説明

Fターム[4K001AA16]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Mn (145)

Fターム[4K001AA16]に分類される特許

121 - 140 / 145


【課題】ターゲット材としての歩留まりが高く、かつ反強磁性薄膜形成用として最適な高純度Mn材料を得る製造方法の提供。
【解決手段】粗Mnを1250〜1500°Cで予備溶解した後、1100〜1500°Cで真空蒸留することにより高純度Mn材料を得る。好ましくは真空蒸留の際の真空度を5×10-5〜10Torrとする。これにより得られる高純度Mnは不純物含有量が合計で100ppm以下、酸素:200ppm以下、窒素:50ppm以下、S:50ppm以下、C:100ppm以下である。 (もっと読む)


有価金属を含む鉱石から有価金属を浸出するプロセスであって、浸出溶液中に可溶な金属−塩化物を形成するために塩酸存在下で鉱石を浸出する工程と、浸出溶液へ硫酸および/または二酸化硫黄を添加する工程と、浸出溶液から金属硫酸塩または金属亜硫酸塩を回収する工程と、同時に塩酸を再生する工程と、溶液中の少なくとも一部の塩酸を、連続的に気相に移す工程とを有する。蒸発した塩酸は補足され浸出工程に戻される。硫酸および/または二酸化硫黄を、浸出工程中、またはその後に浸出溶液に添加してもよい。有価金属は、典型的には、Zn、Cu、Ti、Al、Cr、Ni、Co、Mn、Fe、Pb、Na、K、Ca、白金族金属および金からなる群から選択される。金属硫酸塩または金属亜硫酸塩中の金属は有価金属であっても良いし、マグネシウムなどの、有価金属より価値の低い金属であっても良い。 (もっと読む)


【解決課題】不純物の少ない電解液を調製することによって高純度の金属マンガンを得ることができる電解採取方法と、その高純度金属マンガンを提供する。
【手段】金属マンガンを塩酸に過剰に溶解して未溶解物を濾過した溶解液に、酸化剤を添加すると共に中和し、生成した沈殿物を濾過し、緩衝剤を添加して調製した電解液を用いることを特徴とする金属マンガンの電解採取方法であり、好ましくは、金属マンガンの塩酸溶解液にさらに金属マンガンを追加し、未溶解物を濾過した溶解液に過酸化水素とアンモニア水を添加し、弱酸性ないし中性の液性下で生成した沈殿物を濾過し、緩衝剤を添加して調製した電解液を用いて金属マンガンの電解採取を行う方法。 (もっと読む)


【課題】 金属酸化物および金属水酸化物からなる群に含まれる金属を浸出させて、所望の金属を高い濃縮率に、迅速に濃縮して回収する方法を提供する。
【解決手段】 本発明の金属回収方法は、鉄還元細菌を作用させ、3価鉄を2価鉄に還元し、前記2価鉄を用いて、金属酸化物および金属水酸化物からなる群に含まれる金属を浸出させ、浸出液と残渣を生成し、前記浸出液と残渣とを分離し、所望の金属を回収する。 (もっと読む)


本発明は、加工処理スラグを生成するために、金属酸化物含有の生の冶金スラグを形成する際の出発物質を加工処理する方法を提供する。その方法は、反応混合物を得るために生スラグと還元剤を混合するステップと、溶融金属と溶融加工処理スラグを得るために還元剤にスラグ中の金属酸化物を減少させるように反応混合物を加熱するステップと、を含む。本方法はさらに、溶融金属から溶融加工処理スラグを分離するステップと、固体の加工処理スラグを得るように溶融加工処理スラグを固化する、もしくは放置固化するステップと、を含む。本加工処理スラグ生成物は、所望のように、レンガ製造もしくは成分調合済みのコンクリートを形成するために使用される充てん剤、セメントを増量し、または混合セメントを製造する増量剤、もしくは工場の建造または建設に使用のための骨材となりうる。
(もっと読む)


