説明

Fターム[4G146BB22]の内容

炭素・炭素化合物 (72,636) | 製造−前処理、ピッチ等の製造、処理 (3,151) | 原料以外(装置含む)の前処理 (1,362) | 添加剤(触媒含む)の処理 (675)

Fターム[4G146BB22]に分類される特許

161 - 180 / 675


【課題】引張強度が高いCNT繊維、及び糸切れが生じにくいCNT繊維の製造方法を提供すること。
【解決手段】複数のCNTを含み、前記CNTの表面に微粒子を担持していることを特徴とするCNT繊維。基板上に複数形成されているCNTの一部を引き出すとともに、引き出されたCNTの表面に前記微粒子を担持させることを特徴とするCNT繊維の製造方法。基板上に複数形成されているCNTの表面に前記微粒子を担持させる工程と、前記微粒を担持するCNTの一部を引き出す工程と、を有することを特徴とするCNT繊維の製造方法。 (もっと読む)


【課題】基材上に複数のカーボンナノチューブ柱状構造体を備えたカーボンナノチューブ複合構造体であって、180°に折り曲げが可能である優れた柔軟性を有するとともに、優れた熱伝導率および優れた導電率を発現できる、カーボンナノチューブ複合構造体を提供する。また、そのようなカーボンナノチューブ複合構造体を含む粘着部材を提供する。
【解決手段】本発明のカーボンナノチューブ複合構造体は、基材上に複数のカーボンナノチューブ柱状構造体を備えたカーボンナノチューブ複合構造体であって、該基材のヤング率が90〜130GPaである。 (もっと読む)


【課題】基材上に複数のカーボンナノチューブ柱状構造体を備えたカーボンナノチューブ複合構造体からのカーボンナノチューブ柱状構造体の単離方法を提供する。
【解決手段】カーボンナノチューブ複合構造体10は、該基材1と該カーボンナノチューブ柱状構造体2との間に中間層3を備え、該中間層3を備えた基材1とカーボンナノチューブ柱状構造体2との密着力が5N/cm未満であり、該カーボンナノチューブ柱状構造体2の先端の25℃における対ガラスせん断接着力が10N/cm以上であり、該カーボンナノチューブ複合構造体10が備える該カーボンナノチューブ柱状構造体2の先端を被着体に圧着して接着した後、該中間層3を備えた基材1を剥離角度45°以上でピールすることにより、該カーボンナノチューブ柱状構造体2を凝集破壊させることなく剥離転写する。 (もっと読む)


【課題】酸密度や酸強度や細孔分布について、容易に制御を行うことができ、比表面積及び細孔容積が大きなスルホン化多孔性カーボン及びその製造方法を提供すること。
【解決手段】本発明のスルホン化多孔性カーボンは、レゾルシノールとアルデヒドとを付加縮合させて有機湿潤ゲルを得る重合工程と、該有機湿潤ゲルに含まれる水分を水溶性有機溶媒で置換する溶媒置換工程と、該溶媒置換された有機湿潤ゲルを超臨界乾燥する超臨界乾燥工程と、熱処理によって多孔性炭化物を得る炭化工程と、該多孔性炭化物をスルホン化処理することによりスルホン酸基を化学修飾するスルホン化工程とを有することを特徴とする。 (もっと読む)


【課題】材料の収率を向上させ得るカーボンナノチューブの製造方法を提供する。
【解決手段】炭素原料ガスを容器1内に導いて熱分解させるとともに、当該容器1内に配置され且つ金属触媒粒子Cが担持された基板Kに、熱分解により生成した炭素原子と金属触媒粒子との反応により当該金属触媒粒子を核としてカーボンナノチューブを生成させるに際し、容器1内に設けられた一対の電極板4,5間に基板Kを案内するとともにこれら電極板4,5に直流電圧を印加して基板Kに電界を付与させるようになし、さらに電磁石体9により容器1内の基板Kに交番磁界を付与させる方法である。 (もっと読む)


少なくとも1つの金属を有する金属マトリックスとカーボンナノチューブ浸出繊維材料とを含有する複合材料が本明細書に記載される。金属マトリックスには、アルミニウム、マグネシウム、銅、コバルト、ニッケル、ジルコニウム、銀、金、チタン、及びこれらの様々な混合物が含まれる。繊維材料には、ガラス繊維、炭素繊維、金属繊維、セラミック繊維、有機繊維、炭化ケイ素繊維、炭化ホウ素繊維、窒化ケイ素繊維、及び酸化アルミニウム繊維が含まれる。複合材料は、少なくともカーボンナノチューブ浸出繊維材料を、任意的には複数のカーボンナノチューブをオーバーコートする保護層を含むことができる。金属マトリックスは、金属マトリックスとカーボンナノチューブ浸出繊維材料との親和性を向上させる少なくとも1つの添加剤を含むことができる。繊維材料は、金属マトリックス中において、均一に、不均一に、又は勾配をもって分布する。不均一な分布は、金属マトリックスの異なる領域に、機械的、電気的又は熱的に異なる性質を付与するために用いられてもよい。 (もっと読む)


