説明

Fターム[4K001AA16]の内容

金属の製造又は精製 (22,607) | 目的金属 (6,463) | Mn (145)

Fターム[4K001AA16]に分類される特許

81 - 100 / 145


【課題】コストの低い方法で乾電池からマンガン酸化物を回収する。
【解決手段】本発明の乾電池からのマンガン酸化物回収方法は、乾電池を破砕処理した後に篩い分け処理をして、マンガン酸化物粒子と亜鉛酸化物粒子を含む破砕物を篩下物として得る破砕・篩い分け処理工程と、破砕・篩い分け処理工程後の前記篩下物を液体に入れ、この液体中に存在するマンガン酸化物粒子と亜鉛酸化物粒子を含む粒子の凝集体を、各粒子に分離して、各粒子を前記液体中に分散させる分散処理工程と、分散処理工程後の前記液体から、重さの違いによりマンガン酸化物粒子と亜鉛酸化物粒子を分離する重量差分離処理工程と、を有する。 (もっと読む)


【課題】 二次電池特にマンガン系リチウムイオン二次電池を乾式法のみにより金属材料系資源とマンガン資源とに分別回収する方法及び装置を提供する。
【解決手段】 マンガン系リチウムイオン二次電池を600〜1000℃に10〜60min滞留させ、該滞留時間中に該マンガン系リチウムイオン二次電池を燃焼・分解させ、分解生成物を直ちに金属小片と酸化マンガン粗粉に篩分けし、金属小片及び酸化マンガン粗粉を別個に回収することからなる。 (もっと読む)


【課題】アルミニウム、マグネシウム及びマンガンを含有する硫酸酸性の排水から、マグネシウムの沈殿を抑制してマンガンを選択的に沈殿させることにより、マンガンを除去する方法を提供する。
【解決手段】アルミニウム、マグネシウム及びマンガンを含有する硫酸酸性の排水から、マグネシウムの沈殿を抑制してマンガンを選択的に沈殿させることにより、マンガンを除去する方法であって、前記排水を、下記の(1)及び(2)の工程に付すことを特徴とする。
(1)まず、前記排水中のアルミニウムを除去する。
(2)次いで、アルミニウムの除去後の排水に、中和剤を添加して、そのpHを8.0〜9.0に調整し、酸素ガスを吹込む。 (もっと読む)


【課題】マンガン化合物と鉄を含むマンガン鉱石のような原料から、マンガンが十分に浸出され且つ鉄が殆ど浸出されない浸出液を得ることができる、マンガンを回収する方法を提供する。
【解決手段】マンガン化合物と鉄を含む原料を硫酸水溶液に溶解し、この水溶液にさらに硫酸を加えてpH3より低いpH、好ましくはpH2.5以下を維持しながら硫酸による浸出を行い、その後、水溶液に還元剤として過酸化水素を添加して水溶液のpHを3〜7にし、この水溶液にさらに過酸化水素と硫酸を加えてpH3〜7を維持しながら過酸化水素と硫酸による浸出を行うことにより、浸出液から鉄を分離して、浸出液中にマンガンを回収する。 (もっと読む)


【課題】製鋼ダスト、酸洗スラッジ、スケールを主体とする鉄鋼副生物から有価金属を回収する工程で、生産コストを上げることなく、電気炉操業時に吹上げを防止し、高い有価金属回収率を確保する。
【解決手段】鉄鋼副生物の焙焼還元装置であって、粉末状鉄鋼副生物をブリケットに製団するための製団手段と、ブリケットを搬送するベルトコンベアーと、発生する粉体を除去するためにベルトコンベアーの中途に設けられた第1粉体除去手段と、ベルトコンベアーから運ばれたブリケットを受けるための移送用容器と、移送用容器に保持されたブリケットを乾燥する乾燥手段と、ブリケットをベルトコンベアーから移送用容器に装入する際に発生した粉体を除去する第2粉体除去手段と、ブリケットを焙焼する焙焼手段と、焙焼したブリケットを溶解・還元するためのアーク式電気炉とを備えた焙焼還元装置。 (もっと読む)


