説明

Fターム[4G169BC50]の内容

触媒 (289,788) | 金属元素 (64,050) | 遷移金属 (48,779) | 4(4A)族 (4,063) | Ti (2,013)

Fターム[4G169BC50]に分類される特許

2,001 - 2,013 / 2,013


本発明はN,N’−二置換イミダゾリウム塩、N−複素環カルベンリガンドおよび複素環カルベンリガンドを有するルテニウム触媒、換言すると一般式(I)及び(II)で表される化合物、一般式(III)及び(IV)で表される化合物並びに一般式(V)及び(VI)で表される化合物、無機酸化物担体上に固定化された(I−VI)の製造方法に関する。本発明はさらに固定化された一般式(I−VI)で表される化合物の、有機、金属有機又は遷移金属触媒合成への使用及び一般式(V)及び(VI)で表される化合物の有機、金属有機合成、特にオレフィンメタセシス等のC−Cカップリング反応における触媒としての使用に関する。

(もっと読む)


マイクロカプセル化触媒−配位子系は、触媒および/または配位子を第1相(たとえば有機相)中に溶解または分散させ、第1相を第2の連続相(たとえば水相)中に分散させてエマルジョンを形成させ、分散された第1相と連続第2相との間の界面で1以上のマイクロカプセル壁形成物質を反応させて、分散された第1相核を封入するマイクロカプセルポリマーシェルを形成させ、第1相が触媒もしくは配位子だけを含む場合には、マイクロカプセルを触媒−配位子系の残りの配位子もしくは触媒成分で処理することにより調製される。触媒は好ましくは遷移金属触媒であり、配位子は好ましくは有機配位子である。 カプセル化触媒−配位子系は慣用の触媒反応に用いることができる。カプセル化触媒−配位子系は、反応媒体から回収され、リサイクルされてもよい。 (もっと読む)


制御された配位構造を有する担持型反応性触媒およびその製造方法が開示される。担持型触媒は、原子の最上位層すなわち外層を有する触媒粒子を含み、その中で原子の少なくとも一部分は制御された配位数2を示す。そのような触媒は、その中で分子の大半が枝分れ状よりはむしろ直鎖状である制御剤を含む中間前駆体組成物から製造することができる。担持型触媒(10)は、当初その表面にヒドロキシル基を含む担体(12)と、縮合反応によって担体(12)のヒドロキシル基に化学的に結合される固定剤(14)と、固定剤に何らかの方法(図示せず)で結合されまたは付着される触媒粒子(6)とを含む。本発明の担持型触媒は、高選択性での過酸化水素の調製および他の化学転化反応に対して有用である。

(もっと読む)


分子状酸素により反応基質を酸化するための酸化触媒であって、特定のヒドラジルラジカル(例えば2,2−ジフェニル−1−ピクリルヒドラジル)及び特定のヒドラジン化合物(例えば2,2−ジフェニル−1−ピクリルヒドラジン)よりなる群から選ばれる少なくとも1種を包含することを特徴とする酸化触媒。該酸化触媒の存在下、反応基質を分子状酸素と接触させることによる化合物の製造方法。 (もっと読む)


【課題】燃料電池の電極触媒に用いられるのに非常に適した特性を示す金属-カーボン複合体を提供する。
【解決手段】本発明は、ナノ構造を有する金属-カーボン複合体及びそれの応用に関するものであり、より具体的にナノ枠に転移金属前駆体及びカーボン前駆体を連続的に担持させ、高温反応させることにより製造されるナノ構造を有する金属-カーボン複合体に関するものである。本発明による金属-カーボン複合体は、多孔性ナノ構造のメゾポーラスカーボン内で金属が1ナノメーター以下の大きさで非常に規則的に多分散されており、金属と炭素が化学的に結合している。 (もっと読む)


少なくとも繊維金属及びマトリックス金属の混合物を溶解することと、混合物を冷却して、少なくとも繊維相及びマトリックス相を含むバルクマトリックスを形成することと、マトリックス相の少なくともかなりの部分を繊維相から除去することとを含む、金属繊維の製造方法。加えて、本方法は、バルクマトリックスを変形させることを含んでよい。特定の態様においては、繊維金属は、ニオブ、ニオブ合金、タンタル及びタンタル合金のうちの少なくとも1つとしてよく、マトリックス金属は銅及び銅合金のうちの少なくとも1つとしてよい。特定の態様においては、マトリックス相を適切な鉱酸、例えば、限定するものではないが、硝酸、硫酸、塩酸及びリン酸中に溶解させることによって、マトリックス相のかなりの部分を除去してよい。 (もっと読む)


