説明

Fターム[4H039CL35]の内容

触媒を使用する低分子有機合成反応 (28,076) | その他の反応 (1,616) | フィッシャー・トロプシュ反応 (134)

Fターム[4H039CL35]に分類される特許

101 - 120 / 134


【課題】 木材を用いてメタノール、ギ酸メチル、エタノール、乳酸、プロパンジオール等の工業用基礎化学品及び炭素材を製造すると同時に熱回収の有効利用を図り、所内動力を差し引いた電力、蒸気及び温水を供給し、装置コスト及び操業費等の点から熱利用性の高い、木材のゼロエミッション型有効利用方法を提供する。
【解決手段】 木材を水蒸気改質して、一酸化炭素及び水素を含む反応混合物を生成させ、この中から分離した一酸化炭素と水素とを反応させてメタノールを生成させ、さらにこのようにして得たメタノールをカルボニル化してギ酸メチルを生成させることにより木材から工業用原料を製造する。 (もっと読む)


チタニア担持コバルトを含む触媒が、固体チタニア担体の粒子と炭酸コバルトアンミンの水溶液とを混合し、炭酸コバルトアンミンの分解と前記担体へのコバルト化学種の沈着を起こさせるに足る高温に加熱することによって製造される。本発明の触媒は、水素化反応やフィッシャー・トロプシュ反応に対して有用である。 (もっと読む)


およびCOを含む合成ガスを天然ガスから製造し、それを、数式200−0.6T+0.03PH2O−0.6XCO−8(H:CO)が数値50以上を有するのに効果的な温度、%CO転化率、ガス原料のH:COモル比および水蒸気圧の反応条件で、非シフト性コバルト触媒上に通すことによって、炭素原子4〜20個を有する直鎖状α−オレフィンおよび少量の含酸素化合物を合成する。このプロセスは、燃料および潤滑油を製造する従来のフィッシャー−トロプシュ炭化水素合成プロセスに統合されうる。 (もっと読む)


1つまたはそれ以上の反応器(これらのうちの少なくとも1つは、使用されているときにガスキャップ領域および液体収容領域を含む。)で行われるヒドロホルミル化プロセスであって、前記ガスキャップ領域および液体収容領域を含む少なくとも1つの反応器のガスキャップ領域の内壁に、硫黄含有添加剤が存在することを特徴とする、少なくとも1つのオレフィン性炭素−炭素結合を有する化合物をコバルト触媒の存在下で水素および一酸化炭素と反応させることを含むヒドロホルミル化プロセス。前記硫黄含有添加剤が、本ヒドロホルミル化プロセスの間のメタン形成を抑制する。 (もっと読む)


対向ポートを有する軸流反応器を対向軸流反応器に改造する方法が記載されている。該方法は、プロセス流体回収手段を反応器内に一つ以上の前記ポートと流体連絡させて設置することを含む。 (もっと読む)


【課題】 温度分布または局所的反応率分布を均一にし、所望の生成物の選択性や触媒寿命の向上が図れる反応方法および反応装置を提供する。
【解決手段】 断面積が変化する化学チャンネル内で化学反応を行なわせ、このチャンネルを反応物質が流れるにともなって局所的接触時間が変化するような方法を採用する。さらには、断面積が変化する反応チャンネルを有する反応装置を採用する。好ましい実施例では、反応チャンネル部分が入口から出口へ向けて広くなるような台形を備える。
(もっと読む)


フィッシャー-トロプシュ合成は、ガス透過性触媒構造体(16)が存在する、チャネルを画定する小型触媒反応器ユニット(10)を用いて行われ、前記チャネルはヘッダー(18)間に伸びている。前記合成は少なくとも2つの工程で生じ、反応器ユニットは少なくとも2つの連続した、ヘッダーによって連結されたフィッシャー-トロプシュ合成のためのチャネル(14、14a)を与え、第1チャネルを通るガス流速は、一酸化炭素の65%以下を変換するのに十分大きい。前記ガスを2つの工程間でヘッダーにおいて冷却し(25)、水蒸気を液化し、次いで残りの一酸化炭素の65%以下を変換するのに十分大きいガス流速で第2チャネルを通過させる。これは、水蒸気の分圧を下げ、触媒の酸化を抑制する。
(もっと読む)


a)炭化水素供給原料を第1の流れ(12)と第2の流れ(13)に分けること;第1の流れとスチーム(16)とを混合し、第1の流れとスチームとの混合物を、熱交換改質装置の加熱管中に配置されている触媒上に通して一次改質ガス(30)を形成させること;一次改質ガスと第2の炭化水素流れとを含んだ二次改質装置供給流れ(40)を形成させること;二次改質装置供給流れを酸素含有ガス(44)で部分燃焼させ、こうして得られる部分燃焼ガスを二次改質触媒上にて平衡状態にすること;および、こうして得られる二次改質ガス(48)を使用して熱交換改質装置の管を加熱し、これによって部分冷却された改質ガスを得ること;によって炭化水素供給原料(10)をスチーム改質に付す工程;b)部分冷却された改質ガスをスチームの露点未満にさらに冷却して水を凝縮させ、凝縮した水(56)を分離して、脱水された合成ガス(58)を得る工程;c)前記脱水合成ガスからフィッシャー・トロプシュ反応によって炭化水素を合成し、合成された炭化水素の少なくとも一部を分離してテールガス(70)を得る工程;およびd)前記テールガスの少なくとも一部を二次改質装置供給流れ中に混和してから、部分燃焼を行う工程;を含む炭化水素の製造法が開示されている。
(もっと読む)