【課題】この発明は、重金属超集積植物の植え付けや採取のための負担が少なく、しかも、植えつけた植物が良好に生育できるような重金属超集積植物栽培部材および重金属回収方法を提供することを目的とする。
【解決手段】上記の目的を解決するために、本発明に係る重金属回収方法は、透水性の側面を有する栽培容器2に重金属超集積植物5と栽培用土3を入れ、この栽培容器3を重金属を含有する媒体中に設置することによって重金属超集積植物を植え付け、重金属超集積植物中に重金属を吸収させることを特徴とする。 (もっと読む)


【課題】CCIM法を用いて、健全な長尺の鋳塊を安定して製造することができる長尺鋳塊の溶解製造方法を提供することを課題とする。
【解決手段】溶解原料を、第1の水冷銅製るつぼ内に装入し、溶解して溶湯プールを形成させた後、溶湯プールの下部を高周波コイルによる誘導加熱領域外に引き抜いて凝固させた状態で、るつぼ底の下方への移動を停止し、更に溶解原料を第1の水冷銅製るつぼ内へ装入して溶解させた後、次の引き抜きを行って溶湯プールを凝固させるという工程を複数回繰り返す1番目の溶製操作と、1番目の溶製操作で得られた長尺の鋳塊を上下反転した状態で、第1の水冷銅製るつぼより内径が大きい第2の水冷銅製るつぼ内に装入し、溶解後に凝固させる2番目の溶製操作を実施する。 (もっと読む)


【課題】使用済みニッケル水素電池を解体して得た正極活物質及び負極活物質から、ニッケル、コバルト、希土類元素及びその他の共存する金属元素を分離し、特に、含有量の多いニッケルと希土類元素を電池用材料として再使用できる形態で回収することができる処理方法を提供する。
【解決手段】下記の(1)〜(6)に示す工程を含むことを特徴とする。
(1)正極活物質及び負極活物質を洗浄処理に付す洗浄工程、
(2)前記洗浄工程で得た洗浄後残渣と下記浸出工程で得た浸出液を混合して還元処理に付す還元工程、
(3)前記還元工程で得た還元残渣を浸出処理に付す浸出工程、
(4)前記還元工程で得た還元液を希土類元素複塩化処理に付す希土類回収工程、
(5)前記希土類回収工程で得た濾液を酸化中和処理に付す酸化中和工程、及び
(6)前記酸化中和工程で得た酸化中和後液を溶媒抽出処理に付す溶媒抽出工程 (もっと読む)


【課題】電池から離脱させた負極から水素吸蔵合金構成元素を効率的に回収し、水素吸蔵合金組成物を製造する方法を提供する。
【解決手段】ニッケル水素電池から離脱され、ミッシュメタルを含有する負極活物質と電極基板とが結合した状態の負極(以下「回収負極」という)を、極性溶液で洗浄する洗浄工程、回収負極を350〜600℃の非酸化性雰囲気下で加熱する水酸基除去工程、回収負極を750〜1050℃の非酸化性雰囲気下で加熱する炭素除去工程、及び、回収負極を加熱溶融する負極溶融工程を備えた水素吸蔵合金組成物の製造方法を提案する。 (もっと読む)


10mmサイズ未満の合金鉄微粉を準備するステップと、3mm未満のサイズの部分を篩い分けし、3mm未満の微粉を作るために3mm〜10mmの部分を破壊するステップと、結果として得られた微粉を容器内でフェノール・ホルムアルデヒド・レゾール樹脂バインダと混合するステップと、混合された微粉を塊体形成のためにバッチ式で圧縮機械で成形するステップと、塊体を温度範囲150℃〜200℃に維持される炉内で約60分〜90分間加熱して硬化させるステップとを含む、フェロマンガン微粉、フェロクロム微粉及びフェロシリコン微粉などの合金鉄微粉の塊体の形成方法。 (もっと読む)