アルカリ土類金属塩、粉末状の金属塩および粉末状の遷移金属酸化物を含む水性スラリーを形成させる;水性スラリーは以下のように形成される;粉末状のアルカリ土類金属塩を水に分散させ、ここでアルカリ土類金属塩はバリウム、カルシウムおよびストロンチウムの塩から成る群から選ばれ、粉末状の金属塩を水に添加し;そして粉末状の遷移金属酸化物を水に添加し、ここで金属酸化物は酸化チタンであり;ペーストを形成するために、スラリーに高分子結合剤を添加し;粉末状にするためにスラリーを乾燥させ;予め定められたプロフィールで上昇する温度で高分子結合剤とともに粉末を加熱し;そしてペロブスカイト触媒を形成させるために加熱した粉末を焼成するという過程を含む、ペロブスカイト触媒の製造方法。このように形成された触媒およびメタン酸化カップリングに対するその使用もまた開示されている。 (もっと読む)


本発明は、有害物質を含む廃気を浄化するための装置であって、光酸化原理に係る反応段を有するものに関する。この反応段は、管状紫外発光素子が廃気の流れ方向に沿って内側に配置された、少なくとも1つの空気路を含む。廃気路内における分解効率を簡単な方法で高めるために、前記少なくとも1つの空気路の断面が、少なくとも5つの辺を有する正多角形として具体化される。

(もっと読む)


EMM−3(エクソンモービル物質第3号)は、四面体原子を橋かけすることが可能な原子によって結合された四面体原子の骨格を有する新規結晶質微細孔物質である。前記四面体原子の骨格は、その骨格内に四面体配位された原子間の相互結合によって定義される。EMM−3は、ヘキサメトニウムテンプレートによるアルミノホスフェート(AlPO)およびメタロアルミノホスフェート(MeAPO)組成物として調製できる。それは、特有のX線回折パターンを有し、それにより新規物質として同定される。EMM−3は、空気中焼成に対して安定であり、炭化水素を吸収し、炭化水素の転化に対する触媒活性がある。 (もっと読む)


ガス流により流過される回転管炉(2)中で触媒活物質の前駆物質を熱処理する方法(この際、回転管炉を流過するガス流の少なくとも一部分量が循環(19)に導かれる)、並びにアクロレインをアクリル酸にする部分的気相酸化のための、触媒(この触媒活物質は熱処理のこの方法により得ることができる)で装填されている付属の回転管炉装置及び管束反応器。
(もっと読む)


本発明は、メチル(メタ)アクリレート、エチル(メタ)アクリレートまたはメタノールもしくはエタノールに比較して高沸点のアミンを反応させることによってアルキルアミノ(メタ)アクリルアミドを連続的に製造する方法に関する。これまで、特殊な後処理技術によって達成されなかった製品品質が達成される。更に、極めて高い空時収量および全収量を達成することができる。 (もっと読む)


本発明は、不飽和化合物をヒドロシアン化して不飽和モノニトリル化合物又はジニトリル化合物にする方法に関する。より特定的には、本発明は、触媒系の回収及び分離を含む、ブタジエンのようなジオレフィンの二重ヒドロシアン化によるジニトリルの製造方法に関する。本発明の不飽和化合物をヒドロシアン化することによるジニトリルの製造方法は、1種又はそれより多くの単座オルガノホスファイトリガンドと1種又はそれより多くの二座有機リンリガンドとから構成される有機金属錯体及び随意としてのルイス酸タイプの促進剤を含む触媒系の存在下における少なくとも1つのヒドロシアン化工程を含み、そしてプロセスにおいて用いた反応成分又は反応によって生成した化合物を前記触媒系を含む媒体から蒸留することによる少なくとも1つの分離工程を含む。 (もっと読む)


尿素と水からなる組成物からエネルギーを産生するための方法および装置。装置(10)はタンク(11)のような本組成物を供給するための容器を含む。本組成物はタンク(11)から、反応器(12)のようなの尿素を水を反応させてアンモニアを生成するための容器へ運搬される。本装置は緩衝液タンク(13)などのアンモニアを供給するための容器を含んでもよく、それは反応器と接続している。尿素と水の反応から生成したアンモニアは、反応器(12)から、アンモニアを酸化して水およびを産生するチャンバー(14)などの容器へ運搬される。本装置は、アンモニア、水素、および窒素酸化物を含んでいる気体状の物質を運搬するための手段(60)のみならず、尿素と水を含んでいる組成物などの溶液を運搬するための手段を含む。本装置は、チャンバー(14)と接続した燃焼後反応器(15)などの容器も含んでもよい。
(もっと読む)


2,001 - 2,013 / 2,013