【課題】高価金属含有鋼の鋳片の表面欠陥除去工程において失われていた高価金属を有効的に回収しリサイクルすることによりコストダウンを図ることができる高価金属含有鋼の製造方法を提供する。
【解決手段】ニッケル、バナジウム、モリブデン、タングステン、クロム、マンガンなどの高価金属を含有する鋳片の表面欠陥除去を切削法により行い、発生する切削屑を含有する高価金属別に分別して20〜800MPaの高圧で圧縮成形することにより固形化し、同じ高価金属を含有する鋼の精錬プロセスで溶解して再利用する。なお、発生する切削屑を破砕したうえ、圧縮成形することによって処理能力を高めることができる。 (もっと読む)


【課題】 金属を含有する原料から、大量かつ安価に入手しうる、かつ、使用後に再生可能な薬品を用い、簡単な操作で効率よく各種の有用金属の分離回収あるいは有害金属の分離除去を行うための工業的に実施可能な金属回収方法を提供する。
【解決手段】 クロム、ニッケル、マンガン、銅、ゲルマニウム、ロジウム、鉛、ビスマス及びランタノイド元素の中から選ばれる少なくとも1種の金属を含有する原料から、上記の金属を分離、回収するに当り、
(イ)該金属を含有する原料を塩酸で処理して、該金属イオンの塩酸溶液を調製する工程、
(ロ)(イ)工程で得た塩酸溶液を、少なくとも1種の有機溶剤に分散したセルロースで処理し、その中に含まれている金属イオンをセルロースに吸着させる工程、及び
(ハ)金属イオンを吸着したセルロースから水又は塩酸を用いて金属イオンを脱着させ回収する工程
を順次行う。 (もっと読む)


【課題】 タールを分解可能な触媒を安価に調製するとともに、この触媒を用いてバイオマスをガス化するときに生成するタールを効率良く分解・改質して、H2、CH4、CO、CO2等の有益なガスを生成し、更に付加価値の高い金属粒子を副産物として回収する。
【解決手段】 先ず担体調製手段11により、金属イオンを含む水溶液又は懸濁液を、イオン交換能を有する低品位炭粒子と接触させて、金属を担持した担体を調製する。次に有益ガス生成手段12により、上記金属担持担体を触媒として、この担体にバイオマスの熱分解で生成したガス及びタール状物質を500〜700℃の温度で接触させてガス化する。上記担体に担持された金属は遷移金属であることが好ましく、イオン交換能を有する低品位炭粒子の平均粒径は1〜5mmであることが好ましく、金属イオンを含む水溶液又は懸濁液は、鉱物から抽出した金属イオンを含む水溶液又は懸濁液であることが好ましい。 (もっと読む)


【課題】プラズマアーク溶解により、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Yまたは希土類等の活性高融点金属元素を合金成分として含有する合金の長尺鋳塊を製造するさいに、成分偏析や中心部に引け巣およびボイド欠陥が発生するのを確実に阻止すること。
【解決手段】アルゴン雰囲気下で活性高融点金属を含有する合金をプラズマアーク溶解する方法において、30Torr〜200Torrのアルゴンヘリウム雰囲気を保持した状態のもとで、あらかじめ調製しておいた所定合金組成の原料棒をプラズマアークにより溶解し、その溶湯プールを水冷銅るつぼ内に保持しつつ冷却凝固させながら、銅るつぼの可動底盤を毎分2mm〜50mmの速度で下方へ引き抜くことを特徴とするプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法。 (もっと読む)


【課題】浄水場の現状施設である浄水処理工程と排水処理工程を発生土の観点から運転管理し、マンガン濃度の低い浄水発生土を得る方法を提供することである。
【解決手段】 沈殿池に凝集剤、あるいは凝集剤と酸化剤を注入した被処理液を流入させ、その下流側において、前記被処理液への酸化剤注入状態に対応して酸化剤が注入される沈殿池流出水をろ過池に流入させる浄水プロセスであって、沈殿池で沈殿した濁質分と、ろ過池の洗浄排水に含まれる濁質分とをそれぞれ分離回収し、マンガン濃度の異なる複数種類の浄水発生土を得るようにプロセスを運転管理することを特徴とする浄水プロセスの運転管理方法。 (もっと読む)


