説明

Fターム[4G146BB22]の内容

炭素・炭素化合物 (72,636) | 製造−前処理、ピッチ等の製造、処理 (3,151) | 原料以外(装置含む)の前処理 (1,362) | 添加剤(触媒含む)の処理 (675)

Fターム[4G146BB22]に分類される特許

101 - 120 / 675


【課題】単結晶の気相合成において利用できるオフ基板の製造に際して、製造コストを削減でき、且つ同一のオフ角を有する基板を簡単かつ大量に製造することが可能な新規な方法を提供する。
【解決手段】気相合成法による半導体ダイヤモンド等のエピタキシャル成長が可能な材料であって、その表面が、エピタキシャル成長が可能な結晶面に対してオフ角を有する材料を基板として用い、該基板にイオン注入を行って、基板の表面近傍に結晶構造の変質した層を形成し、気相合成法によって該基板上に結晶成長を行い、次いで、成長した結晶層と基板とを分離させて得られた結晶層を基板として用い、該基板にイオン注入を行って、基板の表面近傍に結晶構造の変質した層を形成し、気相合成法によって該基板上に結晶成長を行い、成長した結晶層と基板とを分離させることを特徴とする、オフ角を有する単結晶基板の製造方法。 (もっと読む)


【課題】高い合成速度でカーボンナノチューブを表面に形成でき、かつ合成されたカーボンナノチューブが剥離しにくいカーボンナノチューブ形成用基板複合体、及びその製造方法を提供すること。
【解決手段】表面にカーボンナノチューブを形成するための基板複合体であって、基板と、
前記基板の少なくとも一方の表面に配置され、アルミニウム原子とフッ素原子とを含むバッファ層と、前記バッファ層の表面に配置され、金属コアと界面活性体とから構成される触媒金属含有粒子からなる触媒層と、を有する。 (もっと読む)


【課題】純度および安定性の高い高機能のナノカーボンを低コストで効率よく量産することができることを課題とする。
【解決手段】内部を還元雰囲気に保持しうる反応容器1と、この反応容器内に設けられ,ローラにより駆動するとともに表面にCNT2が生成される無端状の帯状鉄板3と、帯状鉄板を加熱するヒータ4と、反応容器内に炭化水素を供給する炭化水素供給手段5と、反応容器内に不活性ガスを供給する不活性ガス供給手段6と、帯状鉄板に生成されたナノカーボンを回収する回収手段7と、反応容器内のガスを排気するガス排気手段9とを具備することを特徴とするナノカーボン製造装置。 (もっと読む)


【課題】同一のカーボンナノチューブ形成面に形成されるカーボンナノチューブの性状のばらつきを抑制できる新規なカーボンナノチューブ製造方法および製造装置を提供する。
【解決手段】装置は、対象物1を収容するための反応室30と、反応室に収容された対象物のカーボンナノチューブ形成面11,12に間隔を隔てて対面しつつカーボンナノチューブ形成面が延設する面方向に沿って延設されたガス供給室51,52と、ガス供給室と反応室とを連通させる反応ガスを反応室に吹き出す複数の吹出口41,42とを有するガス通路形成部材と、加熱源71,72とをもつ。反応ガスをガス供給室に供給することにより、反応室内の対象物のカーボンナノチューブ形成面が延設する面方向に対して交差する方向に沿って、ガス供給室の反応ガスを吹出口から対象物のカーボンナノチューブ形成面に向けて衝突させるように吹き出す。 (もっと読む)


【課題】大面積かつ低抵抗のグラフェンシートを備えたグラフェンシート付き基材、及び大面積かつ低抵抗のグラフェンシートを550℃以下という比較的低温にて安価に製造することが可能なグラフェンシートの製造方法を提供する。
【解決手段】本発明のグラフェンシート付き基材1は、ガラス基板、金属基板の表面にガラスがコーティングされたガラス被覆金属基板等からなる基板2上に、炭化珪素層等の珪素原子及び炭素原子を含む薄膜層3、Ni等の金属を含むシリサイド層4、グラフェンシート5が順次積層されている。 (もっと読む)


