造することを課題とする。
【解決手段】c面よりa面方向もしくはm面方向に角度R(0°<R≦90°)となる傾斜面を有する酸化物基板、炭化物基板、またはIII族窒化物半導体基板を準備する工程と、前記準備した基板1を選択的にエッチングし、平坦面2と、平坦面2より突出している突起部3と、平坦面2より掘り下げられている溝部4と、を形成するエッチング工程と、エッチングされ、平坦面2、突起部3、および、溝部4が形成された基板1上に、III族窒化物をエピタキシャル成長する成長工程と、を有するIII族窒化物半導体基板の製造方法を提供する。 (もっと読む)


【課題】三角欠陥及び積層欠陥が低減され、キャリア濃度及び膜厚の均一性が高く、ステップバンチングフリーのSiCエピタキシャルウェハを提供する。
【解決手段】本発明のSiCエピタキシャルウェハは、0.4°〜5°のオフ角で傾斜させた4H−SiC単結晶基板上にSiCエピタキシャル層を形成したSiCエピタキシャルウェハであって、前記SiCエピタキシャル層の表面の三角形状の欠陥密度が1個/cm以下であることを特徴とする。 (もっと読む)


【課題】立方晶炭化ケイ素と格子定数が異なるシリコン基板上に、結晶欠陥が少なくかつ高品質の立方晶炭化ケイ素膜を有する立方晶炭化ケイ素膜付き基板及びその製造方法を提供する。
【解決手段】本発明の立方晶炭化ケイ素膜付き基板1は、シリコン基板2の表面2aに立方晶炭化ケイ素膜3が形成され、このシリコン基板2の立方晶炭化ケイ素膜3との界面近傍に、シリコン基板2の表面2aから内部に向かって漸次縮小する略四角錐状の空孔4が多数形成されている。 (もっと読む)


【課題】エピタキシャル成長温度を低下させても、結晶欠陥が少ない高品質の立方晶炭化ケイ素膜を高速にて成長させることが可能な立方晶炭化ケイ素膜の製造方法及び立方晶炭化ケイ素膜付き基板の製造方法を提供する。
【解決手段】本発明の立方晶炭化ケイ素膜の製造方法は、シリコン基板の上に炭素を含むガスを導入し、このシリコン基板を立方晶炭化ケイ素のエピタキシャル成長温度まで急速加熱してシリコン基板の表面を炭化することにより立方晶炭化ケイ素膜を形成する第1の工程、この立方晶炭化ケイ素膜を立方晶炭化ケイ素のエピタキシャル成長温度に保持しつつ、この立方晶炭化ケイ素膜の上に、炭素を含むガス及びケイ素を含むガスを導入し、この立方晶炭化ケイ素膜をさらにエピタキシャル成長させる第2の工程、を有する。 (もっと読む)


1 - 20 / 177