説明

Fターム[4G146DA28]の内容

炭素・炭素化合物 (72,636) | 装置 (3,924) | 装置の形状、構造 (2,292) | 2以上の装置の組合せ (87)

Fターム[4G146DA28]に分類される特許

41 - 60 / 87


二酸化炭素を非熱プラズマ雰囲気中で炭素と酸素に分解する二酸化炭素のプラズマ分解装置及び方法が開示されており、当該装置は、二酸化炭素の流入口及び炭素と酸素の排出口を有する二酸化炭素分解反応器と;前記反応器内に配置されて長さ方向に伸長する棒状の複数の陽極と;前記反応器内の複数の陽極内に配置されて長さ方向に伸長する棒状の複数の陰極と;前記複数の陽極と前記複数の陰極との間に所定の電圧を印加する電源と、を含む。 (もっと読む)


【課題】炭素ナノチューブ合成方法が開示される。
【解決手段】炭素ナノチューブを合成するための合成空間外部に基板の積載が可能なボートを準備する。その後、ボートに基板を積載させる。その後、基板が積載されたボートを合成区間に移送する。その後、合成空間に移送された基板を対象として炭素ナノチューブを合成する。ここで、ボートは基板を多数枚を積載することができるように多段構造を有する。従って、炭素ナノチューブを合成するための工程を効率的に進行させることができる。 (もっと読む)


複合材を製造するための方法であって、補強素子間の介在ギャップに液体マトリクス材料を有する補強素子の第1層を設けるステップと、補強素子の第2層を前記介在ギャップ内の前記液体マトリクス材料に浸漬して、前記第2層内における前記補強素子を、部分的に補強素子の第1層に埋設し、また前記補強素子の第1層から部分的に突出させるステップと、第2層における前記補強素子の突出部分を、前記液体マトリクス材料に含浸させるステップと、及び前記液体マトリクス材料を硬化するステップと、を有する複合材の製造方法。
(もっと読む)


一酸化炭素を必要に応じて生成することを可能にし、生成現場への一酸化炭素の輸送又は現場における大量の一酸化炭素の貯蔵の必要性をなくす、カーボンナノチューブ生成反応器上流におけるドライリホーミング又は部分酸化の統合プロセスを説明する。そのような統合プロセスの実施を可能にする装置もまた提供する。カーボンナノチューブ生成プロセスから二酸化炭素の排出を排除することが出来る。これは、二酸化炭素副生成物を再利用し、それを部分酸化プロセスへの供給と混ぜ合わせることによって達成できる。 (もっと読む)


【課題】 格段に低い製造コストで気相生成炭素構造体を得ることができる気相生成炭素構造体の製造装置および製造方法を提供する。
【解決手段】 気相生成炭素構造体の製造装置1は、バイオマス原料を炉2内に供給するスクリューフィーダ4と、第1の高温空気導入ノズル6を有し供給された原料を500〜900℃の熱分解温度で熱分解する熱分解ゾーン5と、第2の高温空気導入ノズル8を有し熱分解生成物を900〜1300℃の反応温度で燃焼させる燃焼ゾーン7と、燃焼ゾーン7を通過した燃焼残留物を保持して分解ガス中の炭素ラジカルを生成させ気相生成炭素構造体を生成させるチャーベットゾーン9とを備えている。燃焼ゾーン7に、気相生成炭素構造体を生成する補助剤としての酸化促進剤、比表面積改善ガスおよび触媒のうち少なくとも1つを供給する補助剤供給部20が設けられている。 (もっと読む)


【課題】再生可能原料からのカーボンナノチューブの製造方法の提供。
【解決手段】a)少なくとも1種の植物質の発酵によりアルコールを合成し、得られた生成物を場合により精製する段階と、b)第1の反応器3で、アルケンと水との混合物を生成するために、a)で得たアルコールを脱水し、生成物を場合により精製する段階と、c)450〜850℃の温度で粉末状触媒を第2の反応器7に導入し、特に流動層に導入する段階であって、触媒が不活性固体基体により担持された少なくとも1種の触媒金属を含み、触媒の粒子が300μm未満のd50を有する段階と、d)アルケンの触媒分解により触媒の表面上にカーボンナノチューブおよび水素を形成するために、場合により流動層でb)で製造されたアルケンをc)の粉末状触媒と接触させる段階と、e)d)で製造されたカーボンナノチューブを回収する段階とを含む。 (もっと読む)