【課題】 低比重粉体と高比重粉体とを含むスラリーを濃縮し、良好な混合状態で高濃度の濃縮スラリーを得ることのできるスラリーの濃縮方法を提供する。
【解決手段】 低比重粉体と高比重粉体とを含むスラリーを濃縮する場合において、スラリー中に凝集剤を添加した上で、凝集反応槽2内にて攪拌翼3を回転することによってレイノルズ数Reが1500以上となるように旋回流を形成して攪拌し、その後沈降槽5にて凝集した粉体を沈降させることととすれば、低比重粉体と高比重粉体とが沈降時に分離することがなく、所定の高い濃度のスラリーを得られる。また、スラリー濃度45〜55質量%に濃縮する際に、沈降槽5におけるスラリーの滞留時間を一定時間範囲に制御することにより、濃縮後のスラリー濃度を高く維持しつつ、沈降槽底部の濃縮スラリー排出配管が閉塞することなく、良好に濃縮スラリーの排出が可能になる。 (もっと読む)


【課題】 溶融還元製錬によりフェロマンガン或いはシリコマンガンを製造する際に発生するスラグを製鋼工程で使用するに当たり、当該スラグ中のマンガン酸化物を極めて高い還元率で還元することが可能な回収方法を提供する。
【解決手段】 溶融還元製錬によってフェロマンガン或いはシリコマンガンを製造する際に発生したスラグからマンガンを回収する方法であって、製鋼工程の取鍋精錬炉1で溶鋼9を不活性ガス雰囲気下で精錬する際に、溶鋼上に添加されている前記スラグ10を溶融させ、前記スラグ中のマンガン酸化物を還元して溶鋼中に回収する。その際に、前記スラグを、取鍋精錬炉における溶鋼の精錬開始前か精錬途中で添加することが好ましい。 (もっと読む)


【課題】 重金属化合物等で汚染された重金属成分含有液から容易に且つ効率よく重金属成分を除去、回収することができ、更にランニングコストも安く、発生するスラッジの量も少なくすることができる重金属成分の除去・回収方法を提供すること。
【解決手段】 重金属成分含有液から重金属成分を回収するにあたり、該重金属成分含有液に平均粒子径10〜150nm、比表面積10〜100m2 /g及び負荷磁場398kA/mにおける飽和磁化量50〜90Am2 /kgのマグネタイト粒子を分散させ、該重金属成分含有液を弱酸性からアルカリ性にして、重金属成分を該マグネタイト粒子の表面に吸着させた後、磁気的な力でマグネタイト粒子を回収し、重金属成分をマグネタイト粒子と共に液中から分離し、更に分離したマグネタイト粒子を水に分散させ、該分散液を酸性に調整することにより、重金属成分を液中に再溶出し、重金属成分を回収する。 (もっと読む)


【課題】マグネシウム又はマグネシウム合金を用いた排水中の有害金属の除去、有価金属の回収の方法を確立することにより、マグネシウム合金のリサイクル、ひいてはマグネシウム又はマグネシウム合金の有効活用の方法を提供する。
【解決手段】金属イオンを含む排水中に、マグネシウム又はマグネシウム合金を主成分とする吸着材を添加し、水とマグネシウムの反応によりマグネシウム表面に生成する水酸化マグネシウムの層に、金属イオンを吸着させ、金属イオンを排水から分離することを特徴とする金属イオンの分離方法。 (もっと読む)


【課題】フェロマンガンの製造時に副生する溶融スラグからマンガン系合金鉄を効率良く安定して製造することができる方法を提供することを目的とする。
【解決手段】フェロマンガンの製造時に副生する溶融スラグを反応容器に貯留し、前記溶融スラグ中に、ケイ素を含有する合金鉄と金属アルミニウムとを含む還元材を投入して撹拌し、前記溶融スラグ中に含まれるマンガン酸化物の少なくとも一部を還元することを特徴とする。 (もっと読む)


【課題】希土類元素および遷移金属元素を含む磁性粉末と、ラジカル重合反応性を有する熱硬化性樹脂とを含む樹脂結合型磁石用組成物又はこれを用いて得られた樹脂結合型磁石から磁性粉末を効率よく、かつ磁気特性の低下を招くことなく分離し、回収できる方法を提供する。
【解決手段】構成元素中に希土類元素および遷移金属元素を含有する磁性粉末と、ラジカル重合反応性を有する熱硬化性樹脂とを含む樹脂結合型磁石用組成物、又はそれを用いて得られる樹脂結合型磁石から磁性粉末を分離、回収する方法であって、まず、処理対象物として上記樹脂結合型磁石用組成物又は樹脂結合型磁石を選定した後、該処理対象物を予め0℃以下に冷却し、引き続き低温を維持しながら粉砕し、その後、得られた粉砕物から樹脂成分が実質的に除去された磁性粉末を分離、回収することを特徴とする磁性粉末の分離、回収方などにより提供。 (もっと読む)