【課題】グラフェンを高精度でパターニングすることができ、これにより、グラフェンを用いた電子デバイス要素及び電子デバイスの精細加工が可能であり、製造コストを格段に低減することが可能なグラフェン構造体及びその製造方法等を提供する。
【解決手段】基板上にレジスト膜を精度よくパターニングし、そのレジスト膜の開口内に親水化膜を形成した後、GOが親水性を有することを利用して、親水化膜の部分にのみ、GOを選択的に化学的に結合させて固定化し、更にそのGOを還元して親水化膜の部分にのみグラフェンが選択的に固定化されたグラフェン構造体を得る。このように、グラフェン構造体は、基板上にグラフェンが設けられてなり、且つ、基板における親水処理の部位とグラフェン、及び/又は、基板における疎水処理の部位以外の部位とグラフェンとの間に、親水処理による結合が形成されたものである。 (もっと読む)


本発明の特定の実施形態例は、透明な導電性コーティング(TCC)としてグラフェンを使用することに関する。被覆しようとする表面を有する基材を供給する。自己組織化単分子膜(SAM)テンプレートを、被覆しようとする表面に配置する。前駆体分子を含む前駆体を供給する。ここで、前駆体分子は、多環式芳香族炭化水素(PAH)及びディスコチック分子である。前駆体を溶解して溶液とする。この溶液を、上にSAMテンプレートを配置した基材に適用する。前駆体分子をSAMテンプレートに光化学的に付着させる。基材を少なくとも450℃まで加熱すると、グラフェン含有膜が形成される。有利なことに、グラフェン含有膜は基材に直接、例えばリフトオフ法を必要とせずに、形成することができる。 (もっと読む)


【課題】導電性が安定して維持し、かつ基材の補強材として優れたCNTネットワーク構成体を提供すること。
【解決手段】本CNTネットワーク構造体は、グラファイト層が単層または多層の同軸管状になった物質であるCNTを複数含み、これら各CNTは最表面側のグラファイト層同士が連続的に接合した箇所を有し、これら接合箇所によりCNTのネットワークを構成している。 (もっと読む)


【課題】大面積グラフェンの製造方法及び転写方法を提供する。
【解決手段】基板上にグラフェン層、保護層及び接着層を順次に形成した後、基板を除去し、次に、転写基板上に、グラフェン層が接触するように、グラフェン層を整列する段階を含む大面積グラフェン転写方法である。 (もっと読む)


炭素/炭素複合材料は、炭素マトリックスと不織,カーボン・ナノチューブ(CNT)浸出炭素繊維材料とを含む。織物材料を用いる場合には、CNTsを不織状態の元の炭素繊維材料に浸出する。炭素/炭素複合材料は、CNT浸出繊維材料上にバリヤコーティングを含む。製品を、これら炭素/炭素複合材料で作る。炭素/炭素複合材料の製造方法は、連続CNT浸出炭素繊維材料を型板構造体の周囲に巻き付ける工程と、初期の炭素/炭素複合材料を形成するために炭素マトリックスを形成する工程と、を含むか、或いは、別に、混合物を形成するために炭素マトリックス前駆体に短CNT浸出炭素繊維材料を分散する工程と、型内に前記混合物を載置する工程と、初期の炭素/炭素複合材料を形成するために炭素マトリックスを成形する工程と、を含む。 (もっと読む)


【課題】触媒合金を利用したグラフェンの製造方法を提供する。
【解決手段】基板上にNi含有合金触媒層を形成するステップと、合金触媒層上に炭化水素ガスを供給してグラフェン層を形成するステップと、を含み、Ni含有合金触媒層は、Cu,Pt,Fe,Auのうち少なくとも一つの金属及びNiを含み、グラフェンの製造時、触媒層にNiのカーボン溶解を減少させる触媒金属を共に使用することによって、触媒合金層に溶解されるカーボンの量を調節でき、したがって、均一な単一層のグラフェン層を形成できる。 (もっと読む)


本発明は、新規の高純度グラファイト成形、特にグラファイト電極を使用するケイ素、有利にはソーラーシリコンの製造のための改良した方法に、及び新規のグラファイト成形体の製造のための工業的方法に関する。 (もっと読む)