本発明は、高分子または他の有用な材質の膜からなる外壁及び内部の空いた空間を含む分離膜貯留層と、当該分離膜貯留層の内部の空いた空間に含まれたリチウム吸着剤であるマンガン酸化物とを有するリチウム回収装置、これを利用してリチウムを回収する方法、及びリチウムに対して高い選択性を有するリチウム吸着剤として利用され得るマンガン酸化物で製造されたリチウム吸着剤を用いて、海水中に溶存されたリチウムの吸着及び脱着によるリチウム回収が1つのシステム内でなされることができるリチウム吸脱着システムに関するものである。本発明は、多孔性構造の高分子または他の有用な材質の膜からなる外壁を含む分離膜貯留層を用いるので、外部からの追加的な圧力がなくても溶液、特に、海水の移動が自由であって、海水に直接適用することができ、耐化学性及び機械的強度が強い高分子または他の有用な材質の材料を用いて海水及び酸水溶液で優れた安定性を持ち、リチウムの回収を必要とする分野に広く利用されることができる。 (もっと読む)


【課題】複雑な化学処理や大量の化学薬品を使用せずに、貴金属を回収することができる貴金属の回収方法と、強酸化性金属イオンの還元反応を促進可能な機能材料の製造方法を提供するとともに、複雑な化学処理や大量の化学薬品を使用せずに、強酸化性金属イオンの還元反応を効果的に促進させることが可能な強酸化性金属イオン含有水溶液の処理方法を提供する。
【解決手段】貴金属の回収と機能材料の製造の方法については、貴金属イオンを含む水溶液に少量の固体材料を添加し、放射線照射により水溶液中に誘起される還元反応を利用して、水溶液中の貴金属イオンを還元処理して固体材料の表面に分散または担持させる。強酸化性金属イオン含有水溶液の処理方法については、貴金属分散・担持固体材料を少量添加し、放射線照射により前記水溶液中および固体材料表面に誘起される還元反応を利用して、強酸化性金属イオンを低い酸化状態に還元して無害化する。 (もっと読む)


【課題】冷間強度が従来の固化材と同等以上であり、かつ、熱間強度の発現性や耐磨耗性に優れる、鉱石粉の熱間強度増進固化材、それを用いたペレット及びその製造方法を提供する。
【解決手段】ポルトランドセメントとポゾラン反応性物質を含有してなり、スラグを含まない鉱石粉の熱間強度増進固化材であり、ポゾラン反応性物質の比表面積が2500cm/g以上である熱間強度増進固化材であり、ポゾラン反応性物質がフライアッシュである熱間強度増進固化材である。セメントが早強ポルトランドセメントである前記熱間強度増進固化材であり、アルカノールアミンを含有する前記熱間強度増進固化材である。さらに、前記熱間強度増進固化材を用いたペレット及びその製造方法である。 (もっと読む)


本発明は炉(2)を操作する方法に関し、少なくとも1種の金属元素を含む出発材料を溶融し、ある燃料体積流量の燃料およびある酸化剤体積流量の酸化剤で操作される少なくとも1つのバーナー(4)を使用して出発材料を加熱する。排気ガスライン(6)の二次燃焼領域下流の少なくとも1つの測定点(17)で炉(2)の排気ガス温度をモニタし、標準操作状態で目標燃料体積流量と目標酸化剤体積流量をバーナー(4)に送り、排気ガス温度の変化(26)を所定時間間隔で記録し所定限界値(25)と比較する。時間単位当たりの排気ガス温度の変化(26)が閾値(25)より大きい場合、バーナー(4)を所定減少期間、減少操作状態にし、燃料体積流量の酸化剤体積流量に対する比率を以下の動作:A)燃料体積流量の減少体積流量への急な減少およびB)酸化剤体積流量の増加体積流量への急な増加の少なくとも1つによって低下させ、低下期間が経過した後に前記比率を標準操作状態に戻す。 (もっと読む)


非か焼マンガン鉱石からマンガンペレットを製造する方法であって、下記の工程、すなわち(a)粒子径による鉱石分級を通して鉱石サイズを調整し、1mm以下のサイズを得るために、1mm以下の粒子を鉱石粒子分画処理から保持すること、ならびにこれらの粒子を粉砕する工程、(b)フラックスを添加する工程、(c)凝集剤を添加する工程、(d)ペレット化し、粗製ペレットを得る工程、および(e)粗製ペレット乾燥、予熱および加熱により熱処理する工程を含んでなる、方法を開示する。
(もっと読む)