NACE規格TM0172‐2001で測定したときに腐食を起こす炭化水素液体の金属腐食を低減する方法であって、炭化水素液体と少なくとも0.1重量%の酸性フィッシャー・トロプシュ製品を、NACE規格TM0172‐2001で測定したときに炭化水素液体と比較して、低減した金属腐食を示す炭化水素混合物を製造するために十分な比率で混合することを含む方法、及びその方法で製造された炭化水素混合物。 (もっと読む)


炭化水素を含有する一次供給原料と、二次供給原料とから所定のC生成物を製造する方法が開示される(式中、X、Y及びZは整数である)。この方法は、一次供給原料を準備するステップ、それを概ね酸素が存在しない条件下で間接加熱するステップ、そこから生成したガス流を、CO及び固形物を除去することにより清浄にするステップ、清浄ガス中のCO及びHの量を決定するステップ、清浄ガス流中のCO及びHの割合と、所定のC生成物を製造するために必要なCO及びHとを比較するステップ、追加するCO及びHの必要量を決定するステップ、二次供給原料を決定するステップ、二次供給原料から生じるCO量、H量及び熱量を計算するステップ、二次供給原料を部分酸化し、熱及び二次ガス流を生じさせるステップ、両方の供給原料からのCO及びHを混合し混合ガス流を製造するステップ、触媒を加えるステップ、及び所定のC生成物を製造するため蒸留するステップを含む。 (もっと読む)


【課題】 一酸化炭素と水素とを反応させて主成分がプロパンまたはブタンである炭化水素、すなわち液化石油ガスを高活性、高選択性、高収率で製造することができ、しかも、触媒寿命が長く、劣化が少ない触媒、および、その触媒を用いた液化石油ガスの製造方法を提供する。
【解決手段】 本発明の液化石油ガス製造用触媒は、Pd系メタノール合成触媒成分とβ−ゼオライト触媒成分とを含有する。 (もっと読む)


COの水素化によるC−酸化物の合成のための触媒につき開示する。この触媒はRh−Mn−Fe−M−M/SiO、特にMn−Fe−M−およびM並びに添加剤で構成される。MはLiもしくはNaとすることができる一方MはRuもしくはIrとすることができる。Rhの含有量は0.1〜3重量%であり、Mn/Rhの重量比は0.5〜12であり、Fe/Rhの重量比は0.01〜0.5であり、M/Rhの重量比は0.01〜1であり、M/Rhの重量比は0.1〜1.0である。触媒は、各成分の対応化合物の溶液を所望量にてSiOのキャリヤに含浸させて作成され、次いで283〜473Kにて乾燥する。使用に先立ち、触媒は水素または水素含有ガスにより573〜673Kにて少なくとも1時間にわたり、473〜673Kにおける2〜20時間の乾燥の後もしくは焼成の後に還元される。これら触媒はCOおよびHをエタノール、アセトアルデヒド、酢酸および他のC−酸素化物まで高変換率および高選択率にて緩和な条件下に変換することができる。 (もっと読む)


本発明は、150μmより小さい容積平均粒度を有する、コバルト及び亜鉛の共沈殿粒子を含む触媒に関する。本発明のもう1つの面は、そのような触媒をフィッシャートロプシュ方法において使用することである。本発明は、さらに、コバルトイオン及び亜鉛イオンを含む酸性溶液並びにアルカリ性溶液が接触され、沈殿物が分離されてなる、コバルト及び酸化亜鉛を含む触媒の調製方法に関する。 (もっと読む)


微孔質シリカゲルの合成および合成ガスからのC酸素化物合成のための触媒の製造に対するその適用につき開示する。ゾルゲルプロセスにより生成されかつ塩基性溶液中で加熱され、次いで乾燥および/または焼成されるシリカゲルの小粒子は、かくして触媒支持体として微孔質シリカを形成する。塩基性溶液はアルカリ金属およびアンモニウムの水酸化物、炭酸塩、重炭酸塩、蟻酸塩および酢酸塩の1種または混合溶液とすることができる。得られる微孔質シリカにはロジウム塩および他の遷移元素塩(プロモータ先駆体として)の溶液を含浸させ、次いで乾燥および/または焼成し、かくして微孔質シリカ支持されたロジウム系触媒を形成する。ロジウム塩はRhClもしくはRh(NOとすることができる。プロモータ先駆体は水可溶解の遷移金属塩、稀土類金属塩、アルカリ金属塩およびアルカリ土類金属塩とすることができる。得られる触媒は、緩和なプロセス条件下におけるCOの水素化によるC−酸素化物の合成にて高い活性および選択率を示す。 (もっと読む)