有価金属を含有する鉱石から該有価金属を浸出するための方法が述べられており、この方法は、塩酸存在下において鉱石を浸出して浸出溶液中に可溶性の金属−塩化物塩を形成させる工程;二酸化硫黄を浸出溶液に添加する工程;浸出溶液から金属−硫酸塩又は金属−亜硫酸塩を回収する工程;及び塩酸を再生する工程を含む。鉱石は、酸化亜鉛鉱石のような酸化物卑金属鉱石;サプロライト性又はリモナイト性の鉱石のようなラテライト性ニッケル鉱石;硫化物鉱石又はチタン鉱石、であっても良い。有価金属は典型的に、Zn、Cu、Ti、Al、Cr、Ni、Co、Mn、Fe、Pb、Na、K、Ca、白金族金属及び金からなる群から選択される。金属−硫酸塩又は亜硫酸塩中の金属は、有価金属であってもよく、又はマグネシウムのような有価金属よりも低い価値の金属であってもよい。再生された塩酸は浸出プロセス内で再利用される。 (もっと読む)


有価金属を含有する鉱石から該有価金属を浸出するための方法が述べられており、この方法は、塩酸存在下において鉱石を浸出して浸出溶液中に可溶性の金属−塩化物塩を形成させる工程;硫酸を浸出溶液に添加する工程;浸出溶液から金属−硫酸塩を回収する工程;及び塩酸を再生する工程を含む。鉱石は、酸化亜鉛鉱石のような酸化物卑金属鉱石;サプロライト性又はリモナイト性の鉱石のようなラテライト性ニッケル鉱石;硫化物鉱石又はチタン鉱石、であっても良い。有価金属は典型的に、Zn、Cu、Ti、Al、Cr、Ni、Co、Mn、Fe、Pb、Na、K、Ca、白金族金属及び金からなる群から選択される。金属−硫酸塩中の金属は、有価金属であってもよく、又はマグネシウムのような有価金属よりも低い価値の金属であってもよい。再生された塩酸は浸出プロセス内で再利用される。 (もっと読む)


褐鉄鉱およびサプロライトを含有するラテライト鉱石を浸出する手順である。十分な無機酸が褐鉄鉱スラリーに添加され、これは大気圧で浸出され、大部分の可溶性非鉄金属および可溶性鉄を溶解する。サプロライトの添加後、スラリーは更に標準沸点を上回る温度および大気圧を上回る圧力で、サプロライト中に含有されたニッケルの大部分を浸出し、および溶液中の鉄の大部分を沈殿させるのに十分な時間浸出される。その後スラリーの圧力は低下し、ニッケルおよび/またはコバルトが引き続き溶媒抽出、レジン-イン-パルプ法、もしくは他のイオン交換、硫化物もしくは水酸化物沈殿、または他の回収法により、浸出液から回収される。

(もっと読む)


本発明は混合酸化物試料中に金属酸化物として含まれる金属の分離のための、(i)融解塩の電解質に混合酸化物を添加し、酸化物を陰極で電気分解すること(ここで陰極のポテンシャルが融解塩中に存在するカチオンからの金属の析出より酸素のイオン化を優先するように制御され、適用される電位差が他の金属酸化物を犠牲にして1金属酸化物の選択的還元を容易にするようなものである)、および(ii)遷移金属、ランタニドもしくはアクチニド系の少なくとも1種からの金属の酸化物を含んで成る残りの金属酸化物から金属を分離すること、を含んで成る方法を提供する。その方法は2種以上の金属酸化物の混合物を含んで成る混合酸化物試料に適用でき、そして特別の適用は混合ジルコニウムおよびハフニウム酸化物中に含まれるジルコニウムおよびハフニウムの分離にあり、そこでハフニウムの除去は原子力発電産業における使用のための燃料被覆加工におけるジルコニウムの使用を容易にする。 (もっと読む)


121 - 140 / 145