【課題】 高エネルギー密度のリチウムイオン電池を製造できる電子伝導性が高い炭素−オリビン型リン酸マンガン鉄リチウム複合体を簡易かつ効率的に製造する方法を提供する。
【解決手段】 (1)リン酸マンガン鉄複合体部分が一般式(1):LiMn1−xFePO(X=0.1〜0.3)で表される炭素−リン酸マンガン鉄複合体を沈殿により製造する工程、(2)上記炭素−リン酸マンガン鉄複合体とリン酸リチウムとを含有する共沈物を製造する工程、(3)上記共沈物に炭素前駆体となる有機物を添加し、混合する工程および(4)上記共沈物と炭素前駆体となる有機物との混合物を焼成する工程を経て炭素−オリビン型リン酸マンガン鉄リチウム複合体を製造し、該炭素−オリビン型リン酸マンガン鉄リチウム複合体を用いて、リチウムイオン電池用の正極材料を構成する。 (もっと読む)


本発明は、カーボンナノチューブを基板上に合成する方法であって、炭素源、酸化物化合物の前駆体源、および任意に触媒源を含む流れを前記基板上に生じさせることにより化学蒸着によって前記カーボンナノチューブを前記基板上に成長させる工程を含む方法に関する。 (もっと読む)


【課題】充放電サイクル特性の優れたリチウム2次電池負極用炭素材を提供すること。
【解決手段】本発明によるリチウム2次電池負極用炭素材は、1次粒子平均粒径が5nm以上1.5μm以下のリチウムイオンの吸蔵・放出が可能な金属もしくは半金属またはこれらの合金、酸化物、窒化物もしくは炭化物を含む粒子と、該粒子を包囲する樹脂炭素材とからなる複合粒子、ならびに該複合粒子の表面に結合し、かつ、該複合粒子を包囲するナノファイバー等からなる網状構造体を含み、該複合粒子中の前記金属もしくは半金属等を含む粒子の2次粒子平均粒径が、1次粒子最小粒径以上、5μm以下であることを特徴とする。 (もっと読む)


ナノスケールグラフェンプレートレットを製造する方法であり、(a)黒鉛材料を分子状若しくは原子状酸素又は分子状若しくは原子状酸素を放出可能な物質と接触させることによって、酸素基で官能化した黒鉛材料(FOG)から成る、8:1より高い炭素/酸素モル比を特徴とする前駆体を得て、(b)続いてそのFOG前駆体を(化学的又は物理的に)還元することによって、20:1より高い炭素/酸素モル比を特徴とするナノスケールグラフェンプレートレットを得ることを含む。 (もっと読む)


複合材料は、巻取り可能な寸法のアラミド繊維材料を含むカーボンナノチューブ(CNT)浸出アラミド繊維材料と、アラミド繊維材料の周囲に等角に配置されたバリアコーティングと、アラミド繊維材料に浸出されたカーボンナノチューブ(CNT)と、を含む。浸出されたCNTは、長さが均一かつ密度が均一である。連続CNT浸出プロセスは、(a)巻取り可能な寸法のアラミド繊維材料の表面にバリアコーティング及びカーボンナノチューブ(CNT)形成触媒を配置することと、(b)アラミド繊維材料上にカーボンナノチューブを合成し、これによりカーボンナノチューブ浸出アラミド繊維材料を形成することと、を含む。 (もっと読む)


組成物が、巻き取り可能な寸法の炭素繊維材料と前記炭素繊維材料に浸出されたカーボン・ナノチューブ(CNTs)とを含んだカーボン・ナノチューブ(CNT)浸出炭素繊維材料を含む。前記浸出されたCNTsは長さと分布が均一である。また、前記CNT浸出炭素繊維材料は、前記炭素繊維材料の周りに等角的に配置されたバリア・コーティングも含むが、一方、前記CNTsには実質的にバリア・コーティングは存在しない。連続CNT浸出プロセスは、(a)炭素繊維材料を官能基化すること、(b)前記官能基化された炭素繊維材料にバリア・コーティングを配置すること、(c)前記官能基化された炭素繊維材料にカーボン・ナノチューブ(CNT)形成触媒を配置すること、及び(d)カーボン・ナノチューブを合成し、これによって、カーボン・ナノチューブ浸出炭素繊維材料を形成すること、を含む。 (もっと読む)


複合材料は、巻取り可能な寸法の金属繊維材料と、金属繊維材料の周囲に等角的に配置されるバリアコーティングと、金属繊維材料に浸出されるカーボンナノチューブ(CNT)と、を含むカーボンナノチューブ(CNT)浸出金属繊維材料を含んで構成される。連続CNT浸出プロセスは、(a)巻取り可能な寸法の金属繊維材料の表面にバリアコーティング及びカーボンナノチューブ(CNT)形成触媒を配置することと、(b)金属繊維材料上にカーボンナノチューブを合成し、これによりカーボンナノチューブ浸出繊維材料を形成することと、を含んで構成される。 (もっと読む)


161 - 180 / 675