液体の、任意に気体の生成物を気体反応物質から生成するステップは、少なくともCOおよびHを含む気体反応物質材料を、懸濁液体中に懸濁した固体で非シフト型の炭化水素合成用触媒粒子からなる膨張するスラリー床内へ、低い高さにおいて給送するステップと、膨張するスラリー床は、アスペクト比が5未満である。気体反応物質および種々の再循環ガスは、液体の、任意に気体の生成物を形成するように、少なくとも35cm/秒のガス速度でスラリー床の中を上方に通過すると、少なくとも60%の、CO+Hの1回通過あたりの転化率で反応し得る。気体反応物質および種々の再循環ガスと、種々の気体生成物とは、懸濁液体中に懸濁した状態に固体の触媒粒子を維持することに役立つ。液体生成物は、懸濁液体とともに、スラリー床からなる液相を形成する。
(もっと読む)


コバルト触媒の製造法が記載されている。該方法は、コバルトアンミン錯体の水溶液を形成し、前記溶液を、酸化溶液中のCo(III)の濃度が非酸化溶液中のCo(III)の濃度より大きくなるように酸化し、次いでコバルトアンミン錯体を、不溶性コバルト化合物を溶液から析出させるのに足る時間、該溶液を80〜110℃の温度に加熱することによって分解するステップを含む。コバルト化合物を含む触媒中間体も記載されている。前記コバルト化合物は、Co(II)/CO(III)ハイドロタルサイト相及びCoコバルト・スピネル相を含み、コバルト・ハイドロタルサイト相:コバルト・スピネル相の比率は0.6未満:1で、前記コバルト・ハイドロタルサイト相及び前記コバルト・スピネル相はX線回折によって測定される。 (もっと読む)


コンパクトな触媒反応器であって、スタック状に交互に配置された、複数の第一および第二流動チャンネルを画成する、プレートのスタック(72、74、75)を含み、ここで化学反応が起ることになる各流動チャンネルは、少なくとも一つのプレートを横切る、直通チャンネルにより画成され、このような直通チャンネル各々は、金属基板を備えた、着脱自在のガス透過性触媒構造体(80)を含んでいる。該第一流動チャンネル(76)は、該第二流動チャンネル(77)の方向とは直交する方向に配向しており、該反応器は、該スタック内の連続する第二の流動チャンネル間に、少なくとも3つの並列した第一流動チャンネル(76)を画成しており、かつ該反応器は、該第一流体が、入口から出口へと、連続して、少なくとも3つのこのような第一流動チャンネル(76)を介して流動するように、流動分流手段(80;88)を備えている。従って、この全体的な流路は、ほぼ順流であるか、向流であり得る。
(もっと読む)


水供給部(108)と、メタン化対象のガスを含んでいるガス供給部(101)とを使用するメタン化アセンブリであって、反応装置アセンブリ(114)と、ガス配送冷却アセンブリとを含み、反応装置アセンブリ(114)は、複数のメタン化反応装置(114A、114B、114C)を有し、各メタン化反応装置は、反応装置アセンブリへ流入されたガスをメタン化する装置であり、ガス配送冷却アセンブリは、ガス供給部から各メタン化反応装置へガスを配送するとともに、供給部から供給された水と、次のメタン化反応装置に搬送される各メタン化反応装置から排出された排出物とを混合し、その混合物を次のメタン化反応装置に運ぶように適合されている。
(もっと読む)


サイクロンリアクター(10)において、化合物を合成しかつ反応させる方法が、開示および記載される。触媒粒子、液体触媒、および/または液体反応物質を含有し得る液体キャリアが、提供され得る。この液体キャリアは、サイクロンリアクター(10)内で渦巻き層(38)に形成され得る。また、少なくとも1種の反応物質を含有する反応物質組成物が、渦巻き層(38)の少なくとも一部分を通して射出され得、これにより、反応物質の少なくとも一部は、反応生成物に変換される。このサイクロンリアクター(10)は、微妙な温度制御により、反応物質の触媒との接触を向上させ、それにより、反応の収率および選択性を上昇させる。 (もっと読む)


本発明は少なくとも1つの面に対向するキャビティを持った多孔質支持体を含有する触媒に関するものであり、ここで開口部は少なくとも1つの延長方向に沿って約0.7〜20nmの直径を有すると共に、少なくとも500m/gの比表面積を有し、更に少なくとも触媒1g当たり2.5mの触媒活性金属成分で負荷される。更に本発明はこの種の触媒の製造方法、並びにメタノール合成における或いは燃料セルテクノロジーでのリフォーマとしての触媒の使用にも関するものである。 (もっと読む)


101 - 120 / 134