【課題】廃棄処分となったセルロースアシレートフイルムを活性炭の原料として再利用する。
【解決手段】活性炭製造設備10は炭化装置12と賦活装置13とを備える。炭化装置12は炭化炉20を有する。賦活装置13はロータリキルン30とガス供給源31を有する。炭化炉20において廃棄フイルム15から炭化フイルム24が生成される。ロータリキルン30の内部は電気ヒータ43により750℃以上950℃以下の温度に加熱される。ロータリキルン30の内部にはガス供給源31から炭酸ガス45が送り込まれる。このロータリキルン30に炭化フイルム24が投入される。炭化フイルム24は、ロータリキルン30の回転により攪拌されながら賦活される。これにより、炭化フイルム24から活性炭50が生成される。 (もっと読む)


【課題】カーボンナノチューブを低温で成長させることが可能なカーボンナノチューブの製造装置およびカーボンナノチューブの製造方法を提供する。
【解決手段】カーボンナノチューブの製造装置は、炭素原料ガスを供給するガス供給配管系20と、ガス供給配管系20に接続される筒状の石英管13と、石英管13の前段部分に設けられた環状伝熱ヒータ14とを備える。石英管13は、前段部分に位置し、ガス供給配管系20が接続される分解炉部分と、後段部分に位置し、触媒金属6を有する基板1が設置される成長炉部分とを有する。石英管13における分解炉部分には、複数のセラミックパイプを蜂の巣状に積み重ねたセラミックパイプフィルタ40が設けられている。 (もっと読む)


【課題】 木質材料等の有機系の処理対象物を原料として用いて、高い比表面積と電気二重層キャパシタに適した細孔構造を有する多孔炭、及びその製造方法を提供する。
【解決手段】 乾燥炉と、炭化と賦活を連続して行う炭化炉とを有する多孔炭の製造装置を用いて、木質材料を主成分とした処理対象物に対して、入口温度750℃ないし950℃の過熱水蒸気を炭化炉に導入し、回転パドルの回転数を毎分3回転ないし6回転、周速度で0.035m/sないし0.07m/sで回転させ、原料供給速度を炭化炉内原料工程容積当たり0.2kg/h/リットルないし0.5kg/h/リットルとして炭化処理、賦活化処理を過熱水蒸気雰囲気中において連続して行うことにより、全比表面積が600m/g以上を有するとともに、外比表面積が全比表面積の30%以上75%以下を占める細孔分布構造を有する多孔炭が得られる。 (もっと読む)


【課題】流動層を用いてナノ単位のカーボン材料を大量に製造するに際し、長繊維長のカーボン材料を効率良く製造することができる流動触媒及びそれを用いたナノカーボン材料の製造装置及びシステムを提供する。
【解決手段】本発明にかかる流動触媒は、活性金属を担持させた担体を両端開放の筒型に成型してなる成型触媒11Aであり、このカーボン材料成長空間12内にナノカーボン材料を成長させ、長繊維長のカーボン材料を効率的に製造することができる。 (もっと読む)


【課題】炭化・ガス化方法並びにシステムにおいて、ガス化性能を向上させる。また、バイオマスを連続して安定的にガス化することを可能とする。
【解決手段】バイオマス燃料1を炭化処理して炭化物4を生成すると共にバイオマス燃料1の炭化処理時に発生する可燃性熱分解ガス3を二段式ガス化炉7のガス化・燃焼部8及びガス改質部9の両方に送り込み、炭化物4を二段式ガス化炉7のガス化・燃焼部8に供給して燃焼とガス化とを行う共にガス改質部9に送り込まれた可燃性熱分解ガス3を改質して可燃性ガス11を生成するようにした。 (もっと読む)


【課題】連続的に大量生産することができ且つ純度の高い単層のカーボン材料を製造することができるナノカーボン材料製造用触媒、触媒微粒子、ナノカーボン材料製造用触媒の製造方法及びナノカーボン材料製造システムを提供する。
【解決手段】本発明に係るナノカーボン材料製造用触媒10は、炭素原料を用いてナノカーボン材料を生成するナノカーボン材料製造用触媒であって、担体12の表面に活性金属の凝集を防止する凝集防止材15を介在して活性金属11が担持されてなる。 (もっと読む)