【課題】高い結晶品質のグラフェンシートの製造方法を提供し、当該方法の実施コストを工業規模の利用に適合させる。
【解決手段】空気および誘電材料から選択された誘電媒体により隔離された複数の金属ピンが一方の面に設けられたグラフェンシートを備える構造を製造する方法において、a)誘電材料からなる膜上に配置されるか膜内に一体化された複数の金属ピン上に、当該金属ピンを触媒とする気相触媒成長によってグラフェンシートを合成し、b)必要に応じて前記膜を除去する。 (もっと読む)


【課題】炭素薄膜の製造方法、炭素薄膜を含んだ電子素子及び炭素薄膜を含んだ電気化学素子を提供する。
【解決手段】基板上にコーティング工程を利用し、高分子膜を形成する段階と、高分子膜上に保護膜を形成する段階と、基板を熱処理し、基板上に炭素薄膜を形成する段階と、を含む炭素薄膜の製造方法である。 (もっと読む)


【課題】大きさ、質のバラツキが少ないグラフェン及びグラファイト薄膜をより簡便な方法によって量産する方法を提供する。
【解決手段】基板上に触媒金属を塗布して均一な膜厚の触媒金属膜を形成する。続いて、所定の温度まで基板を加熱して、炭素供給源ガスを供給する。加熱によって触媒金属の膜が凝集して形成された複数の島状の凝集体の上に、グラフェン及びグラファイト薄膜を形成する。 (もっと読む)


【課題】簡易な方法により大面積で高透過率、低抵抗率の透明導電膜を得ること。
【解決手段】CVD反応容器の第1の領域にショウノウを配置する工程と、CVD反応容器の第2の領域にグラフェンシートを形成する基板を配置する工程と、第1の領域を加熱して、ショウノウを蒸気化し、CVD反応容器内において、不活性ガスのキャリアガスを第1の領域から第2の領域に向けて流すことにより、加熱された第2の領域に配置された基板(Ni)上にショウノウの蒸気を導く工程と、加熱された第2の領域に配置された基板上において、ショウノウの蒸気を熱分解して、基板上に、グラフェンシートを得る工程を有する。そして、グラフェンシートと接触している基板の表面を、ウエットエッチングして、グラフェンシートをエッチング溶液中に剥離させる工程と、エッチング溶液中に剥離したグラフェンシートを、対象物上に貼り付ける工程とを有する。 (もっと読む)


【課題】長尺状のカーボンナノチューブを容易に製造することができるカーボンナノチューブの製造方法、カーボンナノチューブの製造装置を提供する。
【解決手段】カーボンナノチューブ16を長尺状に成長させるカーボンナノチューブの製造方法において、触媒14を担持した線状の支持体3を加熱するステップと、前記支持体3に炭素原料と触媒原料とを含有する原料ガスを供給するステップとを備え、前記支持体3上に前記カーボンナノチューブ16を長尺状に成長させる。 (もっと読む)


【課題】本発明は、透過型電子顕微鏡グリッド及びその製造方法に関する。
【解決手段】本発明の透過型電子顕微鏡グリッドは、少なくとも一つのスルーホールを有する格子板と、該格子板のスルーホールを被覆して該格子板の一表面に設置した複合構造体と、を含む。前記複合構造体が、少なくとも一つのカーボンナノチューブ構造体及び一つのグラフェンシートからなり、前記カーボンナノチューブ構造体が複数の微孔を有し、前記グラフェンシートが前記カーボンナノチューブ構造体の一表面に設置して前記複数の微孔を被覆し、前記グラフェンシートの一部が該複数の微孔に懸架されている。また、本発明は、前記透過型電子顕微鏡グリッドの製造方法を提供する。 (もっと読む)