【課題】Mn及びMn合金を、大量生産に適した安価な方法で効率よく脱りんして、りん濃度が0.03質量%以下、好ましくは0.02質量%以下のMn及びMn合金を製造する。
【解決手段】炭素濃度2.0質量%以下、酸素濃度0.5質量%以下で、Mnを60質量%以上含有する溶融Mn又はMn合金を、CaF2及びCaC2を合計で80質量%以上含有し、かつそれらの質量比が(CaC2)/{(CaC2)+(CaF2)}×100=30〜65%の範囲あるフラックスを用いて、溶湯温度1350〜1500℃で脱りん処理する。前記フラックスに加えて、金属Ca及びCa合金から選ばれた少なくとも1種の金属Ca源を添加することが好ましい。 (もっと読む)


周期表中の第4〜6族、第8〜12族および第14族からの回収可能な金属を含有する鉱石、スラグ、ミルスケール、スクラップ、粉塵および他の資源を塩素化する方法。その方法は、a)塩化アルミニウムと、アルカリ金属塩化物およびアルカリ土類金属塩化物のうちから選択される少なくとも1種の他の金属塩化物とから本質的に成る液体溶融塩溶融物を形成する工程と、前記液体塩溶融物中の塩化アルミニウム含有量は10重量%を超過することと、b)前記液体塩溶融物中に前記回収可能な金属資源を導入する工程と、c)前記塩化アルミニウムを塩素供与体として前記回収可能な金属資源と反応させて金属塩化物を形成する工程と、前記金属塩化物は前記塩溶融物中に溶解されることと、d)生成した金属塩化物を前記塩溶融物から回収する工程とを含む。 (もっと読む)


本発明は,炭素含有量0.1重量%以下及びリン含有量0.03重量%以下の極低炭素極低リンフェロマンガンを製造する方法を開示する。本発明の方法は,低炭素低リンシリコマンガンを製造する段階と,溶融マンガンスラグを製造する段階と,前記溶融マンガンスラグと前記低炭素低リンシリコマンガンを70〜72:28〜30の比率にて取鍋で混合した後,攪拌して溶融金属とスラグを生成する第1混合攪拌段階と,前記第1混合攪拌段階で生成されたスラグを除去した後の溶融金属に第1混合攪拌段階と同一に溶融マンガンスラグを混合した後,攪拌し,Mn:91〜93重量%,Si:0.60〜0.85重量%,C:0.05〜0.10重量%及びP:0.015〜0.02重量%を含む溶融金属とスラグを生成する第2混合攪拌段階とを含んでなる。 (もっと読む)


【課題】 リチウム電池滓から三元系Li金属塩からMn、Co、Ni及びLiといった有価金属を回収する。
【解決手段】 ほぼ等量のCo,Ni及びMnを含有するリチウム酸金属塩を含有するリチウム電池滓を、250g/l以上の濃度の塩酸溶液にて攪拌浸出、または、200g/l以上の濃度の硫酸溶液にて65〜80℃に加熱しながら攪拌浸出、または、200g/l以上の濃度の硫酸溶液と20g/l以上の過酸化水素溶液を混合した溶液にて攪拌浸出処理し、浸出液につきMn、Co及びNiの3種の金属の98%以上を酸性抽出剤で溶媒抽出し、それぞれの金属を含有する溶液を生成し、これらの溶液と抽出後のLiを含む残液からMn、Co、Ni及びLiといった有価金属を回収する。 (もっと読む)


【課題】 フェロマンガンの製造工程で発生するMn含有ダストを、鋼の合金成分のMn源として有効利用して溶鋼を製造する。
【解決手段】 本発明の溶鋼の製造方法は、フェロマンガンの製造工程で発生するMn含有ダスト、アルミドロス及びこれらを塊状化するためのバインダーを含有する成形体を、精錬炉から取鍋への出鋼中に取鍋内に投入し、前記アルミドロス中の金属AlでMn含有ダスト中のマンガン酸化物を還元し、Mn含有ダスト中のMn分を溶鋼中に回収することを特徴とする。 (もっと読む)


81 - 100 / 145