【課題】本発明は、ナノカーボンの取り出しを従来と比べ短時間で且つ安全に行なうことができるとともに、プロセスが大型化しても、触媒の投入及び生成ナノカーボンの連続取り出しを実現できることを課題とする。
【解決手段】有機性処理物を急速に熱分解した後、急冷して液化を行うナノカーボン生成装置において、有機性処理物を急速に熱分解する熱分解装置1と、熱分解した有機性処理物を急冷して液化することにより液化物を回収する手段とを備え、前記液化物に含まれる不純物を取り除き、その液化物を還元雰囲気の高温炉6に投入することにより気相成長法によるナノカーボン14の生成を行うことを特徴とするナノカーボン生成装置。 (もっと読む)


【課題】 プラズマCVD装置及びプラズマCVD方法を用いて、被処理基板の全表面にカーボンナノチューブを気相成長させる。
【解決手段】 真空チャンバー内11に、基板ステージ14と、プラズマ発生手段と、メッシュ状の遮蔽部材15であって、基板ステージと同一形状かつ同一面積、又は基板ステージと同一形状かつ基板ステージより小面積の遮蔽部材15とを設けたプラズマCVD装置1を用いて、プラズマ発生領域と被処理基板との間に、真空チャンバー11内に発生したプラズマを遮蔽部材15で遮蔽しながら、プラズマにより解離された原料ガスを基板ステージ14上の被処理基板Sに接触させて被処理基板Sの全表面にカーボンナノチューブを気相成長させる。 (もっと読む)


ナノ材料を受け、そこからナノ繊維質材料を形成し、これらのナノ繊維質材料を次の応用用に収集するシステム。このシステムは、ナノ材料、典型的には化学蒸着によって製造されるカーボンナノチューブ、を発生させるチャンバーに連結されており、ナノチューブをヤーンまたはトウに紡ぐメカニズムを含む。代わりに、このシステムは、ナノチューブからの不織布シートを形成するメカニズムを含む。このシステムは、更に、形成ナノ繊維質材料を収集する部品を含む。更に、ナノ繊維質材料を形成および収集する方法も提供する。
(もっと読む)


【課題】安全且つ低コスト、そして簡便な装置又は設備で、高純度のCOFを製造する。
【解決手段】COと炭素とを高温接触させて得られた生成ガスと、Fを含むガスとを接触させ、COFを製造する。 (もっと読む)


【課題】産業廃棄物の有効利用を可能とした固形廃棄物の無酸素熱分解・賦活処理にて得られた高純炭素を用いた布帛及びそれを用いた身体装着具を提供することにある。
【解決手段】フェノール樹脂を除いた高分子化合物を無酸素熱分解・賦活処理にて得られた高純炭素を用いた布帛及びそれを用いた身体装着具。 (もっと読む)


液体中で、非凝集フラーレン状物質をガス状サスペンションから収集するインサイツ方法とシステムを提供する。本方法及びシステムは、懸濁液中にフラーレン状物質を捕獲するように、フラーレン状物質を含むガス状サスペンションを懸濁液と接触させる工程;及びフラーレン状物質を含有する懸濁液として液状サスペンションを収集する工程によって、非凝集フラーレン状物質を収集する。この方法とシステムは、非凝集状態で溶液中にフラーレン又はナノチューブを収集かつ維持するために特に有用でありうる。 (もっと読む)


【課題】カーボンナノチューブ製造システムに提供する。
【解決手段】カーボンナノチューブ製造システムは、金属触媒及び炭素含有気体を熱分解し、金属触媒にカーボンナノチューブの合成を誘導する反応炉、反応炉で金属触媒に合成されたカーボンナノチューブを含む気体が排気される排気ライン、及び排気ライン上に設置され、金属触媒に合成されたカーボンナノチューブを磁力を利用し、トラップするトラップ装置を含む。このような構成のカーボンナノチューブ製造システムは、カーボンナノチューブの連続的な生産が可能で、生産されるカーボンナノチューブを效果的にトラップ及び、回収できる。 (もっと読む)


【要 約】
【課題】低温でカーボンナノチューブを形成できる技術を提供する。
【解決手段】第一の真空チャンバ10と第二の真空チャンバ20を、ダクト11、21によって接続し、第一、第二の真空チャンバ10、20とダクト11、21を真空排気しておき、第一の真空チャンバ10内で基板表面に形成した触媒薄膜をダクト11、21を通過させて第二の真空チャンバ20内に搬入し、触媒薄膜表面にカーボンナノチューブを成長させる。触媒薄膜は大気に曝されないので失活せず、低温でもカーボンナノチューブが成長する。 (もっと読む)


41 - 60 / 87