【課題】一般的な触媒金属基板を用いて、触媒となる金属結晶粒を調製し、容易に低コストにて、均質なグラフェン及び炭素分子薄膜を合成する方法を提供する。
【解決手段】触媒金属基板10を電気炉20の中に装填して、不活性ガスおよび水素ガス雰囲気下で所定温度θ11に至るまで加熱する(S100)。次いで、所定温度θ11に保持して、所定時間T11にわたって炭素原料ガスを更に供給して触媒金属基板10の上にグラフェン及び炭素分子薄膜を形成する(S110)。続いて、自然に冷却するよりも特に高温領域で冷却速度が遅くなるよう、所定の降温速度Δθ1で触媒金属基板10を冷却する(S120)。または、触媒金属基板10を電気炉20の中に装填し、不活性ガスおよび水素ガス雰囲気下で所定温度まで昇温し、所定時間保持し、所定の降温速度で冷却する工程を1回以上実施した後、上記のS100からS120の工程を実施する。 (もっと読む)


【課題】本発明は、燃料電池の製造方法に関し、添加した電極用触媒の原料ロスを低減可能な燃料電池の製造方法を提供することを目的とする。
【解決手段】(3)触媒担持工程においては、先ず、種触媒層をその基材である多孔質金属等の融点以上の高温で加熱して、種触媒層の細孔を閉塞させる(ステップ108)。そして、加熱後に、CNTの表面に上記金属塩溶液を塗布等して触媒を担持させる(ステップ110)。このように、金属塩溶液を塗布する前に、種触媒層を融点以上の温度でアニールすれば、種触媒層の細孔を閉塞させることや、種触媒層の表面粗さを小さくできる。この状態で金属塩溶液を塗布すれば、触媒をCNT表面へ選択的に担持させることができるので、未利用の触媒量を低減できる。 (もっと読む)


【課題】本発明は、燃料電池の製造方法に関し、カーボンナノチューブ触媒層が傾斜したMEAであってもスタック内部の面圧の分布の不均一化を低減可能な燃料電池の製造方法を提供することを目的とする。
【解決手段】第1の基板上に、前記基板の厚み方向に対して傾斜した第1のカーボンナノチューブ触媒層を形成する工程と、第2の基板上に、前記基板の厚み方向に対して傾斜した第2のカーボンナノチューブ触媒層を形成する工程と、前記第1の基板の触媒層形成面と電解質膜の一面とを接合する工程と、前記第2の基板を、前記第1の基板の表面に対して前記第2の基板の表面が平行で、かつ、前記第1の基板の触媒層形成面に対して前記第2の基板の触媒層形成面が平行となるように配置して、前記第2の基板の触媒層形成面と、前記電解質膜の他面とを接合する工程と、前記第1の基板と前記第2の基板とをそれぞれ除去する工程と、を備える。 (もっと読む)


【課題】本発明は、半導体型カーボンナノチューブの製造方法に関するものである。
【解決手段】本発明の半導体型カーボンナノチューブの生成方法は、基板に、血液を含む触媒予備体を堆積させる第一ステップと、前記触媒予備体に含まれた有機物質を除去して、血液に含まれた鉄を酸化して鉄の酸化物を形成する第二ステップと、前記鉄の酸化物を還元させて鉄ナノ粒子を形成する第三ステップと、前記鉄ナノ粒子を触媒として半導体型カーボンナノチューブを生成する第四ステップと、を含む。 (もっと読む)


【課題】伝熱性に優れる水素吸蔵材及びその製造方法を提供する。
【解決手段】水素吸蔵材は、水素吸蔵合金とカーボンナノチューブとから構成され、カーボンナノチューブが水素吸蔵合金の表面に結合している。水素吸蔵合金とCNTとの接触熱抵抗が小さいこと、及び、CNTの長手方向の一端が水素吸蔵合金に結合しており、CNTは長さ方向に対する伝熱性が優れる特性を有することから、水素吸蔵材は優れた伝熱性を有する。そして、この水素吸蔵材は、加熱雰囲気下に水素吸蔵合金を配置するとともに炭素源ガスを供給し、化学的気相合成法により水素吸蔵合金の表面からカーボンナノチューブを成長させることで得られる。 (もっと読む)


【課題】パーティクルの発生を抑えつつ、カーボンナノチューブの成長速度の低下を抑制できるカーボンナノチューブの形成方法、及びカーボンナノチューブの形成装置を提供する。
【解決手段】アセチレンガスを熱分解してカーボンナノチューブ33を形成する際に、コバルトから構成される触媒金属層32に対して、窒素プラズマによる窒化処理を行い、窒化金属層32Nを形成する。次いで、アセチレンガスを熱分解する温度以下まで窒化金属層32Nを加熱して窒化触媒金属を微粒子化して微粒子膜32Pを形成する。その後、微粒子膜32Pをアセチレンガスが熱分解される温度にまで昇温して且つ該温度に維持することによって、アセチレンガスを熱分解して微粒子層32P上にカーボンナノチューブ33を形成する。 (もっと読む)


【課題】大量・低コスト・高品質のナノカーボンを製造する方法及び装置を提供すること。
【解決手段】触媒支援化学的気相成長法を用い、400〜1000℃に加熱した触媒活性化ゾーン21aとナノカーボン合成ゾーン21bと冷却ゾーン21cを有する電気炉21内に設置した反応管としてのスクリューコンベア22に、多孔質複合金属酸化物と炭化水素ガスを触媒の供給用ホッパー25から連続的に供給し、合成されたナノカーボンを連続的に排出ホッパー26から取り出す。本発明によれば、大量・低コスト・高品質のナノカーボンの製造方法及び製造装置が得られる。さらに、ナノカーボン合成ゾーンにて生成される水素ガスを燃料電池28bによる発電に有効利用することでエネルギーを回収することができるため、より低コストでナノカーボンを製造できるようになる。 (もっと読む)


【課題】高い放電容量および高い初回充放電効率、さらに優れたレート特性とサイクル特性を得ることが可能な炭素質材料を提供する。
【解決手段】高結晶性の黒鉛質からなる黒鉛質芯材12と該芯材の表面を被覆する低結晶性の炭素質被覆層16とを有するリチウムイオン二次電池用負極材料であって、リチウムイオン二次電池用負極材料の表面は細孔14がなく、黒鉛質芯材は細孔を有し、黒鉛質芯材は、炭素質被覆層を有さない単独粒子の状態で略球状であり、黒鉛質芯材の細孔容積は、リチウムイオン二次電池用負極材料を粉砕後、水銀圧入法で測定した0.01〜100μmの細孔の容積が、0.05〜0.4cm/g、リチウムイオン二次電池用負極材料のd002:0.3360nm以下で、リチウムイオン二次電池用負極材料のラマンスペクトルにおけるR値(I(1360)/I(1580))が0.3〜1.0であるリチウムイオン二次電池用負極材料。 (もっと読む)


実質的に平行に配列された浸出カーボン・ナノチューブを含むカーボン・ナノチューブ浸出繊維材料について説明する。カーボン・ナノチューブ浸出繊維材料は、繊維材料とこの繊維材料に浸出されたカーボン・ナノチューブ層とを含み、浸出カーボン・ナノチューブは、繊維材料の長手軸に実質的に平行に配列され、実質的に平行に配列された浸出カーボン・ナノチューブの少なくとも一部は、相互に、繊維材料に又はその両方に架橋結合される。架橋結合は、例えば、共有結合又はπスタッキング相互作用により起こる。カーボン・ナノチューブ浸出繊維材料は、実質的に平行に配列された浸出カーボン・ナノチューブ層の上に成長した追加のカーボン・ナノチューブをさらに含むことができる。カーボン・ナノチューブ浸出繊維材料を含む複合材料及びカーボン・ナノチューブ浸出繊維材料の生産方法についても説明する。 (もっと読む)


101 - 120 / 675